zea 0.0.7__py3-none-any.whl → 0.0.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- zea/__init__.py +3 -3
- zea/agent/masks.py +2 -2
- zea/agent/selection.py +3 -3
- zea/backend/__init__.py +1 -1
- zea/backend/tensorflow/dataloader.py +1 -5
- zea/beamform/beamformer.py +4 -2
- zea/beamform/pfield.py +2 -2
- zea/beamform/pixelgrid.py +1 -1
- zea/data/__init__.py +0 -9
- zea/data/augmentations.py +222 -29
- zea/data/convert/__init__.py +1 -6
- zea/data/convert/__main__.py +164 -0
- zea/data/convert/camus.py +106 -40
- zea/data/convert/echonet.py +184 -83
- zea/data/convert/echonetlvh/README.md +2 -3
- zea/data/convert/echonetlvh/{convert_raw_to_usbmd.py → __init__.py} +174 -103
- zea/data/convert/echonetlvh/manual_rejections.txt +73 -0
- zea/data/convert/echonetlvh/precompute_crop.py +43 -64
- zea/data/convert/picmus.py +37 -40
- zea/data/convert/utils.py +86 -0
- zea/data/convert/verasonics.py +1247 -0
- zea/data/data_format.py +124 -6
- zea/data/dataloader.py +12 -7
- zea/data/datasets.py +109 -70
- zea/data/file.py +119 -82
- zea/data/file_operations.py +496 -0
- zea/data/preset_utils.py +2 -2
- zea/display.py +8 -9
- zea/doppler.py +5 -5
- zea/func/__init__.py +109 -0
- zea/{tensor_ops.py → func/tensor.py} +113 -69
- zea/func/ultrasound.py +500 -0
- zea/internal/_generate_keras_ops.py +5 -5
- zea/internal/checks.py +6 -12
- zea/internal/operators.py +4 -0
- zea/io_lib.py +108 -160
- zea/metrics.py +6 -5
- zea/models/__init__.py +1 -1
- zea/models/diffusion.py +63 -12
- zea/models/echonetlvh.py +1 -1
- zea/models/gmm.py +1 -1
- zea/models/lv_segmentation.py +2 -0
- zea/ops/__init__.py +188 -0
- zea/ops/base.py +442 -0
- zea/{keras_ops.py → ops/keras_ops.py} +2 -2
- zea/ops/pipeline.py +1472 -0
- zea/ops/tensor.py +356 -0
- zea/ops/ultrasound.py +890 -0
- zea/probes.py +2 -10
- zea/scan.py +35 -28
- zea/tools/fit_scan_cone.py +90 -160
- zea/tools/selection_tool.py +1 -1
- zea/tracking/__init__.py +16 -0
- zea/tracking/base.py +94 -0
- zea/tracking/lucas_kanade.py +474 -0
- zea/tracking/segmentation.py +110 -0
- zea/utils.py +11 -2
- {zea-0.0.7.dist-info → zea-0.0.9.dist-info}/METADATA +5 -1
- {zea-0.0.7.dist-info → zea-0.0.9.dist-info}/RECORD +62 -48
- zea/data/convert/matlab.py +0 -1237
- zea/ops.py +0 -3294
- {zea-0.0.7.dist-info → zea-0.0.9.dist-info}/WHEEL +0 -0
- {zea-0.0.7.dist-info → zea-0.0.9.dist-info}/entry_points.txt +0 -0
- {zea-0.0.7.dist-info → zea-0.0.9.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,1247 @@
|
|
|
1
|
+
"""Functionality to convert Verasonics MATLAB workspace to the zea format.
|
|
2
|
+
|
|
3
|
+
Example of saving the entire workspace to a .mat file (MATLAB):
|
|
4
|
+
|
|
5
|
+
.. code-block:: matlab
|
|
6
|
+
|
|
7
|
+
>> setup_script;
|
|
8
|
+
>> VSX;
|
|
9
|
+
>> save_raw('C:/path/to/raw_data.mat');
|
|
10
|
+
|
|
11
|
+
Then convert the saved `raw_data.mat` file to zea format using the following code (Python):
|
|
12
|
+
|
|
13
|
+
.. code-block:: python
|
|
14
|
+
|
|
15
|
+
from zea.data.convert.verasonics import VerasonicsFile
|
|
16
|
+
|
|
17
|
+
VerasonicsFile("C:/path/to/raw_data.mat").to_zea("C:/path/to/output.hdf5")
|
|
18
|
+
|
|
19
|
+
Or alternatively, use the script below to convert all .mat files in a directory:
|
|
20
|
+
|
|
21
|
+
.. code-block:: bash
|
|
22
|
+
|
|
23
|
+
python zea/data/convert/verasonics.py "C:/path/to/directory"
|
|
24
|
+
|
|
25
|
+
or without the directory argument, the script will prompt you to select a directory
|
|
26
|
+
using a file dialog.
|
|
27
|
+
|
|
28
|
+
Event structure
|
|
29
|
+
---------------
|
|
30
|
+
|
|
31
|
+
By default the zea dataformat saves all the data to an hdf5 file with the following structure:
|
|
32
|
+
|
|
33
|
+
.. code-block:: text
|
|
34
|
+
|
|
35
|
+
regular_zea_dataset.hdf5
|
|
36
|
+
├── data
|
|
37
|
+
└── scan
|
|
38
|
+
└── center_frequency: 1MHz
|
|
39
|
+
|
|
40
|
+
The data is stored in the ``data`` group and the scan parameters are stored in the ``scan``.
|
|
41
|
+
However, when we do an adaptive acquisition, some scanning parameters might change. These
|
|
42
|
+
blocks of data with consistent scanning parameters we call events. In the case we have multiple
|
|
43
|
+
events, we store the data in the following structure:
|
|
44
|
+
|
|
45
|
+
.. code-block:: text
|
|
46
|
+
|
|
47
|
+
zea_dataset.hdf5
|
|
48
|
+
├── event_0
|
|
49
|
+
│ ├── data
|
|
50
|
+
│ └── scan
|
|
51
|
+
│ └── center_frequency: 1MHz
|
|
52
|
+
├── event_1
|
|
53
|
+
│ ├── data
|
|
54
|
+
│ └── scan
|
|
55
|
+
│ └── center_frequency: 2MHz
|
|
56
|
+
├── event_2
|
|
57
|
+
│ ├── data
|
|
58
|
+
│ └── scan
|
|
59
|
+
└── event_3
|
|
60
|
+
├── data
|
|
61
|
+
└── scan
|
|
62
|
+
|
|
63
|
+
This structure is supported by the zea toolbox. The way we can save the data in this structure
|
|
64
|
+
from the Verasonics, is by changing the setup script to keep track of the TX struct at each event.
|
|
65
|
+
|
|
66
|
+
The way this is done is still in development, an example of such an acquisition script that is
|
|
67
|
+
compatible with saving event structures is found here:
|
|
68
|
+
`setup_agent.m <https://github.com/tue-bmd/needle-tracking/blob/ius2024-demo-nc/verasonics/setup_agent.m>`_
|
|
69
|
+
|
|
70
|
+
Adding additional elements
|
|
71
|
+
--------------------------
|
|
72
|
+
|
|
73
|
+
You can add additional elements to the dataset by defining a function that reads the
|
|
74
|
+
data from the file and returns a ``DatasetElement``. Then pass the function to the
|
|
75
|
+
``to_zea`` method as a list.
