zoomy-core 0.1.1__py3-none-any.whl → 0.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of zoomy-core might be problematic. Click here for more details.
- zoomy_core/decorators/decorators.py +25 -0
- zoomy_core/fvm/flux.py +97 -0
- zoomy_core/fvm/nonconservative_flux.py +97 -0
- zoomy_core/fvm/ode.py +55 -0
- zoomy_core/fvm/solver_numpy.py +305 -0
- zoomy_core/fvm/timestepping.py +13 -0
- zoomy_core/mesh/gmsh_loader.py +301 -0
- zoomy_core/mesh/mesh.py +1192 -0
- zoomy_core/mesh/mesh_extrude.py +168 -0
- zoomy_core/mesh/mesh_util.py +487 -0
- zoomy_core/misc/custom_types.py +6 -0
- zoomy_core/misc/gui.py +61 -0
- zoomy_core/misc/interpolation.py +140 -0
- zoomy_core/misc/io.py +401 -0
- zoomy_core/misc/logger_config.py +18 -0
- zoomy_core/misc/misc.py +216 -0
- zoomy_core/misc/static_class.py +94 -0
- zoomy_core/model/analysis.py +147 -0
- zoomy_core/model/basefunction.py +113 -0
- zoomy_core/model/basemodel.py +512 -0
- zoomy_core/model/boundary_conditions.py +193 -0
- zoomy_core/model/initial_conditions.py +171 -0
- zoomy_core/model/model.py +63 -0
- zoomy_core/model/models/GN.py +70 -0
- zoomy_core/model/models/advection.py +53 -0
- zoomy_core/model/models/basisfunctions.py +181 -0
- zoomy_core/model/models/basismatrices.py +377 -0
- zoomy_core/model/models/core.py +564 -0
- zoomy_core/model/models/coupled_constrained.py +60 -0
- zoomy_core/model/models/old_smm copy.py +867 -0
- zoomy_core/model/models/poisson.py +41 -0
- zoomy_core/model/models/shallow_moments.py +757 -0
- zoomy_core/model/models/shallow_moments_sediment.py +378 -0
- zoomy_core/model/models/shallow_moments_topo.py +423 -0
- zoomy_core/model/models/shallow_moments_variants.py +1509 -0
- zoomy_core/model/models/shallow_water.py +266 -0
- zoomy_core/model/models/shallow_water_topo.py +111 -0
- zoomy_core/model/models/shear_shallow_flow.py +594 -0
- zoomy_core/model/models/sme_turbulent.py +613 -0
- zoomy_core/model/models/swe_old.py +1018 -0
- zoomy_core/model/models/vam.py +455 -0
- zoomy_core/postprocessing/postprocessing.py +72 -0
- zoomy_core/preprocessing/openfoam_moments.py +452 -0
- zoomy_core/transformation/helpers.py +25 -0
- zoomy_core/transformation/to_amrex.py +238 -0
- zoomy_core/transformation/to_c.py +181 -0
- zoomy_core/transformation/to_jax.py +14 -0
- zoomy_core/transformation/to_numpy.py +115 -0
- zoomy_core/transformation/to_openfoam.py +254 -0
- zoomy_core/transformation/to_ufl.py +67 -0
- {zoomy_core-0.1.1.dist-info → zoomy_core-0.1.2.dist-info}/METADATA +1 -1
- zoomy_core-0.1.2.dist-info/RECORD +55 -0
- zoomy_core-0.1.2.dist-info/top_level.txt +1 -0
- zoomy_core-0.1.1.dist-info/RECORD +0 -5
- zoomy_core-0.1.1.dist-info/top_level.txt +0 -1
- {zoomy_core-0.1.1.dist-info → zoomy_core-0.1.2.dist-info}/WHEEL +0 -0
- {zoomy_core-0.1.1.dist-info → zoomy_core-0.1.2.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,1018 @@
|
|
|
1
|
+
# import numpy as np
|
|
2
|
+
# import os
|
|
3
|
+
# import logging
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
# from library.solver.baseclass import BaseYaml
|
|
7
|
+
# from library.solver.models.base import *
|
|
8
|
+
# from library.solver.boundary_conditions import *
|
|
9
|
+
# import library.solver.initial_condition as initial_condition
|
|
10
|
+
# import library.solver.smm_model as smm
|
|
11
|
+
# import library.solver.smm_model_hyperbolic as smmh
|
|
12
|
+
# import library.solver.smm_model_exner as smm_exner
|
|
13
|
+
# import library.solver.smm_model_exner_hyperbolic as smm_exner_hyper
|
|
14
|
+
|
|
15
|
+
# import sympy
|
|
16
|
+
# from sympy import Symbol, Matrix, lambdify
|
|
17
|
+
# from sympy import zeros, ones
|
|
18
|
+
|
|
19
|
+
# main_dir = os.getenv("SMPYTHON")
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
# class ShallowWater(Model):
|
|
23
|
+
# yaml_tag = "!ShallowWater"
|
|
24
|
+
|
|
25
|
+
# def set_default_default_parameters(self):
|
|
26
|
+
# super().set_default_default_parameters()
|
|
27
|
+
# self.n_variables = 2
|
|
28
|
+
|
|
29
|
+
# def set_runtime_variables(self):
|
|
30
|
+
# super().set_runtime_variables()
|
|
31
|
+
|
|
32
|
+
# def flux(self, Q):
|
|
33
|
+
# h = Q[0]
|
|
34
|
+
# hu = Q[1]
|
|
35
|
+
# u = hu / h
|
|
36
|
+
# return np.array([hu, hu * u + self.g * self.ez * h * h / 2]).reshape(
|
|
37
|
+
# 2, 1, Q.shape[1]
|
|
38
|
+
# )
|
|
39
|
+
|
|
40
|
+
# def flux_jacobian(self, Q):
|
|
41
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], self.dimension, Q.shape[1]))