|
|
76
|
+
|
|
77
|
+
.. code-block:: python
|
|
78
|
+
|
|
79
|
+
def read_max_high_voltage(file):
|
|
80
|
+
lens_correction = file["Trans"]["lensCorrection"][0, 0].item()
|
|
81
|
+
return lens_correction
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def read_high_voltage_func(file):
|
|
85
|
+
return DatasetElement(
|
|
86
|
+
group_name="scan",
|
|
87
|
+
dataset_name="max_high_voltage",
|
|
88
|
+
data=read_max_high_voltage(file),
|
|
89
|
+
description="The maximum high voltage used by the Verasonics system.",
|
|
90
|
+
unit="V",
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
VerasonicsFile("C:/path/to/raw_data.mat").to_zea(
|
|
95
|
+
"C:/path/to/output.hdf5",
|
|
96
|
+
[read_high_voltage_func],
|
|
97
|
+
)
|
|
98
|
+
""" # noqa: E501
|
|
99
|
+
|
|
100
|
+
import os
|
|
101
|
+
import sys
|
|
102
|
+
import traceback
|
|
103
|
+
from pathlib import Path
|
|
104
|
+
|
|
105
|
+
import h5py
|
|
106
|
+
import numpy as np
|
|
107
|
+
from keras import ops
|
|
108
|
+
|
|
109
|
+
from zea import log
|
|
110
|
+
from zea.data.data_format import DatasetElement, generate_zea_dataset
|
|
111
|
+
from zea.func import log_compress, normalize
|
|
112
|
+
from zea.internal.device import init_device
|
|
113
|
+
from zea.utils import strtobool
|
|
114
|
+
|
|
115
|
+
_VERASONICS_TO_ZEA_PROBE_NAMES = {
|
|
116
|
+
"L11-4v": "verasonics_l11_4v",
|
|
117
|
+
"L11-5v": "verasonics_l11_5v",
|
|
118
|
+
}
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
class VerasonicsFile(h5py.File):
|
|
122
|
+
"""HDF5 File class for Verasonics MATLAB workspace files.
|
|
123
|
+
|
|
124
|
+
This class extends the h5py.File class to handle Verasonics-specific
|
|
125
|
+
data structures and conventions.
|
|
126
|
+
"""
|
|
127
|
+
|
|
128
|
+
def dereference_index(self, dataset, index, event=None, subindex=None):
|
|
129
|
+
"""Get the element at the given index from the dataset, dereferencing it if
|
|
130
|
+
necessary.
|
|
131
|
+
|
|
132
|
+
MATLAB stores items in struct array differently depending on the size. If the size
|
|
133
|
+
is 1, the item is stored as a regular dataset. If the size is larger, the item is
|
|
134
|
+
stored as a dataset of references to the actual data.
|
|
135
|
+
|
|
136
|
+
This function dereferences the dataset if it is a reference. Otherwise, it returns
|
|
137
|
+
the dataset.
|
|
138
|
+
|
|
139
|
+
Args:
|
|
140
|
+
dataset (h5py.Dataset): The dataset to read the element from.
|
|
141
|
+
index (int): The index of the element to read.
|
|
142
|
+
event (int, optional): The event index. Usually we store each event in the
|
|
143
|
+
second dimension of the dataset. Defaults to None in this case we assume
|
|
144
|
+
that there is only a single event.
|
|
145
|
+
subindex (slice, optional): The subindex of the element to read after
|
|
146
|
+
referencing the actual data. Defaults to None. In this case, all the data
|
|
147
|
+
is returned.
|
|
148
|
+
"""
|
|
149
|
+
if isinstance(dataset.fillvalue, h5py.h5r.Reference):
|
|
150
|
+
if event is not None:
|
|
151
|
+
reference = dataset[index, event]
|
|
152
|
+
else:
|
|
153
|
+
reference = dataset[index, 0]
|
|
154
|
+
if subindex is None:
|
|
155
|
+
return self[reference][:]
|
|
156
|
+
else:
|
|
157
|
+
return self[reference][subindex]
|
|
158
|
+
else:
|
|
159
|
+
return dataset
|
|
160
|
+
|
|
161
|
+
@staticmethod
|
|
162
|
+
def get_reference_size(dataset):
|
|
163
|
+
"""Get the size of a reference dataset."""
|
|
164
|
+
if isinstance(dataset.fillvalue, h5py.h5r.Reference):
|
|
165
|
+
return len(dataset)
|
|
166
|
+
else:
|
|
167
|
+
return 1
|
|
168
|
+
|
|
169
|
+
@staticmethod
|
|
170
|
+
def decode_string(dataset):
|
|
171
|
+
"""Decode a string dataset."""
|
|
172
|
+
return "".join([chr(c) for c in dataset.squeeze()])
|
|
173
|
+
|
|
174
|
+
@property
|
|
175
|
+
def probe_unit(self):
|
|
176
|
+
"""The unit the probe dimensions are defined in."""
|
|
177
|
+
_ALLOWED_UNITS = {"wavelengths", "mm"}
|
|
178
|
+
unit = self.decode_string(self["Trans"]["units"][:])
|
|
179
|
+
assert unit in {"wavelengths", "mm"}, (
|
|
180
|
+
f"Unexpected unit '{unit}' in file, must be one of {_ALLOWED_UNITS}"
|
|
181
|
+
)
|
|
182
|
+
return unit
|
|
183
|
+
|
|
184
|
+
@property
|
|
185
|
+
def probe_geometry(self):
|
|
186
|
+
"""The probe geometry of shape (n_el, 3)."""
|
|
187
|
+
# Read the probe geometry from the file
|
|
188
|
+
probe_geometry = self["Trans"]["ElementPos"][:3, :]
|
|
189
|
+
|
|
190
|
+
# Transpose the probe geometry to have the shape (n_el, 3)
|
|
191
|
+
probe_geometry = probe_geometry.T
|
|
192
|
+
|
|
193
|
+
# Convert the probe geometry to meters
|
|
194
|
+
if self.probe_unit == "mm":
|
|
195
|
+
probe_geometry = probe_geometry / 1000
|
|
196
|
+
else:
|
|
197
|
+
probe_geometry = probe_geometry * self.wavelength
|
|
198
|
+
|
|
199
|
+
return probe_geometry
|
|
200
|
+
|
|
201
|
+
@property
|
|
202
|
+
def wavelength(self):
|
|
203
|
+
"""Wavelength of the probe from the file in meters."""
|
|
204
|
+
|
|
205
|
+
return self.sound_speed / self.center_frequency
|
|
206
|
+
|
|
207
|
+
def read_transmit_events(self, event=None, frames="all", allow_accumulate=False):
|
|
208
|
+
"""Read the events from the file and finds the order in which transmits and receives
|
|
209
|
+
appear in the events.
|
|
210
|
+
|
|
211
|
+
Args:
|
|
212
|
+
event (int, optional): The event index. Defaults to None.
|
|
213
|
+
frames (str or list, optional): The frames to read. Defaults to "all".
|
|
214
|
+
allow_accumulate (bool, optional): Sometimes, some transmits are already accumulated
|
|
215
|
+
on the Verasonics system (e.g. harmonic imaging through pulse inversion).
|
|
216
|
+
In this case, the mode in the Receive structure is set to 1 (accumulate).
|
|
217
|
+
If this flag is set to False, an error is raised when such a mode is detected.
|
|
218
|
+
|
|
219
|
+
Returns:
|
|
220
|
+
tuple: (tx_order, rcv_order, time_to_next_acq)
|
|
221
|
+
tx_order (list): The order in which the transmits appear in the events.
|
|
222
|
+
rcv_order (list): The order in which the receives appear in the events.
|
|
223
|
+
time_to_next_acq (np.ndarray): The time to next acquisition of shape (n_acq, n_tx).
|
|
224
|
+
"""
|
|
225
|
+
|
|
226
|
+
num_events = self["Event"]["info"].shape[0]
|
|
227
|
+
|
|
228
|
+
# In the Verasonics the transmits may not be in order in the TX structure and a
|
|
229
|
+
# transmit might be reused. Therefore, we need to keep track of the order in which
|
|
230
|
+
# the transmits appear in the Events.
|
|
231
|
+
tx_order = []
|
|
232
|
+
rcv_order = []
|
|
233
|
+
time_to_next_acq = []
|
|
234
|
+
modes = []
|
|
235
|
+
|
|
236
|
+
frame_indices = self.get_frame_indices(frames)
|
|
237
|
+
|
|
238
|
+
for i in range(num_events):
|
|
239
|
+
# Get the tx
|
|
240
|
+
event_tx = self.dereference_index(self["Event"]["tx"], i)
|
|
241
|
+
event_tx = int(event_tx.item())
|
|
242
|
+
|
|
243
|
+
# Get the rcv
|
|
244
|
+
event_rcv = self.dereference_index(self["Event"]["rcv"], i)
|
|
245
|
+
event_rcv = int(event_rcv.item())
|
|
246
|
+
|
|
247
|
+
if not bool(event_tx) == bool(event_rcv):
|
|
248
|
+
log.warning(
|
|
249
|
+
"Events should have both a transmit and a receive or neither. "
|
|
250
|
+
f"Event {i} has a transmit but no receive or vice versa."
|
|
251
|
+
)
|
|
252
|
+
|
|
253
|
+
if not event_tx:
|
|
254
|
+
continue
|
|
255
|
+
|
|
256
|
+
# Subtract one to make the indices 0-based
|
|
257
|
+
event_tx -= 1
|
|
258
|
+
event_rcv -= 1
|
|
259
|
+
|
|
260
|
+
# Read mode
|
|
261
|
+
mode = self.dereference_index(self["Receive"]["mode"], event_rcv)
|
|
262
|
+
mode = int(mode.item())
|
|
263
|
+
|
|
264
|
+
# Check in the Receive structure if this is still the first frame
|
|
265
|
+
framenum_ref = self["Receive"]["framenum"][event_rcv, 0]
|
|
266
|
+
framenum = self[framenum_ref][:].item()
|
|
267
|
+
|
|
268
|
+
# Only add the event to the list if it is the first frame since we assume
|
|
269
|
+
# that all frames have the same transmits and receives
|
|
270
|
+
if framenum == 1:
|
|
271
|
+
# Add the event to the list
|
|
272
|
+
tx_order.append(event_tx)
|
|
273
|
+
rcv_order.append(event_rcv)
|
|
274
|
+
modes.append(mode)
|
|
275
|
+
|
|
276
|
+
# Read the time_to_next_acq
|
|
277
|
+
seq_control_indices = self.dereference_index(self["Event"]["seqControl"], i)
|
|
278
|
+
|
|
279
|
+
for seq_control_index in seq_control_indices:
|
|
280
|
+
seq_control_index = int(seq_control_index.item() - 1)
|
|
281
|
+
seq_control = self.dereference_index(
|
|
282
|
+
self["SeqControl"]["command"], seq_control_index
|
|
283
|
+
)
|
|
284
|
+
# Decode the seq_control int array into a string
|
|
285
|
+
seq_control = self.decode_string(seq_control)
|
|
286
|
+
if seq_control == "timeToNextAcq":
|
|
287
|
+
value = self.dereference_index(
|
|
288
|
+
self["SeqControl"]["argument"], seq_control_index
|
|
289
|
+
).item()
|
|
290
|
+
value = value * 1e-6
|
|
291
|
+
time_to_next_acq.append(value)
|
|
292
|
+
|
|
293
|
+
modes = np.array(modes)
|
|
294
|
+
tx_order = np.array(tx_order)
|
|
295
|
+
rcv_order = np.array(rcv_order)
|
|
296
|
+
time_to_next_acq = np.array(time_to_next_acq)
|
|
297
|
+
time_to_next_acq = np.reshape(time_to_next_acq, (-1, tx_order.size))
|
|
298
|
+
|
|
299
|
+
if np.any(modes == 1) and not allow_accumulate:
|
|
300
|
+
raise ValueError(
|
|
301
|
+
"Some receive events are in accumulate mode (mode=1). "
|
|
302
|
+
"This indicates that the data is already accumulated on the Verasonics system. "
|
|
303
|
+
"Set allow_accumulate=True to allow this."
|
|
304
|
+
)
|
|
305
|
+
elif np.any(modes == 1) and allow_accumulate:
|
|
306
|
+
# We only keep the transmits that are in mode 0 (normal acquisition)
|
|
307
|
+
log.info(
|
|
308
|
+
"Data contains both receives in accumulate mode and replace mode.\n"
|
|
309
|
+
"Discarding transmits in accumulate mode (mode=1). "
|
|
310
|
+
"Keeping transmits in replace mode (mode=0)."
|
|
311
|
+
)
|
|
312
|
+
tx_order = tx_order[modes == 0]
|
|
313
|
+
rcv_order = rcv_order[modes == 0]
|
|
314
|
+
time_to_next_acq = time_to_next_acq[:, modes == 0]
|
|
315
|
+
|
|
316
|
+
if event is not None:
|
|
317
|
+
time_to_next_acq = time_to_next_acq[event]
|
|
318
|
+
time_to_next_acq = np.expand_dims(time_to_next_acq, axis=0)
|
|
319
|
+
|
|
320
|
+
time_to_next_acq = time_to_next_acq[frame_indices]
|
|
321
|
+
|
|
322
|
+
return tx_order, rcv_order, time_to_next_acq
|
|
323
|
+
|
|
324
|
+
def read_t0_delays_apod(self, tx_order, event=None):
|
|
325
|
+
"""
|
|
326
|
+
Read the t0 delays and apodization from the file.
|
|
327
|
+
|
|
328
|
+
Returns:
|
|
329
|
+
t0_delays (np.ndarray): The t0 delays of shape (n_tx, n_el).
|
|
330
|
+
apod (np.ndarray): The apodization of shape (n_el,).
|
|
331
|
+
"""
|
|
332
|
+
|
|
333
|
+
t0_delays_list = []
|
|
334
|
+
tx_apodizations_list = []
|
|
335
|
+
|
|
336
|
+
for n in tx_order:
|
|
337
|
+
# Get column vector of t0_delays
|
|
338
|
+
if event is None:
|
|
339
|
+
t0_delays = self.dereference_index(self["TX"]["Delay"], n)
|
|
340
|
+
else:
|
|
341
|
+
t0_delays = self.dereference_index(self["TX_Agent"]["Delay"], n, event)
|
|
342
|
+
# Turn into 1d array
|
|
343
|
+
t0_delays = t0_delays[:, 0]
|
|
344
|
+
|
|
345
|
+
t0_delays_list.append(t0_delays)
|
|
346
|
+
|
|
347
|
+
# Get column vector of apodizations
|
|
348
|
+
if event is None:
|
|
349
|
+
tx_apodizations = self.dereference_index(self["TX"]["Apod"], n)
|
|
350
|
+
else:
|
|
351
|
+
tx_apodizations = self.dereference_index(self["TX_Agent"]["Apod"], n, event)
|
|
352
|
+
# Turn into 1d array
|
|
353
|
+
tx_apodizations = tx_apodizations[:, 0]
|
|
354
|
+
tx_apodizations_list.append(tx_apodizations)
|
|
355
|
+
|
|
356
|
+
t0_delays = np.stack(t0_delays_list, axis=0)
|
|
357
|
+
apodizations = np.stack(tx_apodizations_list, axis=0)
|
|
358
|
+
|
|
359
|
+
# Convert the t0_delays to meters
|
|
360
|
+
t0_delays = t0_delays * self.wavelength / self.sound_speed
|
|
361
|
+
|
|
362
|
+
return t0_delays, apodizations
|
|
363
|
+
|
|
364
|
+
@property
|
|
365
|
+
def sampling_frequency(self):
|
|
366
|
+
"""The sampling frequency in Hz from the file."""
|
|
367
|
+
# Read the sampling frequency from the file
|
|
368
|
+
adc_rate = self.dereference_index(self["Receive"]["decimSampleRate"], 0)
|
|
369
|
+
|
|
370
|
+
if "quadDecim" in self["Receive"]:
|
|
371
|
+
quaddecim = self.dereference_index(self["Receive"]["quadDecim"], 0)
|
|
372
|
+
else:
|
|
373
|
+
# TODO: Verify if this is correct.
|
|
374
|
+
# On the Vantage NXT the quadDecim field is missing. It seems that it should be
|
|
375
|
+
# set to 1.0 (that decimSampleRate is the actual sampling frequency).
|
|
376
|
+
quaddecim = 1.0
|
|
377
|
+
|
|
378
|
+
sampling_frequency = adc_rate / quaddecim * 1e6
|
|
379
|
+
sampling_frequency = sampling_frequency.item()
|
|
380
|
+
|
|
381
|
+
if self.is_baseband_mode:
|
|
382
|
+
# Two sequential samples are interpreted as a single complex sample
|
|
383
|
+
# Therefore, we need to halve the sampling frequency
|
|
384
|
+
sampling_frequency = sampling_frequency / 2
|
|
385
|
+
|
|
386
|
+
return sampling_frequency
|
|
387
|
+
|
|
388
|
+
def read_waveforms(self, tx_order, event=None):
|
|
389
|
+
"""
|
|
390
|
+
Read the waveforms from the file.
|
|
391
|
+
|
|
392
|
+
Returns:
|
|
393
|
+
waveforms (np.ndarray): The waveforms of shape (n_tx, n_samples).