|
|
42
|
+
# h = Q[0]
|
|
43
|
+
# u = Q[1] / Q[0]
|
|
44
|
+
# # dF1_dh=0
|
|
45
|
+
# # dF1_dhu
|
|
46
|
+
# out[0, 1, 0] = 1.0
|
|
47
|
+
# # dF2_dh
|
|
48
|
+
# out[1, 0, 0] = -u * u + self.g * h
|
|
49
|
+
# # dF2_dhu
|
|
50
|
+
# out[1, 1, 0] = 2 * u
|
|
51
|
+
# return out
|
|
52
|
+
|
|
53
|
+
# def eigenvalues(self, Q, nij):
|
|
54
|
+
# imaginary = False
|
|
55
|
+
# h = Q[0]
|
|
56
|
+
# hu = Q[1]
|
|
57
|
+
# u = hu / h
|
|
58
|
+
# assert (h > 0).all()
|
|
59
|
+
# c = np.sqrt(self.g * h)
|
|
60
|
+
# return np.array([u - c, u + c]), imaginary
|
|
61
|
+
|
|
62
|
+
# def rhs(self, t, Q, **kwargs):
|
|
63
|
+
# output = np.zeros_like(Q)
|
|
64
|
+
# # Topography
|
|
65
|
+
# dHdx = kwargs["aux_variables"]["dHdx"]
|
|
66
|
+
# h = Q[0]
|
|
67
|
+
# output[1] = h * self.g * (self.ex - self.ez * dHdx)
|
|
68
|
+
|
|
69
|
+
# # Friction
|
|
70
|
+
# for friction in self.friction_models:
|
|
71
|
+
# output += getattr(self, friction)(t, Q, **kwargs)
|
|
72
|
+
|
|
73
|
+
# return output
|
|
74
|
+
|
|
75
|
+
# def rhs_jacobian(self, t, Q, **kwargs):
|
|
76
|
+
# # vectorized or single element?
|
|
77
|
+
# if len(Q.shape) == 2:
|
|
78
|
+
# output = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
79
|
+
|
|
80
|
+
# # Topography
|
|
81
|
+
# dHdx = kwargs["aux_variables"]["dHdx"]
|
|
82
|
+
# h = Q[0]
|
|
83
|
+
# # dR1_dh=0
|
|
84
|
+
# # dR1_dhu=0
|
|
85
|
+
# # dR2_dh
|
|
86
|
+
# output[1, 0] = self.g * (self.ex - self.ez * dHdx)
|
|
87
|
+
# # dR2_dhu=0
|
|
88
|
+
|
|
89
|
+
# # Friction
|
|
90
|
+
# for friction in self.friction_models:
|
|
91
|
+
# output += getattr(self, friction + "_jacobian")(t, Q, **kwargs)
|
|
92
|
+
|
|
93
|
+
# return output
|
|
94
|
+
|
|
95
|
+
# def newtonian(self, t, Q, **kwargs):
|
|
96
|
+
# output = np.zeros_like(Q)
|
|
97
|
+
# h = Q[0]
|
|
98
|
+
# u = Q[1] / Q[0]
|
|
99
|
+
# nu = self.parameters["nu"]
|
|
100
|
+
# output[1] = -nu * u
|
|
101
|
+
# return output
|
|
102
|
+
|
|
103
|
+
# def newtonian_jacobian(self, t, Q, **kwargs):
|
|
104
|
+
# # vectorized?
|
|
105
|
+
# if len(Q.shape) == 2:
|
|
106
|
+
# output = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
107
|
+
# else:
|
|
108
|
+
# output = np.zeros((Q.shape[0], Q.shape[0]))
|
|
109
|
+
# nu = self.parameters["nu"]
|
|
110
|
+
# h = Q[0]
|
|
111
|
+
# u_inv = Q[0] / Q[1]
|
|
112
|
+
# # dR1_dh=0
|
|
113
|
+
# # dR1_dhu=0
|
|
114
|
+
# # dR2_dh
|
|
115
|
+
# output[1, 0] = nu * u_inv * u_inv
|
|
116
|
+
# # dR2_dhu=0
|
|
117
|
+
# output[1, 1] = -nu / h
|
|
118
|
+
# return output
|
|
119
|
+
|
|
120
|
+
# def manning(
|
|
121
|
+
# self, t, Q, **kwargs
|
|
122
|
+
# ): # Manning Friction defined as per: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20366
|
|
123
|
+
# output = np.zeros_like(Q)
|
|
124
|
+
# h = Q[0]
|
|
125
|
+
# u = Q[1] / Q[0]
|
|
126
|
+
# nu = self.parameters["nu"]
|
|
127
|
+
# output[1] = -self.g * (nu**2) * Q[1] * np.abs(Q[1]) / Q[0] ** (7 / 3)
|
|
128
|
+
# return output
|
|
129
|
+
|
|
130
|
+
# def primitive_variables(self, Q):
|
|
131
|
+
# h = Q[0]
|
|
132
|
+
# hu = Q[1]
|
|
133
|
+
# u = hu / h
|
|
134
|
+
# return np.array([h, u])
|
|
135
|
+
|
|
136
|
+
# def conservative_variables(self, U):
|
|
137
|
+
# h = U[0]
|
|
138
|
+
# u = U[1]
|
|
139
|
+
# return np.array([h, h * u])
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
# class ShallowWaterWithBottom(Model):
|
|
143
|
+
# yaml_tag = "!ShallowWaterWithBottom"
|
|
144
|
+
|
|
145
|
+
# def set_default_default_parameters(self):
|
|
146
|
+
# super().set_default_default_parameters()
|
|
147
|
+
# self.n_variables = 3
|
|
148
|
+
|
|
149
|
+
# def set_runtime_variables(self):
|
|
150
|
+
# super().set_runtime_variables()
|
|
151
|
+
|
|
152
|
+
# def flux(self, Q):
|
|
153
|
+
# h = Q[0]
|
|
154
|
+
# hu = Q[1]
|
|
155
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
156
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
157
|
+
# return np.array([hu, hu * u + self.g * self.ez * h * h / 2, np.zeros_like(h)])
|
|
158
|
+
|
|
159
|
+
# def flux_jacobian(self, Q):
|
|
160
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], self.dimension, Q.shape[1]))
|
|
161
|
+
# h = Q[0]
|
|
162
|
+
# hu = Q[1]
|
|
163
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
164
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
165
|
+
# # dF1_dh=0
|
|
166
|
+
# # dF1_dhu
|
|
167
|
+
# out[0, 1, 0] = 1.0
|
|
168
|
+
# # dF1_dh_b = 0
|
|
169
|
+
# # dF2_dh
|
|
170
|
+
# out[1, 0, 0] = -u * u + self.g * h
|
|
171
|
+
# # dF2_dhu
|
|
172
|
+
# out[1, 1, 0] = 2 * u
|
|
173
|
+
# # dF2_dh_b = 0
|
|
174
|
+
# # dF3_dh =0
|
|
175
|
+
# # dF3_du = 0
|
|
176
|
+
# # dF3_dh_b =0
|
|
177
|
+
# return out
|
|
178
|
+
|
|
179
|
+
# def eigenvalues(self, Q, nij):
|
|
180
|
+
# imaginary = False
|
|
181
|
+
# h = Q[0]
|
|
182
|
+
# hu = Q[1]
|
|
183
|
+
# h = np.where(h <= 0, 0.0, h)
|
|
184
|
+
# u = np.where(h <= 0, 0.0, hu / h)
|
|
185
|
+
# # assert (h > 0).all()
|
|
186
|
+