|
|
394
|
+
"""
|
|
395
|
+
waveforms_one_way_list = []
|
|
396
|
+
waveforms_two_way_list = []
|
|
397
|
+
|
|
398
|
+
# Read all the waveforms from the file
|
|
399
|
+
n_waveforms = self.get_reference_size(self["TW"]["Wvfm1Wy"])
|
|
400
|
+
for n in range(n_waveforms):
|
|
401
|
+
# Get the row vector of the 1-way waveform
|
|
402
|
+
waveform_one_way = self.dereference_index(self["TW"]["Wvfm1Wy"], n)[:]
|
|
403
|
+
# Turn into 1d array
|
|
404
|
+
waveform_one_way = waveform_one_way[0, :]
|
|
405
|
+
|
|
406
|
+
# Get the row vector of the 2-way waveform
|
|
407
|
+
waveform_two_way = self.dereference_index(self["TW"]["Wvfm2Wy"], n)[:]
|
|
408
|
+
# Turn into 1d array
|
|
409
|
+
waveform_two_way = waveform_two_way[0, :]
|
|
410
|
+
|
|
411
|
+
waveforms_one_way_list.append(waveform_one_way)
|
|
412
|
+
waveforms_two_way_list.append(waveform_two_way)
|
|
413
|
+
|
|
414
|
+
tx_waveform_indices = []
|
|
415
|
+
|
|
416
|
+
for n in tx_order:
|
|
417
|
+
# Read the waveform
|
|
418
|
+
if event is None:
|
|
419
|
+
waveform_index = self.dereference_index(self["TX"]["waveform"], n)[:]
|
|
420
|
+
else:
|
|
421
|
+
waveform_index = self.dereference_index(self["TX_Agent"]["waveform"], n, event)[:]
|
|
422
|
+
# Subtract one to make the indices 0-based
|
|
423
|
+
waveform_index -= 1
|
|
424
|
+
# Turn into integer
|
|
425
|
+
waveform_index = int(waveform_index.item())
|
|
426
|
+
tx_waveform_indices.append(waveform_index)
|
|
427
|
+
|
|
428
|
+
return tx_waveform_indices, waveforms_one_way_list, waveforms_two_way_list
|
|
429
|
+
|
|
430
|
+
def read_beamsteering_angles(self, tx_order, event=None):
|
|
431
|
+
"""Beam steering angles in radians (theta, alpha) for each transmit.
|
|
432
|
+
|
|
433
|
+
Returns:
|
|
434
|
+
angles (np.ndarray): The beam steering angles of shape (n_tx, 2).
|
|
435
|
+
"""
|
|
436
|
+
angles_list = []
|
|
437
|
+
|
|
438
|
+
for n in tx_order:
|
|
439
|
+
# Read the polar angle
|
|
440
|
+
if event is None:
|
|
441
|
+
angle = self.dereference_index(self["TX"]["Steer"], n)[:]
|
|
442
|
+
else:
|
|
443
|
+
angle = self.dereference_index(self["TX_Agent"]["Steer"], n, event)[:]
|
|
444
|
+
|
|
445
|
+
angles_list.append(angle)
|
|
446
|
+
angles = np.stack(angles_list, axis=0)
|
|
447
|
+
angles = np.squeeze(angles, axis=-1)
|
|
448
|
+
|
|
449
|
+
assert angles.shape == (len(tx_order), 2), (
|
|
450
|
+
f"Expected angles shape to be {(len(tx_order), 2)}, but got {angles.shape}"
|
|
451
|
+
)
|
|
452
|
+
return angles
|
|
453
|
+
|
|
454
|
+
def read_polar_angles(self, tx_order, event=None):
|
|
455
|
+
"""Read the polar angles of shape (n_tx,) from the file."""
|
|
456
|
+
return self.read_beamsteering_angles(tx_order, event)[:, 0]
|
|
457
|
+
|
|
458
|
+
def read_azimuth_angles(self, tx_order, event=None):
|
|
459
|
+
"""Read the azimuth angles of shape (n_tx,) from the file."""
|
|
460
|
+
return self.read_beamsteering_angles(tx_order, event)[:, 1]
|
|
461
|
+
|
|
462
|
+
@property
|
|
463
|
+
def end_samples(self):
|
|
464
|
+
"""The index of the last sample for each receive event."""
|
|
465
|
+
length = self["Receive"]["endSample"].shape[0]
|
|
466
|
+
return np.concatenate(
|
|
467
|
+
[self.dereference_index(self["Receive"]["endSample"], i) for i in range(length)]
|
|
468
|
+
)
|
|
469
|
+
|
|
470
|
+
@property
|
|
471
|
+
def start_samples(self):
|
|
472
|
+
"""The index of the first sample for each receive event."""
|
|
473
|
+
length = self["Receive"]["startSample"].shape[0]
|
|
474
|
+
return np.concatenate(
|
|
475
|
+
[self.dereference_index(self["Receive"]["startSample"], i) for i in range(length)]
|
|
476
|
+
)
|
|
477
|
+
|
|
478
|
+
@property
|
|
479
|
+
def n_ax(self):
|
|
480
|
+
"""Number of axial samples."""
|
|
481
|
+
n_ax = (self.end_samples - self.start_samples + 1).astype(np.int32)
|
|
482
|
+
n_ax = np.unique(n_ax)
|
|
483
|
+
if n_ax.size != 1:
|
|
484
|
+
raise ValueError(
|
|
485
|
+
"The number of axial samples is not the same for all receive events."
|
|
486
|
+
"We do not support this case yet."
|
|
487
|
+
)
|
|
488
|
+
return n_ax.item()
|
|
489
|
+
|
|
490
|
+
@property
|
|
491
|
+
def probe_connector(self):
|
|
492
|
+
"""Probe connector indices."""
|
|
493
|
+
probe_connector = self["Trans"]["ConnectorES"][:]
|
|
494
|
+
probe_connector = np.squeeze(probe_connector, axis=0)
|
|
495
|
+
probe_connector = probe_connector.astype(np.int32)
|
|
496
|
+
probe_connector = probe_connector - 1 # make 0-based
|
|
497
|
+
return probe_connector
|
|
498
|
+
|
|
499
|
+
@property
|
|
500
|
+
def is_new_save_raw_format(self):
|
|
501
|
+
return "save_raw_version" in self.keys()
|
|
502
|
+
|
|
503
|
+
def get_image_raw_data_order(self, raw_data: np.ndarray):
|
|
504
|
+
"""The order of frames in the RcvBuffer buffer.
|
|
505
|
+
|
|
506
|
+
Because of the circular buffer used in Verasonics, the frames in the RcvBuffer
|
|
507
|
+
buffer are not necessarily in the correct order. This function computes the
|
|
508
|
+
correct order of frames.
|
|
509
|
+
"""
|
|
510
|
+
n_frames = raw_data.shape[0]
|
|
511
|
+
try:
|
|
512
|
+
last_frame = int(
|
|
513
|
+
self.dereference_index(self["Resource"]["RcvBuffer"]["lastFrame"], 0)[()].item() - 1
|
|
514
|
+
)
|
|
515
|
+
except KeyError:
|
|
516
|
+
log.warning(
|
|
517
|
+
"Could not find 'lastFrame' in 'Resource/RcvBuffer'. "
|
|
518
|
+
"Assuming data is already in correct order."
|
|
519
|
+
)
|
|
520
|
+
return np.arange(n_frames)
|
|
521
|
+
first_frame = (last_frame + 1) % n_frames
|
|
522
|
+
indices = np.arange(first_frame, first_frame + n_frames) % n_frames
|
|
523
|
+
return indices
|
|
524
|
+
|
|
525
|
+
def read_raw_data(self, event=None, frames="all"):
|
|
526
|
+
"""
|
|
527
|
+
Read the raw data from the file.
|
|
528
|
+
|
|
529
|
+
Returns:
|
|
530
|
+
raw_data (np.ndarray): The raw data of shape (n_rcv, n_samples).