# c = np.sqrt(self.g * h)
|
|
187
|
+
# return np.array([u - c, np.zeros_like(u), u + c]), imaginary
|
|
188
|
+
|
|
189
|
+
# def nonconservative_matrix(self, Q, **kwargs):
|
|
190
|
+
# result = np.zeros((Q.shape[0], Q.shape[0], self.dimension, Q.shape[1]))
|
|
191
|
+
# h = Q[0]
|
|
192
|
+
# h = np.where(h <= 0, 0.0, h)
|
|
193
|
+
# result[1, 2] = -h * self.g * self.ez
|
|
194
|
+
# return result
|
|
195
|
+
|
|
196
|
+
# # def nonconservative_matrix(self, Q, **kwargs):
|
|
197
|
+
# # result = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
198
|
+
# # h = Q[0]
|
|
199
|
+
# # h = np.where(h <= 0, 0.0, h)
|
|
200
|
+
# # result[1, 2] = -h * self.g * self.ez
|
|
201
|
+
# # return result
|
|
202
|
+
|
|
203
|
+
# def rhs(self, t, Q, **kwargs):
|
|
204
|
+
# output = np.zeros_like(Q)
|
|
205
|
+
# # Topography
|
|
206
|
+
# h = Q[0]
|
|
207
|
+
# h = np.where(h <= 0, 0.0, h)
|
|
208
|
+
# output[1] = h * self.g * self.ex
|
|
209
|
+
|
|
210
|
+
# # Friction
|
|
211
|
+
# for friction in self.friction_models:
|
|
212
|
+
# output += getattr(self, friction)(t, Q, **kwargs)
|
|
213
|
+
|
|
214
|
+
# return output
|
|
215
|
+
|
|
216
|
+
# def rhs_jacobian(self, t, Q, **kwargs):
|
|
217
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], self.dimension, Q.shape[1]))
|
|
218
|
+
# h = Q[0]
|
|
219
|
+
# hu = Q[1]
|
|
220
|
+
# # h = np.where(h <= 0.0, 0.0, h)
|
|
221
|
+
# # u = np.where(h <= 0.0, 0.0, hu / h)
|
|
222
|
+
|
|
223
|
+
# # Topography
|
|
224
|
+
# out[1, 0, 0] = self.g * self.ex
|
|
225
|
+
# # Friction
|
|
226
|
+
# for friction in self.friction_models:
|
|
227
|
+
# out += getattr(self, friction + "_jacobian")(t, Q, **kwargs)
|
|
228
|
+
|
|
229
|
+
# return out
|
|
230
|
+
|
|
231
|
+
# def newtonian(self, t, Q, **kwargs):
|
|
232
|
+
# output = np.zeros_like(Q)
|
|
233
|
+
# h = Q[0]
|
|
234
|
+
# hu = Q[1]
|
|
235
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
236
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
237
|
+
# nu = self.parameters["nu"]
|
|
238
|
+
# output[1] = -nu * u
|
|
239
|
+
# return output
|
|
240
|
+
|
|
241
|
+
# def newtonian_jacobian(self, t, Q, **kwargs):
|
|
242
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], self.dimension, Q.shape[1]))
|
|
243
|
+
# h = Q[0]
|
|
244
|
+
# hu = Q[1]
|
|
245
|
+
# nu = self.parameters["nu"]
|
|
246
|
+
# out[1, 0, 0] = +nu * hu / h / h
|
|
247
|
+
# out[1, 1, 0] = -nu / h
|
|
248
|
+
# return out
|
|
249
|
+
|
|
250
|
+
# def primitive_variables(self, Q):
|
|
251
|
+
# h = Q[0]
|
|
252
|
+
# hu = Q[1]
|
|
253
|
+
# h_b = Q[2]
|
|
254
|
+
# h = Q[0]
|
|
255
|
+
# hu = Q[1]
|
|
256
|
+
# h = np.where(h <= 0, 0.0, h)
|
|
257
|
+
# u = np.where(h <= 0, 0.0, hu / h)
|
|
258
|
+
# return np.array([h, u, h_b])
|
|
259
|
+
|
|
260
|
+
# def conservative_variables(self, U):
|
|
261
|
+
# h = U[0]
|
|
262
|
+
# u = U[1]
|
|
263
|
+
# h_b = U[2]
|
|
264
|
+
# return np.array([h, h * u, h_b])
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
# class ShallowWaterWithBottom2d(Model2d):
|
|
268
|
+
# yaml_tag = "!ShallowWaterWithBottom2d"
|
|
269
|
+
# dimension = 2
|
|
270
|
+
|
|
271
|
+
# def set_default_default_parameters(self):
|
|
272
|
+
# super().set_default_default_parameters()
|
|
273
|
+
# self.n_variables = 4
|
|
274
|
+
|
|
275
|
+
# def set_runtime_variables(self):
|
|
276
|
+
# super().set_runtime_variables()
|
|
277
|
+
|
|
278
|
+
# def flux(self, Q):
|
|
279
|
+
# h = Q[0]
|
|
280
|
+
# hu = Q[1]
|
|
281
|
+
# hv = Q[2]
|
|
282
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
283
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
284
|
+
# v = np.where(h <= 0.0, 0.0, hv / h)
|
|
285
|
+
# return np.arraw(
|
|
286
|
+
# [
|
|
287
|
+
# [hu, hu * u + self.g * h * h / 2, hu * v, np.zeros_like(h)],
|
|
288
|
+
# [hv, hv * u, hv * v + self.g * h * h / 2, np.zeros_like(h)],
|
|
289
|
+
# ]
|
|
290
|
+
# ).swapaxes(0, 1)
|
|
291
|
+
|
|
292
|
+
# def flux_jacobian(self, Q):
|
|
293
|
+
# h = Q[0]
|
|
294
|
+
# hu = Q[1]
|
|
295
|
+
# hv = Q[2]
|
|
296
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
297
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
298
|
+
# v = np.where(h <= 0.0, 0.0, hv / h)
|
|
299
|
+
# c = self.g * h
|
|
300
|
+
# zero = np.zeros_like(h)
|
|
301
|
+
# one = np.ones_like(h)
|
|
302
|
+
# A_x = np.array(
|
|
303
|
+
# [
|
|
304
|
+
# [zero, one, zero, zero],
|
|
305
|
+
# [-(u**2) + c, 2 * u, zero, zero],
|
|
306
|
+
# [-u * v, v, u, zero],
|
|
307
|
+
# [zero, zero, zero, zero],
|
|
308
|
+
# ]
|
|
309
|
+
# )
|
|
310
|
+
# A_y = np.array(
|
|
311
|
+
# [
|
|
312
|
+
# [zero, zero, one, zero],
|
|
313
|
+
# [-u * v, v, u, zero],
|
|
314
|
+
# [-(v**2) + c, zero, 2 * v, zero],
|
|
315
|
+
# [zero, zero, zero, zero],
|
|
316
|
+
# ]
|
|
317
|
+
# )
|
|
318
|
+
# A = np.zeros((Q.shape[0], Q.shape[0], 2, Q.shape[1]))
|
|
319
|
+
# A[:, :, 0, :] = A_x
|
|
320
|
+
# A[:, :, 1, :] = A_y
|
|
321
|
+
# return A
|
|
322
|
+
|
|
323
|
+
# def eigenvalues(self, Q, nij):
|