|
|
531
|
+
"""
|
|
532
|
+
|
|
533
|
+
# Read the raw data from the file
|
|
534
|
+
if event is None:
|
|
535
|
+
raw_data = self.dereference_index(self["RcvData"], 0)
|
|
536
|
+
else:
|
|
537
|
+
# for now we only index frames as events
|
|
538
|
+
raw_data = self.dereference_index(self["RcvData"], 0, subindex=event)
|
|
539
|
+
raw_data = np.expand_dims(raw_data, axis=0)
|
|
540
|
+
|
|
541
|
+
# Convert the raw data to a numpy array to allow out-of-order indexing later
|
|
542
|
+
raw_data = np.array(raw_data, dtype=np.int16)
|
|
543
|
+
|
|
544
|
+
# Reorder and select channels based on probe elements
|
|
545
|
+
if self.is_new_save_raw_format:
|
|
546
|
+
raw_data = raw_data[:, self.probe_connector, :]
|
|
547
|
+
else:
|
|
548
|
+
log.warning(
|
|
549
|
+
"Data was not saved using the updated `save_raw` function (version >= 1.0). "
|
|
550
|
+
"In that case, we assume that the channel order in the data matches the "
|
|
551
|
+
"probe element order. Please verify that this is correct!"
|
|
552
|
+
)
|
|
553
|
+
|
|
554
|
+
# Re-order frames such that sequence is correct
|
|
555
|
+
indices = self.get_image_raw_data_order(raw_data)
|
|
556
|
+
raw_data = raw_data[indices]
|
|
557
|
+
|
|
558
|
+
# Select only the requested frames
|
|
559
|
+
frame_indices = self.get_frame_indices(frames)
|
|
560
|
+
raw_data = raw_data[frame_indices]
|
|
561
|
+
|
|
562
|
+
# Trim the raw data to the final sample in the buffer
|
|
563
|
+
final_sample_in_buffer = int(self.end_samples.max())
|
|
564
|
+
raw_data = raw_data[:, :, :final_sample_in_buffer]
|
|
565
|
+
|
|
566
|
+
# Determine n_tx based on the final sample in buffer and n_ax
|
|
567
|
+
# For some sequences, transmits are already aggregated in the raw data
|
|
568
|
+
# (e.g. harmonic imaging through pulse inversion)
|
|
569
|
+
n_tx = final_sample_in_buffer // self.n_ax
|
|
570
|
+
|
|
571
|
+
# Reshape the raw data to (n_frames, n_el, n_tx, n_ax)
|
|
572
|
+
raw_data = raw_data.reshape((raw_data.shape[0], raw_data.shape[1], n_tx, self.n_ax))
|
|
573
|
+
|
|
574
|
+
# Transpose the raw data to (n_frames, n_tx, n_ax, n_el)
|
|
575
|
+
raw_data = np.transpose(raw_data, (0, 2, 3, 1))
|
|
576
|
+
|
|
577
|
+
# Add channel dimension
|
|
578
|
+
raw_data = raw_data[..., None]
|
|
579
|
+
|
|
580
|
+
# If the data is captured in BS100BW mode or BS50BW mode, the data is stored in
|
|
581
|
+
# as complex IQ data.
|
|
582
|
+
if self.is_baseband_mode:
|
|
583
|
+
raw_data = np.concatenate(
|
|
584
|
+
(
|
|
585
|
+
raw_data[:, :, 0::2, :, :],
|
|
586
|
+
-raw_data[:, :, 1::2, :, :],
|
|
587
|
+
),
|
|
588
|
+
axis=-1,
|
|
589
|
+
)
|
|
590
|
+
|
|
591
|
+
return raw_data
|
|
592
|
+
|
|
593
|
+
@property
|
|
594
|
+
def center_frequency(self):
|
|
595
|
+
"""Center frequency of the probe from the file in Hz."""
|
|
596
|
+
|
|
597
|
+
return self["Trans"]["frequency"][0, 0] * 1e6
|
|
598
|
+
|
|
599
|
+
@property
|
|
600
|
+
def sound_speed(self):
|
|
601
|
+
"""Speed of sound in the medium in m/s."""
|
|
602
|
+
|
|
603
|
+
return self["Resource"]["Parameters"]["speedOfSound"][0, 0].item()
|
|
604
|
+
|
|
605
|
+
def read_initial_times(self, rcv_order):
|
|
606
|
+
"""Reads the initial times from the file.
|
|
607
|
+
|
|
608
|
+
Args:
|
|
609
|
+
rcv_order (list): The order in which the receives appear in the events.
|
|
610
|
+
wavelength (float): The wavelength of the probe.
|
|
611
|
+
|
|
612
|
+
Returns:
|
|
613
|
+
initial_times (np.ndarray): The initial times of shape (n_rcv,).
|
|
614
|
+
"""
|
|
615
|
+
initial_times = []
|
|
616
|
+
for n in rcv_order:
|
|
617
|
+
start_depth = self.dereference_index(self["Receive"]["startDepth"], n).item()
|
|
618
|
+
|
|
619
|
+
initial_times.append(2 * start_depth * self.wavelength / self.sound_speed)
|
|
620
|
+
|
|
621
|
+
return np.array(initial_times).astype(np.float32)
|
|
622
|
+
|
|
623
|
+
@property
|
|
624
|
+
def probe_name(self):
|
|
625
|
+
"""The name of the probe from the file."""
|
|
626
|
+
probe_name = self["Trans"]["name"][:]
|
|
627
|
+
probe_name = self.decode_string(probe_name)
|
|
628
|
+
# Translates between verasonics probe names and zea probe names
|
|
629
|
+
if probe_name in _VERASONICS_TO_ZEA_PROBE_NAMES:
|
|
630
|
+
probe_name = _VERASONICS_TO_ZEA_PROBE_NAMES[probe_name]
|
|
631
|
+
else:
|
|
632
|
+
log.warning(
|
|
633
|
+
f"Probe name '{probe_name}' is not in the list of known probes. "
|
|
634
|
+
"Please add it to the _VERASONICS_TO_ZEA_PROBE_NAMES dictionary. "
|
|
635
|
+
"Falling back to generic probe."
|
|
636
|
+
)
|
|
637
|
+
probe_name = "generic"
|
|
638
|
+
|
|
639
|
+
return probe_name
|
|
640
|
+
|
|
641
|
+
def read_focus_distances(self, tx_order, event=None):
|
|
642
|
+
"""Reads the focus distances from the file.
|
|
643
|
+
|
|
644
|
+
Args:
|
|
645
|
+
tx_order (list): The order in which the transmits appear in the events.
|
|
646
|
+
|
|
647
|
+
Returns:
|
|
648
|
+
focus_distances (list): The focus distances of shape (n_tx,) in meters.
|
|
649
|
+
"""
|
|
650
|
+
focus_distances = []
|
|
651
|
+
for n in tx_order:
|
|
652
|
+
if event is None:
|
|
653
|
+
focus_distance = self.dereference_index(self["TX"]["focus"], n)[0, 0]
|
|
654
|
+
else:
|
|
655
|
+
focus_distance = self.dereference_index(self["TX_Agent"]["focus"], n, event)[0, 0]
|
|
656
|
+
focus_distances.append(focus_distance)
|
|
657
|
+
|
|
658
|
+
# Convert focus distances from wavelengths to meters
|
|
659
|
+
focus_distances = np.array(focus_distances) * self.wavelength
|
|
660
|
+
|
|
661
|
+
return focus_distances
|
|
662
|
+
|
|
663
|
+
@property
|
|
664
|
+
def _probe_geometry_is_ordered_ula(self):
|
|
665
|
+
"""Checks if the probe geometry is ordered as a uniform linear array (ULA)."""
|
|
666
|
+
diff_vec = self.probe_geometry[1:] - self.probe_geometry[:-1]
|
|
667
|
+
return np.isclose(diff_vec, diff_vec[0]).all()
|
|
668
|
+
|
|
669
|
+
def planewave_focal_distance_to_inf(self, focus_distances, t0_delays, tx_apodizations):
|
|
670
|
+
"""Detects plane wave transmits and sets the focus distance to infinity.
|
|
671
|
+
|
|
672
|
+
Args:
|
|
673
|
+
focus_distances (np.ndarray): The focus distances of shape (n_tx,).
|
|
674
|
+
t0_delays (np.ndarray): The t0 delays of shape (n_tx, n_el).
|
|
675
|
+
tx_apodizations (np.ndarray): The apodization of shape (n_tx, n_el).
|
|
676
|
+
|
|
677
|
+
Returns:
|
|
678
|
+
focus_distances (np.ndarray): The focus distances of shape (n_tx,).
|
|
679
|
+
|
|
680
|
+
Note:
|
|
681
|
+
This function assumes that the probe_geometry is a 1d uniform linear array.