|
324
|
+
# imaginary = False
|
|
325
|
+
# h = Q[0]
|
|
326
|
+
# hu = Q[1]
|
|
327
|
+
# hv = Q[2]
|
|
328
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
329
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
330
|
+
# v = np.where(h <= 0.0, 0.0, hv / h)
|
|
331
|
+
# un = u * nij[0] + v * nij[1]
|
|
332
|
+
# c = np.sqrt(self.g * h)
|
|
333
|
+
# return np.array([un - c, np.zeros_like(h), un + c]), imaginary
|
|
334
|
+
|
|
335
|
+
# def eigensystem(self, Q, nij):
|
|
336
|
+
# imaginary = False
|
|
337
|
+
# h = Q[0]
|
|
338
|
+
# hu = Q[1]
|
|
339
|
+
# hv = Q[2]
|
|
340
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
341
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
342
|
+
# v = np.where(h <= 0.0, 0.0, hv / h)
|
|
343
|
+
# c = np.sqrt(self.g * h)
|
|
344
|
+
# zero = np.zeros_like(h)
|
|
345
|
+
# one = np.ones_like(h)
|
|
346
|
+
# eps = 10 ** (-18) * one
|
|
347
|
+
# ev_x = np.array([zero, u, u - c, u + c])
|
|
348
|
+
# R_x = np.array(
|
|
349
|
+
# [
|
|
350
|
+
# [-(c**2), zero, one, one],
|
|
351
|
+
# [zero, zero, -c + u, c + u],
|
|
352
|
+
# [-(c**2) * v, one, v, v],
|
|
353
|
+
# [c**2 - u**2, zero, zero, zero],
|
|
354
|
+
# ]
|
|
355
|
+
# )
|
|
356
|
+
# iR_x = np.array(
|
|
357
|
+
# [
|
|
358
|
+
# [zero, zero, zero, 1.0 / (c**2 - u**2 + eps)],
|
|
359
|
+
# [-v, zero, one, zero],
|
|
360
|
+
# [
|
|
361
|
+
# (c + u) / (2 * c + eps),
|
|
362
|
+
# -1.0 / (2 * c + eps),
|
|
363
|
+
# zero,
|
|
364
|
+
# c / (2 * c - 2 * u + eps),
|
|
365
|
+
# ],
|
|
366
|
+
# [
|
|
367
|
+
# (c - u) / (2 * c + eps),
|
|
368
|
+
# 1.0 / (2 * c + eps),
|
|
369
|
+
# zero,
|
|
370
|
+
# c / (2 * (c + u + eps)),
|
|
371
|
+
# ],
|
|
372
|
+
# ]
|
|
373
|
+
# )
|
|
374
|
+
# ev_y = np.array([zero, v, v - c, v + c])
|
|
375
|
+
# R_y = np.array(
|
|
376
|
+
# [
|
|
377
|
+
# [-(c**2), zero, -one, one],
|
|
378
|
+
# [-(c**2) * u, one, -u, u],
|
|
379
|
+
# [zero, zero, c - v, c + v],
|
|
380
|
+
# [c**2 - v**2, zero, zero, zero],
|
|
381
|
+
# ]
|
|
382
|
+
# )
|
|
383
|
+
# iR_y = np.array(
|
|
384
|
+
# [
|
|
385
|
+
# [zero, zero, zero, 1.0 / (c**2 - v**2 + eps)],
|
|
386
|
+
# [-u, one, zero, zero],
|
|
387
|
+
# [
|
|
388
|
+
# -(c + v) / (2 * c + eps),
|
|
389
|
+
# zero,
|
|
390
|
+
# 1.0 / (2 * c + eps),
|
|
391
|
+
# -c / (2 * c - 2 * v + eps),
|
|
392
|
+
# ],
|
|
393
|
+
# [
|
|
394
|
+
# (c - v) / (2 * c + eps),
|
|
395
|
+
# zero,
|
|
396
|
+
# 1.0 / (2 * c + eps),
|
|
397
|
+
# c / (2 * (c + v) + eps),
|
|
398
|
+
# ],
|
|
399
|
+
# ]
|
|
400
|
+
# )
|
|
401
|
+
# ev = np.zeros((Q.shape[0], 2, Q.shape[1]))
|
|
402
|
+
# R = np.zeros((Q.shape[0], Q.shape[0], 2, Q.shape[1]))
|
|
403
|
+
# iR = np.zeros((Q.shape[0], Q.shape[0], 2, Q.shape[1]))
|
|
404
|
+
# ev[:, 0, :] = ev_x
|
|
405
|
+
# ev[:, 1, :] = ev_y
|
|
406
|
+
# R[:, :, 0, :] = R_x
|
|
407
|
+
# R[:, :, 1, :] = R_y
|
|
408
|
+
# iR[:, :, 0, :] = iR_x
|
|
409
|
+
# iR[:, :, 1, :] = iR_y
|
|
410
|
+
|
|
411
|
+
# ev = np.einsum("ik..., k... -> i...", ev, nij)
|
|
412
|
+
# R = np.einsum("ijk..., k... -> ij...", R, nij)
|
|
413
|
+
# iR = np.einsum("ijk..., k... -> ij...", iR, nij)
|
|
414
|
+
# A_rec = R[:, :, 0] @ np.diag(ev[:, 0]) @ iR[:, :, 0]
|
|
415
|
+
# err = np.linalg.norm(
|
|
416
|
+
# np.einsum("ijk..., k... -> ij...", self.quasilinear_matrix(Q), nij)[:, :, 0]
|
|
417
|
+
# - A_rec
|
|
418
|
+
# )
|
|
419
|
+
# return ev, R, iR, err
|
|
420
|
+
|
|
421
|
+
# def nonconservative_matrix(self, Q, **kwargs):
|
|
422
|
+
# result = np.zeros((Q.shape[0], Q.shape[0], self.dimension, Q.shape[1]))
|
|
423
|
+
# h = Q[0]
|
|
424
|
+
# h = np.where(h <= 0, 0.0, h)
|
|
425
|
+
# result[1, 3, 0] = -h * self.g * self.ez
|
|
426
|
+
# result[2, 3, 1] = -h * self.g * self.ez
|
|
427
|
+
# return result
|
|
428
|
+
|
|
429
|
+
# def rhs(self, t, Q, **kwargs):
|
|
430
|
+
# output = np.zeros_like(Q)
|
|
431
|
+
# # Topography
|
|
432
|
+
# h = Q[0]
|
|
433
|
+
# h = np.where(h <= 0, 0.0, h)
|
|
434
|
+
# output[1] = h * self.g * self.ex
|
|
435
|
+
# output[2] = h * self.g * self.ey
|
|
436
|
+
|
|
437
|
+
# # Friction
|
|
438
|
+
# for friction in self.friction_models:
|
|
439
|
+
# output += getattr(self, friction)(t, Q, **kwargs)
|
|
440
|
+
|
|
441
|
+
# return output
|
|
442
|
+
|
|
443
|
+
# def rhs_jacobian(self, t, Q, **kwargs):
|
|
444
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
445
|
+
# h = Q[0]
|
|
446
|
+
# hu = Q[1]
|
|
447
|
+
# # h = np.where(h <= 0.0, 0.0, h)
|
|
448
|
+
# # u = np.where(h <= 0.0, 0.0, hu / h)
|
|
449
|
+
|
|
450
|
+
# # Topography
|
|
451
|
+
# out[1, 0] = self.g * self.ex
|
|
452
|
+
# out[2, 0] = self.g * self.ey
|
|
453
|
+
# # Friction
|
|
454
|
+
# for friction in self.friction_models:
|
|
455
|
+
# out += getattr(self, friction + "_jacobian")(t, Q, **kwargs)
|
|
456
|
+
|
|
457
|
+
# return out
|
|
458
|
+
|
|
459
|
+
# def newtonian(self, t, Q, **kwargs):
|
|
460
|
+
# output = np.zeros_like(Q)
|
|
461
|
+
# h = Q[0]
|
|
462
|
+
# hu = Q[1]
|
|
463
|
+
# hv = Q[2]
|
|
464
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
465
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
466
|
+
# v = np.where(h <= 0.0, 0.0, hv / h)
|
|
467
|
+
# nu = self.parameters["nu"]
|
|
468
|
+
# output[1] = -nu * u
|
|
469
|
+
# output[2] = -nu * v
|
|
470
|
+
# return output
|
|
471
|
+
|
|
472
|
+
# def newtonian_jacobian(self, t, Q, **kwargs):
|
|
473
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
474
|
+
# h = Q[0]
|
|
475
|
+
# hu = Q[1]
|
|
476
|
+
# hv = Q[2]
|
|
477
|
+
# nu = self.parameters["nu"]
|
|
478
|
+
# out[1, 0] = +nu * hu / h / h
|
|
479
|
+
# out[1, 1] = -nu / h
|
|
480
|
+
# out[2, 0] = +nu * hv / h / h
|
|
481
|
+
# out[2, 2] = -nu / h
|
|
482
|
+
# return out
|
|
483
|
+
|
|
484
|
+
# def bc_chezy(self, t, Q, **kwargs):
|
|
485
|
+
# output = np.zeros_like(Q)
|
|
486
|
+
# h = Q[0]
|
|
487
|
+
# hu = Q[1]
|
|
488
|
+
# hv = Q[2]
|
|
489
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
490
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
491
|
+
# v = np.where(h <= 0.0, 0.0, hv / h)
|
|
492
|
+
# # C = kwargs["aux_variables"]["ChezyCoef"]
|
|
493
|
+
# C = kwargs["model"].parameters["ChezyCoef"]
|
|
494
|
+
# u_sq = np.sqrt(u**2 + v**2)
|
|
495
|
+
# output[1] = -1.0 / C**2 * u * u_sq
|
|
496
|
+
# output[2] = -1.0 / C**2 * v * u_sq
|
|
497
|
+
# return output
|
|
498
|
+
|
|
499
|
+
# def bc_chezy_jacobian(self, t, Q, **kwargs):
|
|
500
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
501
|
+
# h = Q[0]
|
|
502
|
+
# hu = Q[1]
|
|
503
|
+
# hv = Q[2]
|
|
504
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
505
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
506
|
+
# v = np.where(h <= 0.0, 0.0, hv / h)
|
|
507
|
+
# C = kwargs["model"].parameters["ChezyCoef"]
|
|
508
|
+
# # C = kwargs["aux_variables"]["ChezyCoef"]
|
|
509
|
+
# u_sq = np.sqrt(u**2 + v**2)
|
|
510
|
+
# eps = 10 ** (-10)
|
|
511
|
+
# out[1, 0] = +1.0 / C**2 * 2 * u * u_sq / h
|
|
512
|
+
# out[1, 1] = -1.0 / C**2 * (u / h / (u_sq + eps) * u + u_sq / h)
|
|
513
|
+
# out[1, 2] = -1.0 / C**2 * (u / h / (u_sq + eps) * v)
|
|
514
|
+
# out[2, 0] = +1.0 / C**2 * 2 * v * u_sq / h
|
|
515
|
+
# out[2, 1] = -1.0 / C**2 * (v / h / (u_sq + eps) * u)
|
|
516
|
+
# out[2, 2] = -1.0 / C**2 * (v / h / (u_sq + eps) * v + u_sq / h)
|
|
517
|
+
# return out
|
|
518
|
+
|
|
519
|
+
# def newtonian_jacobian(self, t, Q, **kwargs):
|
|
520
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
521
|
+
# h = Q[0]
|
|
522
|
+
# hu = Q[1]
|
|
523
|
+
# hv = Q[2]
|
|
524
|
+
# nu = self.parameters["nu"]
|
|
525
|
+
# out[1, 0] = +nu * hu / h / h
|
|
526
|
+
# out[1, 1] = -nu / h
|
|
527
|
+
# out[2, 0] = +nu * hv / h / h
|
|
528
|
+
# out[2, 2] = -nu / h
|
|
529
|
+
# return out
|
|
530
|
+
|
|
531
|
+
# def primitive_variables(self, Q):
|
|
532
|
+
# h = Q[0]
|
|
533
|
+
# hu = Q[1]
|
|
534
|
+
# hv = Q[2]
|
|
535
|
+
# h_b = Q[3]
|
|
536
|
+
# h = np.where(h <= 0.0, 0.0, h)
|
|
537
|
+
# u = np.where(h <= 0.0, 0.0, hu / h)
|
|
538
|
+
# v = np.where(h <= 0.0, 0.0, hv / h)
|
|
539
|
+
# return np.array([h, u, v, h_b])
|
|
540
|
+
|
|
541
|
+
# def conservative_variables(self, U):
|
|
542
|
+
# h = U[0]
|
|
543
|
+
# u = U[1]
|
|
544
|
+
# v = U[2]
|
|
545
|
+
# h_b = U[3]
|
|
546
|
+
# return np.array([h, h * u, h * v, h_b])
|
|
547
|
+
|
|
548
|
+
# def compute_Q_in_normal_transverse(self, Q_, n_, **kwargs):
|
|
549
|
+
# assert Q_.shape[1] == 1
|
|
550
|
+
# Q = np.array(Q_[:, 0])
|
|
551
|
+
# n = np.array(n_[:, 0])
|
|
552
|
+
# dim = self.dimension
|
|
553
|
+
# offset = 1
|
|
554
|
+
# assert dim == 2
|
|
555
|
+
# result = np.array(Q)
|
|
556
|
+
# mom = np.zeros((offset, dim))
|
|
557
|
+
# for d in range(dim):
|
|
558
|
+
# mom[:, d] = Q[1 + d * offset : 1 + (d + 1) * offset]
|
|
559
|
+
# mom_normal = np.einsum("ik... ,k... -> i...", mom, n[:dim])
|
|
560
|
+
# n_trans = np.cross(np.array([n[0], n[1], 0.0]), np.array([0.0, 0.0, 1.0]))
|
|
561
|
+
# mom_trans = np.einsum("ik... ,k... -> i...", mom, n_trans[:dim])
|
|
562
|
+
# result[1 : 1 + offset] = mom_normal
|
|
563
|
+
# result[1 + offset : 1 + 2 * offset] = mom_trans
|
|
564
|
+
# return result
|
|
565
|
+
|
|
566
|
+
# def compute_Q_in_x_y(self, Q_, n_, **kwargs):
|
|
567
|
+
# assert Q_.shape[1] == 1
|
|
568
|
+
# Q = np.array(Q_[:, 0])
|
|
569
|
+
# n = np.array(n_[:, 0])
|
|
570
|
+
# n = np.array([n[0], n[1], 0.0])
|
|
571
|
+
# dim = self.dimension
|
|
572
|
+
# offset = 1
|
|
573
|
+
# assert dim == 2
|
|
574
|
+
# result = np.array(Q)
|
|
575
|
+
# mom = np.zeros((offset, dim))
|
|
576
|
+
# mom_normal = Q[1 : 1 + offset]
|
|
577
|
+
# mom_trans = Q[1 + offset : 1 + 2 * offset]
|
|
578
|
+
# n_trans = np.cross(n, np.array([0.0, 0.0, 1.0]))
|
|
579
|
+
# nx = np.array([1.0, 0.0, 0.0])
|
|
580
|
+
# ny = np.array([0.0, 1.0, 0.0])
|
|
581
|
+
# result[1 : 1 + offset] = mom_normal * np.dot(n, nx)
|
|
582
|
+
# result[1 : 1 + offset] += mom_trans * np.dot(n_trans, nx)
|