|
|
682
|
+
If not it will warn and return.
|
|
683
|
+
"""
|
|
684
|
+
if not self._probe_geometry_is_ordered_ula:
|
|
685
|
+
log.warning(
|
|
686
|
+
"The probe geometry is not ordered as a uniform linear array. "
|
|
687
|
+
"Focal distances are not set to infinity for plane waves."
|
|
688
|
+
)
|
|
689
|
+
return focus_distances
|
|
690
|
+
|
|
691
|
+
for tx in range(focus_distances.size):
|
|
692
|
+
mask_active = np.abs(tx_apodizations[tx]) > 0
|
|
693
|
+
if np.sum(mask_active) < 2:
|
|
694
|
+
continue
|
|
695
|
+
t0_delays_active = t0_delays[tx][mask_active]
|
|
696
|
+
|
|
697
|
+
# If the t0_delays all have the same offset, we assume it is a plane wave
|
|
698
|
+
if np.std(np.diff(t0_delays_active)) < 1e-16:
|
|
699
|
+
focus_distances[tx] = np.inf
|
|
700
|
+
|
|
701
|
+
return focus_distances
|
|
702
|
+
|
|
703
|
+
@property
|
|
704
|
+
def bandwidth_percent(self):
|
|
705
|
+
"""Receive bandwidth as a percentage of center frequency."""
|
|
706
|
+
bandwidth_percent = self.dereference_index(self["Receive"]["sampleMode"], 0)
|
|
707
|
+
bandwidth_percent = self.decode_string(bandwidth_percent)
|
|
708
|
+
bandwidth_percent = int(bandwidth_percent[2:-2])
|
|
709
|
+
return bandwidth_percent
|
|
710
|
+
|
|
711
|
+
@property
|
|
712
|
+
def is_baseband_mode(self):
|
|
713
|
+
"""If the data is captured in 'BS100BW' mode or 'BS50BW' mode.
|
|
714
|
+
|
|
715
|
+
- The data is stored as complex IQ data.
|
|
716
|
+
- The sampling frequency is halved.
|
|
717
|
+
- Two sequential samples are interpreted as a single complex sample.
|
|
718
|
+
Therefore, we need to halve the sampling frequency.
|
|
719
|
+
"""
|
|
720
|
+
return self.bandwidth_percent in (50, 100)
|
|
721
|
+
|
|
722
|
+
@property
|
|
723
|
+
def lens_correction(self):
|
|
724
|
+
"""The lens correction: 1 way delay in wavelengths thru lens"""
|
|
725
|
+
lens_correction = self["Trans"]["lensCorrection"][0, 0].item()
|
|
726
|
+
return lens_correction
|
|
727
|
+
|
|
728
|
+
@property
|
|
729
|
+
def tgc_gain_curve(self):
|
|
730
|
+
"""The TGC gain curve from the file interpolated to the number of axial samples (n_ax,)."""
|
|
731
|
+
|
|
732
|
+
gain_curve = self["TGC"]["Waveform"][:][:, 0]
|
|
733
|
+
|
|
734
|
+
# Normalize the gain_curve to [0, 40]dB
|
|
735
|
+
gain_curve = gain_curve / 1023 * 40
|
|
736
|
+
|
|
737
|
+
# The gain curve is sampled at 800ns (See Verasonics documentation for details.
|
|
738
|
+
# Specifically the tutorial sequence programming)
|
|
739
|
+
gain_curve_sampling_period = 800e-9
|
|
740
|
+
|
|
741
|
+
# Define the time axis for the gain curve
|
|
742
|
+
t_gain_curve = np.arange(gain_curve.size) * gain_curve_sampling_period
|
|
743
|
+
|
|
744
|
+
# Define the time axis for the axial samples
|
|
745
|
+
t_samples = np.arange(self.n_ax) / self.sampling_frequency
|
|
746
|
+
|
|
747
|
+
# Interpolate the gain_curve to the number of axial samples
|
|
748
|
+
gain_curve = np.interp(t_samples, t_gain_curve, gain_curve)
|
|
749
|
+
|
|
750
|
+
# The gain_curve gains are in dB, so we need to convert them to linear scale
|
|
751
|
+
gain_curve = 10 ** (gain_curve / 20)
|
|
752
|
+
|
|
753
|
+
return gain_curve
|
|
754
|
+
|
|
755
|
+
def get_image_data_p_frame_order(self, image_data: np.ndarray):
|
|
756
|
+
"""The order of frames in the ImgDataP buffer.
|
|
757
|
+
|
|
758
|
+
Because of the circular buffer used in Verasonics, the frames in the ImgDataP
|
|
759
|
+
buffer are not necessarily in the correct order. This function computes the
|
|
760
|
+
correct order of frames.
|
|
761
|
+
|
|
762
|
+
Uses the first buffer, so does not support multiple buffers.
|
|
763
|
+
"""
|
|
764
|
+
FIRST_BUFFER = 0
|
|
765
|
+
n_frames = image_data.shape[0]
|
|
766
|
+
try:
|
|
767
|
+
first_frame = self.dereference_index(
|
|
768
|
+
self["Resource"]["ImageBuffer"]["firstFrame"], FIRST_BUFFER
|
|
769
|
+
)[()].item()
|
|
770
|
+
last_frame = self.dereference_index(
|
|
771
|
+
self["Resource"]["ImageBuffer"]["lastFrame"], FIRST_BUFFER
|
|
772
|
+
)[()].item()
|
|
773
|
+
first_frame -= 1 # make 0-based
|
|
774
|
+
last_frame -= 1 # make 0-based
|
|
775
|
+
indices = np.arange(first_frame, first_frame + n_frames) % n_frames
|
|
776
|
+
assert indices[-1] == last_frame, (
|
|
777
|
+
"The last frame index does not match the expected last frame index."
|
|
778
|
+
)
|
|
779
|
+
return indices
|
|
780
|
+
except KeyError:
|
|
781
|
+
log.warning(
|
|
782
|
+
"Could not find 'firstFrame' or 'lastFrame' in 'Resource/ImageBuffer'. "
|
|
783
|
+
"Assuming data is already in correct order."
|
|
784
|
+
)
|
|
785
|
+
return np.arange(n_frames)
|
|
786
|
+
|
|
787
|
+
def read_image_data_p(self, event=None, frames="all"):
|
|
788
|
+
"""Reads the image data from the file.
|
|
789
|
+
|
|
790
|
+
Uses the ``ImgDataP`` buffer, which is used for spatial filtering
|
|
791
|
+
and persistence processing. Generally, this buffer does not contain the same frames
|
|
792
|
+
as the raw data buffer. This happens because the Verasonics often does not reconstruct
|
|
793
|
+
every acquired frame. This means that the images in this buffer often skip frames, and
|
|
794
|
+
span a longer time period than the raw data buffer.
|
|
795
|
+
|
|
796
|
+
Returns:
|
|
797
|
+
`image_data` (`np.ndarray`): The image data.
|
|
798
|
+
"""
|
|
799
|
+
# Check if the file contains image data
|
|
800
|
+
if "ImgDataP" not in self:
|
|
801
|
+
return None
|
|
802
|
+
|
|
803
|
+
# Get the dataset reference
|
|
804
|
+
image_data_ref = self["ImgDataP"][0, 0]
|
|
805
|
+
# Dereference the dataset
|
|
806
|
+
if event is None:
|
|
807
|
+
image_data = self[image_data_ref][:]
|
|
808
|
+
else:
|
|
809
|
+
image_data = self[image_data_ref][event]
|
|
810
|
+
image_data = np.expand_dims(image_data, axis=0)
|
|
811
|
+
|
|
812
|
+
# Re-order images such that sequence is correct
|
|
813
|
+
indices = self.get_image_data_p_frame_order(image_data)
|
|
814
|
+
image_data = image_data[indices, :, :]
|
|
815
|
+
|
|
816
|
+
# Normalize and log-compress the image data
|
|
817
|
+
image_data = normalize(image_data, output_range=(0, 1), input_range=(0, None))
|
|
818
|
+
image_data = log_compress(image_data)
|
|
819
|
+
image_data = ops.convert_to_numpy(image_data)
|
|
820
|
+
|
|
821
|
+
# Select only the requested frames
|
|
822
|
+
frame_indices = self.get_frame_indices(frames)
|
|
823
|
+
image_data = image_data[frame_indices]
|
|
824
|
+
|
|
825
|
+
return image_data
|
|
826
|
+
|
|
827
|
+
@property
|
|
828
|
+
def element_width(self):
|
|
829
|
+
"""The element width in meters from the file."""