|
583
|
+
# result[1 + offset : 1 + 2 * offset] = mom_normal * np.dot(n, ny)
|
|
584
|
+
# result[1 + offset : 1 + 2 * offset] += mom_trans * np.dot(n_trans, ny)
|
|
585
|
+
# return result
|
|
586
|
+
|
|
587
|
+
|
|
588
|
+
# class ShallowWater2d(Model2d):
|
|
589
|
+
# yaml_tag = "!ShallowWater2d"
|
|
590
|
+
|
|
591
|
+
# def set_default_default_parameters(self):
|
|
592
|
+
# super().set_default_default_parameters()
|
|
593
|
+
# self.n_variables = 3
|
|
594
|
+
|
|
595
|
+
# def set_runtime_variables(self):
|
|
596
|
+
# super().set_runtime_variables()
|
|
597
|
+
|
|
598
|
+
# def flux(self, Q):
|
|
599
|
+
# h = Q[0]
|
|
600
|
+
# hu = Q[1]
|
|
601
|
+
# hv = Q[2]
|
|
602
|
+
# u = hu / h
|
|
603
|
+
# v = hv / h
|
|
604
|
+
# return np.array(
|
|
605
|
+
# [
|
|
606
|
+
# [hu, hu * u + self.g * h * h / 2, hu * v],
|
|
607
|
+
# [hv, hv * u, hv * v + self.g * h * h / 2],
|
|
608
|
+
# ]
|
|
609
|
+
# ).swapaxes(0, 1)
|
|
610
|
+
|
|
611
|
+
# def flux_jacobian(self, Q):
|
|
612
|
+
# h = Q[0]
|
|
613
|
+
# hu = Q[1]
|
|
614
|
+
# hv = Q[2]
|
|
615
|
+
# u = hu / h
|
|
616
|
+
# v = hv / h
|
|
617
|
+
|
|
618
|
+
# result = np.zeros((3, 3, 2))
|
|
619
|
+
# dfdq = np.array([[0, 1, 0], [-(u**2) + self.g * h, 2 * u, 0], [-u * v, v, u]])
|
|
620
|
+
# dgdq = np.array([[0, 0, 1], [-u * v, v, u], [-(v**2) + self.g * h, 0, 2 * v]])
|
|
621
|
+
# result[:, :, 0] = dfdq
|
|
622
|
+
# result[:, :, 1] = dgdq
|
|
623
|
+
# return result
|
|
624
|
+
|
|
625
|
+
# def eigenvalues(self, Q, nij):
|
|
626
|
+
# imaginary = False
|
|
627
|
+
# # evs = np.zeros_like(Q)
|
|
628
|
+
# # for i in range(Q.shape[1]):
|
|
629
|
+
# # evs[:,i] = np.linalg.eigvals(np.dot(self.flux_jacobian(Q[:,i]), nij.flatten()))
|
|
630
|
+
# # return evs, imaginary
|
|
631
|
+
# h = Q[0]
|
|
632
|
+
# hu = Q[1]
|
|
633
|
+
# hv = Q[2]
|
|
634
|
+
# u = hu / h
|
|
635
|
+
# v = hv / h
|
|
636
|
+
# un = u + v
|
|
637
|
+
# assert (h > 0).all()
|
|
638
|
+
# c = np.sqrt(self.g * h)
|
|
639
|
+
# return np.array([un - c, un, un + c]), imaginary
|
|
640
|
+
|
|
641
|
+
# def rhs(self, t, Q, **kwargs):
|
|
642
|
+
# output = np.zeros_like(Q)
|
|
643
|
+
# # Topography
|
|
644
|
+
# h = Q[0]
|
|
645
|
+
# output[1] = h * self.g * self.ex
|
|
646
|
+
# output[2] = h * self.g * self.ey
|
|
647
|
+
|
|
648
|
+
# # Friction
|
|
649
|
+
# for friction in self.friction_models:
|
|
650
|
+
# output += getattr(self, friction)(t, Q, **kwargs)
|
|
651
|
+
|
|
652
|
+
# return output
|
|
653
|
+
|
|
654
|
+
# def rhs_jacobian(self, t, Q, **kwargs):
|
|
655
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
656
|
+
# h = Q[0]
|
|
657
|
+
# hu = Q[1]
|
|
658
|
+
|
|
659
|
+
# # Topography
|
|
660
|
+
# out[1, 0] = self.g * self.ex
|
|
661
|
+
# out[2, 0] = self.g * self.ey
|
|
662
|
+
# # Friction
|
|
663
|
+
# for friction in self.friction_models:
|
|
664
|
+
# out += getattr(self, friction + "_jacobian")(t, Q, **kwargs)
|
|
665
|
+
|
|
666
|
+
# return out
|
|
667
|
+
|
|
668
|
+
# def newtonian(self, t, Q, **kwargs):
|
|
669
|
+
# output = np.zeros_like(Q)
|
|
670
|
+
# h = Q[0]
|
|
671
|
+
# u = Q[1] / h
|
|
672
|
+
# v = Q[2] / h
|
|
673
|
+
# nu = self.parameters["nu"]
|
|
674
|
+
# output[1] = -nu * u
|
|
675
|
+
# output[2] = -nu * v
|
|
676
|
+
# return output
|
|
677
|
+
|
|
678
|
+
# def newtonian_jacobian(self, t, Q, **kwargs):
|
|
679
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
680
|
+
# h = Q[0]
|
|
681
|
+
# hu = Q[1]
|
|
682
|
+
# hv = Q[2]
|
|
683
|
+
# nu = self.parameters["nu"]
|
|
684
|
+
# out[1, 0] = +nu * hu / h / h
|
|
685
|
+
# out[1, 1] = -nu / h
|
|
686
|
+
# out[2, 0] = +nu * hv / h / h
|
|
687
|
+
# out[2, 2] = -nu / h
|
|
688
|
+
# return out
|
|
689
|
+
|
|
690
|
+
# def primitive_variables(self, Q):
|
|
691
|
+
# h = Q[0]
|
|
692
|
+
# hu = Q[1]
|
|
693
|
+
# hv = Q[2]
|
|
694
|
+
# u = hu / h
|
|
695
|
+
# v = hv / h
|
|
696
|
+
# return np.array([h, u, v])
|
|
697
|
+
|
|
698
|
+
# def conservative_variables(self, U):
|
|
699
|
+
# h = U[0]
|
|
700
|
+
# u = U[1]
|
|
701
|
+
# v = U[2]
|
|
702
|
+
# return np.array([h, h * u, h * v])
|
|
703
|
+
|
|
704
|
+
|
|
705
|
+
# class ShallowWaterSympy(Model):
|
|
706
|
+
# yaml_tag = "!ShallowWaterSympy"
|
|
707
|
+
|
|
708
|
+
# def set_default_default_parameters(self):
|
|
709
|
+
# super().set_default_default_parameters()
|
|
710
|
+
# self.n_variables = 2
|
|
711
|
+
|
|
712
|
+
# def set_runtime_variables(self):
|
|
713
|
+
# super().set_runtime_variables()
|
|
714
|
+
# self.initialize_sympy_model()
|
|
715
|
+
|
|
716
|
+
# def initialize_sympy_model(self):
|
|
717
|
+
# numEquations = 1
|
|
718
|
+
# h = sympy.symbols("h")
|
|
719
|
+
# halpha = Matrix([sympy.symbols("halpha%d" % i) for i in range(numEquations)])
|
|
720
|
+
# Q = Matrix([h, *(halpha)])
|
|
721
|
+
|
|
722
|
+
# def f():
|
|
723
|
+
# flux = Matrix([0 for i in range(Q.shape[0])])
|
|
724
|
+
# h = Q[0]
|
|
725
|
+
# hu = Q[1]
|
|
726
|
+
# flux[0] = hu
|
|
727
|
+
# flux[1] = hu**2 / h + self.g * self.ez * h * h / 2
|
|
728
|
+
# return flux
|
|
729
|
+
|
|
730
|
+
# def jac_f():
|
|
731
|
+
# return f().jacobian(Q)
|
|
732
|
+
|
|
733
|
+
# def rhs():
|
|
734
|
+
# output = Matrix([0 for i in range(Q.shape[0])])
|
|
735
|
+
# h = Q[0]
|
|
736
|
+
# for friction in self.friction_models:
|
|
737
|
+
# output += getattr(self, friction)
|
|
738
|
+
# return output
|
|
739
|
+
|
|
740
|
+
# def jac_rhs():
|
|
741
|
+
# return rhs().jacobian(Q)
|
|
742
|
+
|
|
743
|
+
# def newtonian():
|
|
744
|
+
# result = flux = Matrix([0 for i in range(Q.shape[0])])
|
|
745
|
+
# h = Q[0]
|
|
746
|
+
# hu = Q[1]
|
|
747
|
+
# nu = self.parameters["nu"]
|
|
748
|
+
# result[1] = -nu * hu / h
|
|
749
|
+
# return result
|
|
750
|
+
|
|
751
|
+
# self.EVs = simplify(jac_f().eigenvals())
|
|
752
|
+
# self.F = lambdify(Q, f(), "numpy")
|
|
753
|
+
# self.JacF = lambdify(Q, jac_f(), "numpy")
|
|
754
|
+
# self.rhs = lambdify(Q, rhs(), "numpy")
|
|
755
|
+
# self.Jac_rhs = lambdify(Q, jac_rhs(), "numpy")
|
|
756
|
+
|
|
757
|
+
# def flux(self, Q):
|
|
758
|
+
# return self.F(*Q)
|
|
759
|
+
|
|
760
|
+
# def flux_jacobian(self, Q):
|
|
761
|
+
# return self.JacF(*Q)
|
|
762
|
+
|
|
763
|
+
# def eigenvalues(self, Q, nij):
|
|
764
|
+
# imaginary = False
|
|
765
|
+
# h = Q[0]
|
|
766
|
+
# hu = Q[1]
|
|
767
|
+
# u = hu / h
|
|
768
|
+
# assert (h > 0).all()
|
|
769
|
+
# c = np.sqrt(self.g * h)
|
|
770
|
+
# return np.array([u - c, u + c]), imaginary
|
|
771
|
+
|
|
772
|
+
# def rhs(self, t, Q, **kwargs):
|
|
773
|
+
# output = np.zeros_like(Q)
|
|
774
|
+
# # Topography
|
|
775
|
+
# dHdx = kwargs["aux_variables"]["dHdx"]
|
|
776
|
+
# h = Q[0]
|
|
777
|
+
# output[1] = h * self.g * (self.ex - self.ez * dHdx)
|
|
778
|
+
|
|
779
|
+
# # Friction
|
|
780
|
+
# for friction in self.friction_models:
|
|
781
|
+
# output += getattr(self, friction)(t, Q, **kwargs)
|
|
782
|
+
|
|
783
|
+
# return output
|
|
784
|
+
|
|
785
|
+
# def rhs_jacobian(self, t, Q, **kwargs):
|
|
786
|
+
# # vectorized or single element?
|
|
787
|
+
# if len(Q.shape) == 2:
|
|
788
|
+
# output = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
789
|
+
|
|
790
|
+
# # Topography
|
|
791
|
+
# dHdx = kwargs["aux_variables"]["dHdx"]
|
|
792
|
+
# h = Q[0]
|
|
793
|
+
# # dR1_dh=0
|
|
794
|
+
# # dR1_dhu=0
|
|
795
|
+
# # dR2_dh
|
|
796
|
+
# output[1, 0] = self.g * (self.ex - self.ez * dHdx)
|
|
797
|
+
# # dR2_dhu=0
|
|
798
|
+
|
|
799
|
+
# # Friction
|
|
800
|
+
# for friction in self.friction_models:
|
|
801
|
+
# output += getattr(self, friction + "_jacobian")(t, Q, **kwargs)
|
|
802
|
+
|
|
803
|
+
# return output
|
|
804
|
+
|
|
805
|
+
# def newtonian(self, t, Q, **kwargs):
|
|
806
|
+
# output = np.zeros_like(Q)
|
|
807
|
+
# h = Q[0]
|
|
808
|
+
# u = Q[1] / Q[0]
|
|
809
|
+
# nu = self.parameters["nu"]
|
|
810
|
+
# output[1] = -nu * u
|
|
811
|
+
# return output
|
|
812
|
+
|
|
813
|
+
# def newtonian_jacobian(self, t, Q, **kwargs):
|
|
814
|
+
# # vectorized?
|
|
815
|
+
# if len(Q.shape) == 2:
|
|
816
|
+
# output = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
817
|
+
# else:
|
|
818
|
+
# output = np.zeros((Q.shape[0], Q.shape[0]))
|
|
819
|
+
# nu = self.parameters["nu"]
|
|
820
|
+
# h = Q[0]
|
|
821
|
+
# u_inv = Q[0] / Q[1]
|
|
822
|
+
# # dR1_dh=0
|
|
823
|
+
# # dR1_dhu=0
|
|
824
|
+
# # dR2_dh
|
|
825
|
+
# output[1, 0] = nu * u_inv * u_inv
|
|
826
|
+
# # dR2_dhu=0
|
|
827
|
+
# output[1, 1] = -nu / h
|
|
828
|
+
# return output
|
|
829
|
+
|
|
830
|
+
# def manning(
|
|
831
|
+
# self, t, Q, **kwargs
|
|
832
|
+
# ): # Manning Friction defined as per: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20366
|
|
833
|
+
# output = np.zeros_like(Q)
|
|
834
|
+
# h = Q[0]
|
|
835
|
+
# u = Q[1] / Q[0]
|
|
836
|
+
# nu = self.parameters["nu"]
|
|
837
|
+
# output[1] = -self.g * (nu**2) * Q[1] * np.abs(Q[1]) / Q[0] ** (7 / 3)
|
|
838
|
+
# return output
|
|
839
|
+
|
|
840
|
+
# def primitive_variables(self, Q):
|
|
841
|
+
# h = Q[0]
|
|
842
|
+
# hu = Q[1]
|
|
843
|
+
# u = hu / h
|
|
844
|
+
# return np.array([h, u])
|
|
845
|
+
|
|
846
|
+
# def conservative_variables(self, U):
|
|
847
|
+
# h = U[0]
|
|
848
|
+
# u = U[1]
|
|
849
|
+
# return np.array([h, h * u])
|
|
850
|
+
|
|
851
|
+
|
|
852
|
+
# class ShallowWaterExner(Model):
|
|
853
|
+
# yaml_tag = "!ShallowWaterExner"
|
|
854
|
+
|
|
855
|
+
# def set_default_default_parameters(self):
|
|
856
|
+
# super().set_default_default_parameters()
|
|
857
|
+
# self.n_variables = 3
|
|
858
|
+
# self.parameters = {
|
|
859
|
+
# "sediment_density": 1580,
|
|
860
|
+
# "water_density": 1000,
|
|
861
|
+
# "sediment_dia": 0.0039,
|
|
862
|
+
# "critical_shield": 0.047,
|
|
863
|
+
# "manning": 0.0365,
|
|
864
|
+
# "porosity": 0.47,
|
|
865
|
+
# }
|
|
866
|
+
|
|
867
|
+
# def set_runtime_variables(self):
|
|
868
|
+
# super().set_runtime_variables()
|
|
869
|
+
|
|
870
|
+
# def characteristic_discharge(self):
|