|
|
830
|
+
element_width = self["Trans"]["elementWidth"][:][0, 0]
|
|
831
|
+
|
|
832
|
+
# Convert the probe element width to meters
|
|
833
|
+
if self.probe_unit == "mm":
|
|
834
|
+
element_width = element_width / 1000
|
|
835
|
+
else:
|
|
836
|
+
element_width = element_width * self.wavelength
|
|
837
|
+
|
|
838
|
+
return element_width
|
|
839
|
+
|
|
840
|
+
def read_verasonics_file(
|
|
841
|
+
self, event=None, additional_functions=None, frames="all", allow_accumulate=False
|
|
842
|
+
):
|
|
843
|
+
"""Reads data from a .mat Verasonics output file.
|
|
844
|
+
|
|
845
|
+
Args:
|
|
846
|
+
event (int, optional): The event index. Defaults to None in this case we assume
|
|
847
|
+
the data file is stored without event structure.
|
|
848
|
+
additional_functions (list, optional): A list of functions that read additional
|
|
849
|
+
data from the file. Each function should take the file as input and return a
|
|
850
|
+
`DatasetElement`. Defaults to None.
|
|
851
|
+
"""
|
|
852
|
+
|
|
853
|
+
if additional_functions is None:
|
|
854
|
+
additional_functions = []
|
|
855
|
+
|
|
856
|
+
tx_order, rcv_order, time_to_next_transmit = self.read_transmit_events(
|
|
857
|
+
frames=frames, allow_accumulate=allow_accumulate
|
|
858
|
+
)
|
|
859
|
+
initial_times = self.read_initial_times(rcv_order)
|
|
860
|
+
|
|
861
|
+
# these are capable of handling multiple events
|
|
862
|
+
raw_data = self.read_raw_data(event, frames=frames)
|
|
863
|
+
|
|
864
|
+
verasonics_image_buffer = self.read_image_data_p(event, frames=frames)
|
|
865
|
+
|
|
866
|
+
polar_angles = self.read_polar_angles(tx_order, event)
|
|
867
|
+
azimuth_angles = self.read_azimuth_angles(tx_order, event)
|
|
868
|
+
t0_delays, tx_apodizations = self.read_t0_delays_apod(tx_order, event)
|
|
869
|
+
focus_distances = self.read_focus_distances(tx_order, event)
|
|
870
|
+
|
|
871
|
+
tx_waveform_indices, waveforms_one_way_list, waveforms_two_way_list = self.read_waveforms(
|
|
872
|
+
tx_order, event
|
|
873
|
+
)
|
|
874
|
+
focus_distances = self.planewave_focal_distance_to_inf(
|
|
875
|
+
focus_distances, t0_delays, tx_apodizations
|
|
876
|
+
)
|
|
877
|
+
|
|
878
|
+
if event is None:
|
|
879
|
+
group_name = "scan"
|
|
880
|
+
else:
|
|
881
|
+
group_name = f"event_{event}/scan"
|
|
882
|
+
|
|
883
|
+
el_lens_correction = DatasetElement(
|
|
884
|
+
group_name=group_name,
|
|
885
|
+
dataset_name="lens_correction",
|
|
886
|
+
data=self.lens_correction,
|
|
887
|
+
description=(
|
|
888
|
+
"The lens correction value used by Verasonics. This value is the "
|
|
889
|
+
"additional path length in wavelength that the lens introduces. "
|
|
890
|
+
"(This disregards refraction.)"
|
|
891
|
+
),
|
|
892
|
+
unit="wavelengths",
|
|
893
|
+
)
|
|
894
|
+
|
|
895
|
+
verasonics_image_buffer = DatasetElement(
|
|
896
|
+
dataset_name="verasonics_image_buffer",
|
|
897
|
+
data=verasonics_image_buffer,
|
|
898
|
+
description=(
|
|
899
|
+
"The Verasonics ImgDataP buffer. "
|
|
900
|
+
"WARNING: This buffer may skip frames compared to the raw data! "
|
|
901
|
+
"Use only for reference."
|
|
902
|
+
),
|
|
903
|
+
unit="unitless",
|
|
904
|
+
)
|
|
905
|
+
|
|
906
|
+
additional_elements = []
|
|
907
|
+
for additional_function in additional_functions:
|
|
908
|
+
additional_elements.append(additional_function(self))
|
|
909
|
+
|
|
910
|
+
data = {
|
|
911
|
+
"probe_geometry": self.probe_geometry,
|
|
912
|
+
"time_to_next_transmit": time_to_next_transmit,
|
|
913
|
+
"t0_delays": t0_delays,
|
|
914
|
+
"tx_apodizations": tx_apodizations,
|
|
915
|
+
"sampling_frequency": self.sampling_frequency,
|
|
916
|
+
"polar_angles": polar_angles,
|
|
917
|
+
"azimuth_angles": azimuth_angles,
|
|
918
|
+
"bandwidth_percent": self.bandwidth_percent,
|
|
919
|
+
"raw_data": raw_data,
|
|
920
|
+
"center_frequency": self.center_frequency,
|
|
921
|
+
"sound_speed": self.sound_speed,
|
|
922
|
+
"initial_times": initial_times,
|
|
923
|
+
"probe_name": self.probe_name,
|
|
924
|
+
"focus_distances": focus_distances,
|
|
925
|
+
"tx_waveform_indices": tx_waveform_indices,
|
|
926
|
+
"waveforms_one_way": waveforms_one_way_list,
|
|
927
|
+
"waveforms_two_way": waveforms_two_way_list,
|
|
928
|
+
"tgc_gain_curve": self.tgc_gain_curve,
|
|
929
|
+
"element_width": self.element_width,
|
|
930
|
+
"additional_elements": [
|
|
931
|
+
el_lens_correction,
|
|
932
|
+
verasonics_image_buffer,
|
|
933
|
+
*additional_elements,
|
|
934
|
+
],
|
|
935
|
+
}
|
|
936
|
+
|
|
937
|
+
return data
|
|
938
|
+
|
|
939
|
+
def get_frame_indices(self, frames):
|
|
940
|
+
"""Creates a numpy array of frame indices from the file and the frames argument.
|
|
941
|
+
|
|
942
|
+
Args:
|
|
943
|
+
frames (str): The frames argument. This can be "all" or a list of frame indices.
|
|
944
|
+
|
|
945
|
+
Returns:
|
|
946
|
+
frame_indices (np.ndarray): The frame indices.
|
|
947
|
+
"""
|
|
948
|
+
# Read the number of frames from the file
|
|
949
|
+
n_frames = int(self.dereference_index(self["Resource"]["RcvBuffer"]["numFrames"], 0)[0][0])
|
|
950
|
+
|
|
951
|
+
if isinstance(frames, str) and frames == "all":
|
|
952
|
+
# Create an array of all frame-indices
|
|
953
|
+
frame_indices = np.arange(n_frames)
|
|
954
|
+
else:
|
|
955
|
+
frame_indices = np.array(frames)
|
|
956
|
+
frame_indices.sort()
|
|
957
|
+
|
|
958
|
+
if np.any(frame_indices >= n_frames):
|
|
959
|
+
log.error(
|
|
960
|
+
f"Frame indices {frame_indices} are out of bounds. "
|
|
961
|
+
f"The file contains {n_frames} frames. "
|
|
962
|
+
f"Using only the indices that are within bounds."
|
|
963
|
+
)
|
|
964
|
+
# Remove out of bounds indices
|
|
965
|
+
frame_indices = frame_indices[frame_indices < n_frames]
|
|
966
|
+
|
|
967
|
+
return frame_indices
|
|
968
|
+
|
|
969
|
+
def to_zea(self, output_path, additional_functions=None, frames="all", allow_accumulate=False):
|
|
970
|
+
"""Converts the Verasonics file to the zea format.
|
|
971
|
+
|
|
972
|
+
Args:
|
|
973
|
+
output_path (str): The path to the output file (.hdf5 file).
|
|
974
|
+
additional_functions (list, optional): A list of functions that read additional
|
|
975
|
+
data from the file. Each function should take the file as input and return a
|
|
976
|
+
`DatasetElement`. Defaults to None.