|
871
|
+
# return self.parameters["sediment_dia"] * np.sqrt(
|
|
872
|
+
# self.g
|
|
873
|
+
# * self.parameters["sediment_dia"]
|
|
874
|
+
# * (
|
|
875
|
+
# self.parameters["sediment_density"] / self.parameters["water_density"]
|
|
876
|
+
# - 1
|
|
877
|
+
# )
|
|
878
|
+
# )
|
|
879
|
+
|
|
880
|
+
# def flux(self, Q):
|
|
881
|
+
# h = Q[0]
|
|
882
|
+
# hu = Q[1]
|
|
883
|
+
# u = hu / h
|
|
884
|
+
|
|
885
|
+
# q = self.characteristic_discharge()
|
|
886
|
+
# S_f = (self.parameters["manning"] ** 2) * u * np.abs(u) / h ** (4 / 3)
|
|
887
|
+
# tau = self.parameters["water_density"] * self.g * h * S_f
|
|
888
|
+
# theta = (
|
|
889
|
+
# np.abs(tau)
|
|
890
|
+
# * (self.parameters["sediment_dia"] ** 2)
|
|
891
|
+
# / (
|
|
892
|
+
# self.g
|
|
893
|
+
# * (
|
|
894
|
+
# self.parameters["sediment_density"]
|
|
895
|
+
# - self.parameters["water_density"]
|
|
896
|
+
# )
|
|
897
|
+
# * self.parameters["sediment_dia"] ** 3
|
|
898
|
+
# )
|
|
899
|
+
# )
|
|
900
|
+
|
|
901
|
+
# theta_flag = np.array(theta >= self.parameters["critical_shield"], dtype=float)
|
|
902
|
+
# delta = (theta_flag * (theta - self.parameters["critical_shield"])) ** 1.5
|
|
903
|
+
|
|
904
|
+
# # delta = np.abs(theta - self.critical_shield)**1.5
|
|
905
|
+
|
|
906
|
+
# q_b = q * np.sign(tau) * (8 / (1 - self.parameters["porosity"])) * delta
|
|
907
|
+
|
|
908
|
+
# return np.array([hu, hu * u + self.g * h * h / 2, q_b])
|
|
909
|
+
|
|
910
|
+
# def flux_jacobian(self, Q):
|
|
911
|
+
# out = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
912
|
+
# h = Q[0]
|
|
913
|
+
# u = Q[1] / Q[0]
|
|
914
|
+
# S_f = (self.parameters["manning"] ** 2) * u * np.abs(u) / h ** (4 / 3)
|
|
915
|
+
# tau = self.parameters["water_density"] * self.g * h * S_f
|
|
916
|
+
# theta = (
|
|
917
|
+
# np.abs(tau)
|
|
918
|
+
# * (self.parameters["sediment_dia"] ** 2)
|
|
919
|
+
# / (
|
|
920
|
+
# self.g
|
|
921
|
+
# * (
|
|
922
|
+
# self.parameters["sediment_density"]
|
|
923
|
+
# - self.parameters["water_density"]
|
|
924
|
+
# )
|
|
925
|
+
# * self.parameters["sediment_dia"] ** 3
|
|
926
|
+
# )
|
|
927
|
+
# )
|
|
928
|
+
# q = self.characteristic_discharge()
|
|
929
|
+
|
|
930
|
+
# theta_flag = np.array(theta >= self.parameters["critical_shield"], dtype=float)
|
|
931
|
+
# delta = (theta_flag * (theta - self.parameters["critical_shield"])) ** 0.5
|
|
932
|
+
|
|
933
|
+
# # delta = np.abs(theta - self.critical_shield)**0.5
|
|
934
|
+
|
|
935
|
+
# dq = (
|
|
936
|
+
# q
|
|
937
|
+
# * 24
|
|
938
|
+
# * (self.parameters["manning"] ** 2)
|
|
939
|
+
# * delta
|
|
940
|
+
# * u
|
|
941
|
+
# / (
|
|
942
|
+
# (1 - self.parameters["porosity"])
|
|
943
|
+
# * (
|
|
944
|
+
# (
|
|
945
|
+
# self.parameters["sediment_density"]
|
|
946
|
+
# / self.parameters["water_density"]
|
|
947
|
+
# )
|
|
948
|
+
# - 1
|
|
949
|
+
# )
|
|
950
|
+
# * self.parameters["sediment_dia"]
|
|
951
|
+
# * (h ** (4 / 3))
|
|
952
|
+
# )
|
|
953
|
+
# )
|
|
954
|
+
# dh = (-7 / 6) * u * dq
|
|
955
|
+
|
|
956
|
+
# out[0, 1] = 1
|
|
957
|
+
# out[1, 0] = self.g * h - u**2
|
|
958
|
+
# out[1, 1] = 2 * u
|
|
959
|
+
# # out[1,2] = self.g * h
|
|
960
|
+
# out[2, 0] = dh
|
|
961
|
+
# out[2, 1] = dq
|
|
962
|
+
|
|
963
|
+
# return out
|
|
964
|
+
|
|
965
|
+
# def nonconservative_matrix(self, Q, **kwargs):
|
|
966
|
+
# h = Q[0]
|
|
967
|
+
# NC = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
968
|
+
# NC[1, 2] = -self.g * h
|
|
969
|
+
# return NC
|
|
970
|
+
|
|
971
|
+
# def rhs(self, t, Q, **kwargs):
|
|
972
|
+
# output = np.zeros_like(Q)
|
|
973
|
+
# h = Q[0]
|
|
974
|
+
# u = Q[1] / Q[0]
|
|
975
|
+
# output[1] = (
|
|
976
|
+
# -self.g * self.parameters["manning"] ** 2 * np.abs(u) * u / h ** (1 / 3)
|
|
977
|
+
# )
|
|
978
|
+
|
|
979
|
+
# return output
|
|
980
|
+
|
|
981
|
+
# def rhs_jacobian(self, t, Q, **kwargs):
|
|
982
|
+
# h = Q[0]
|
|
983
|
+
# u = Q[1] / Q[0]
|
|
984
|
+
|
|
985
|
+
# if len(Q.shape) == 2:
|
|
986
|
+
# output = np.zeros((Q.shape[0], Q.shape[0], Q.shape[1]))
|
|
987
|
+
# else:
|
|
988
|
+
# output = np.zeros((Q.shape[0], Q.shape[0]))
|
|
989
|
+
|
|
990
|
+
# output[1, 0] = (
|
|
991
|
+
# (7 / 3)
|
|
992
|
+
# * self.g
|
|
993
|
+
# * (self.parameters["manning"] ** 2)
|
|
994
|
+
# * u
|
|
995
|
+
# * np.abs(u)
|
|
996
|
+
# / h ** (4 / 3)
|
|
997
|
+
# )
|
|
998
|
+
# output[1, 1] = (
|
|
999
|
+
# -self.g
|
|
1000
|
+
# * (self.parameters["manning"] ** 2)
|
|
1001
|
+
# * (np.abs(u) + (u * u / np.abs(u)))
|
|
1002
|
+
# / h ** (4 / 3)
|
|
1003
|
+
# )
|
|
1004
|
+
|
|
1005
|
+
# return output
|
|
1006
|
+
|
|
1007
|
+
# def primitive_variables(self, Q):
|
|
1008
|
+
# h = Q[0]
|
|
1009
|
+
# hu = Q[1]
|
|
1010
|
+
# u = hu / h
|
|
1011
|
+
# b = Q[2]
|
|
1012
|
+
# return np.array([h, u, b])
|
|
1013
|
+
|
|
1014
|
+
# def conservative_variables(self, U):
|
|
1015
|
+
# h = U[0]
|
|
1016
|
+
# u = U[1]
|
|
1017
|
+
# b = U[2]
|
|
1018
|
+
# return np.array([h, h * u, b])
|