|
|
977
|
+
frames (str or list of int, optional): The frames to add to the file. This can be
|
|
978
|
+
a list of integers, a range of integers (e.g. 4-8), or 'all'. Defaults to
|
|
979
|
+
'all'.
|
|
980
|
+
allow_accumulate (bool, optional): Sometimes, some transmits are already accumulated
|
|
981
|
+
on the Verasonics system (e.g. harmonic imaging through pulse inversion).
|
|
982
|
+
In this case, the mode in the Receive structure is set to 1 (accumulate).
|
|
983
|
+
If this flag is set to False, an error is raised when such a mode is detected.
|
|
984
|
+
"""
|
|
985
|
+
if "TX_Agent" in self:
|
|
986
|
+
active_keys = self["TX_Agent"].keys()
|
|
987
|
+
log.info(
|
|
988
|
+
f"Found active imaging data with {len(active_keys)} events. "
|
|
989
|
+
"Will convert and save all parameters for each event separately."
|
|
990
|
+
)
|
|
991
|
+
num_events = set(self["TX_Agent"][key].shape[-1] for key in active_keys)
|
|
992
|
+
assert len(num_events) == 1, (
|
|
993
|
+
"All TX_Agent entries should have the same number of events."
|
|
994
|
+
)
|
|
995
|
+
num_events = num_events.pop()
|
|
996
|
+
|
|
997
|
+
# loop over TX_Agent entries and overwrite TX each time
|
|
998
|
+
data = {}
|
|
999
|
+
for event in range(num_events):
|
|
1000
|
+
data[event] = self.read_verasonics_file(
|
|
1001
|
+
event=event,
|
|
1002
|
+
additional_functions=additional_functions,
|
|
1003
|
+
allow_accumulate=allow_accumulate,
|
|
1004
|
+
)
|
|
1005
|
+
|
|
1006
|
+
# convert dict of events to dict of lists
|
|
1007
|
+
data = {key: [data[event][key] for event in data] for key in data[0]}
|
|
1008
|
+
description = ["Verasonics data with multiple events"] * num_events
|
|
1009
|
+
|
|
1010
|
+
# Generate the zea dataset
|
|
1011
|
+
generate_zea_dataset(
|
|
1012
|
+
path=output_path,
|
|
1013
|
+
**data,
|
|
1014
|
+
event_structure=True,
|
|
1015
|
+
description=description,
|
|
1016
|
+
)
|
|
1017
|
+
|
|
1018
|
+
else:
|
|
1019
|
+
# Here we call al the functions to read the data from the file
|
|
1020
|
+
log.info("Reading Verasonics file...")
|
|
1021
|
+
data = self.read_verasonics_file(
|
|
1022
|
+
additional_functions=additional_functions,
|
|
1023
|
+
frames=frames,
|
|
1024
|
+
allow_accumulate=allow_accumulate,
|
|
1025
|
+
)
|
|
1026
|
+
|
|
1027
|
+
# Generate the zea dataset
|
|
1028
|
+
log.info("Generating zea dataset...")
|
|
1029
|
+
generate_zea_dataset(path=output_path, **data, description="Verasonics data")
|
|
1030
|
+
|
|
1031
|
+
|
|
1032
|
+
def _zea_from_verasonics_workspace(input_path, output_path, **kwargs):
|
|
1033
|
+
"""Helper function around ``VerasonicsFile.to_zea``"""
|
|
1034
|
+
|
|
1035
|
+
# Create the output directory if it does not exist
|
|
1036
|
+
input_path = Path(input_path)
|
|
1037
|
+
output_path = Path(output_path)
|
|
1038
|
+
|
|
1039
|
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
|
1040
|
+
|
|
1041
|
+
assert input_path.is_file(), log.error(f"Input file {log.yellow(input_path)} does not exist.")
|
|
1042
|
+
|
|
1043
|
+
# Load the data
|
|
1044
|
+
with VerasonicsFile(input_path, "r") as file:
|
|
1045
|
+
file.to_zea(output_path, **kwargs)
|
|
1046
|
+
|
|
1047
|
+
log.success(f"Converted {log.yellow(input_path)} to {log.yellow(output_path)}")
|
|
1048
|
+
|
|
1049
|
+
|
|
1050
|
+
def get_answer(prompt, additional_options=None):
|
|
1051
|
+
"""Get a yes or no answer from the user. There is also the option to provide
|
|
1052
|
+
additional options. In case yes or no is selected, the function returns a boolean.
|
|
1053
|
+
In case an additional option is selected, the function returns the selected option
|
|
1054
|
+
as a string.
|
|
1055
|
+
|
|
1056
|
+
Args:
|
|
1057
|
+
prompt (str): The prompt to show the user.
|
|
1058
|
+
additional_options (list, optional): Additional options to show the user.
|
|
1059
|
+
Defaults to None.
|
|
1060
|
+
|
|
1061
|
+
Returns:
|
|
1062
|
+
str: The user's answer.
|
|
1063
|
+
"""
|
|
1064
|
+
while True:
|
|
1065
|
+
answer = input(prompt)
|
|
1066
|
+
try:
|
|
1067
|
+
bool_answer = strtobool(answer)
|
|
1068
|
+
return bool_answer
|
|
1069
|
+
except ValueError:
|
|
1070
|
+
if additional_options is not None and answer in additional_options:
|
|
1071
|
+
return answer
|
|
1072
|
+
log.warning("Invalid input.")
|
|
1073
|
+
|
|
1074
|
+
|
|
1075
|
+
def convert_verasonics(args):
|
|
1076
|
+
"""
|
|
1077
|
+
Converts a Verasonics MATLAB workspace file (.mat) or a directory containing multiple
|
|
1078
|
+
such files to the zea format.
|
|
1079
|
+
|
|
1080
|
+
Args:
|
|
1081
|
+
args (argparse.Namespace): An object with attributes:
|
|
1082
|
+
|
|
1083
|
+
- src (str): Source folder path.
|
|
1084
|
+
- dst (str): Destination folder path.
|
|
1085
|
+
- frames (list[str]): MATLAB frames spec (e.g., ["all"], integers, or ranges like "4-8")
|
|
1086
|
+
- allow_accumulate (bool): Whether to allow accumulate mode.
|
|
1087
|
+
- device (str): Device to use for processing.
|
|
1088
|
+
"""
|
|
1089
|
+
|
|
1090
|
+
init_device(args.device)
|
|
1091
|
+
|
|
1092
|
+
# Variable to indicate what to do with existing files.
|
|
1093
|
+
# Is set by the user in case these are found.
|
|
1094
|
+
existing_file_policy = None
|
|
1095
|
+
|
|
1096
|
+
if args.src is None:
|
|
1097
|
+
log.info("Select a directory containing Verasonics MATLAB workspace files.")
|
|
1098
|
+
# Create a Tkinter root window
|
|
1099
|
+
try:
|
|
1100
|
+
import tkinter as tk
|
|
1101
|
+
from tkinter import filedialog
|
|
1102
|
+
|
|
1103
|
+
root = tk.Tk()
|
|
1104
|
+
root.withdraw()
|
|
1105
|
+
# Prompt the user to select a file or directory
|
|
1106
|
+
selected_path = filedialog.askdirectory()
|
|
1107
|
+
except ImportError as e:
|
|
1108
|
+
raise ImportError(
|
|
1109
|
+
log.error(
|
|
1110
|
+
"tkinter is not installed. Please install it with 'apt install python3-tk'."
|
|
1111
|
+
)
|
|
1112
|
+
) from e
|
|
1113
|
+
except Exception as e:
|
|
1114
|
+
raise ValueError(
|
|
1115
|
+
log.error(
|
|
1116
|
+
"Failed to open a file dialog (possibly in headless state). "
|
|
1117
|
+
"Please provide a path as an argument. "
|
|
1118
|
+
)
|
|
1119
|
+
) from e
|
|
1120
|
+
else:
|
|
1121
|
+
selected_path = args.src
|
|
1122
|
+
|
|
1123
|
+
# Exit when no path is selected
|
|
1124
|
+
if not selected_path:
|
|
1125
|
+
log.error("No path selected.")
|
|
1126
|
+
sys.exit()
|
|
1127
|
+
else:
|
|
1128
|
+
selected_path = Path(selected_path)
|
|
1129
|
+
|
|
1130
|
+
selected_path_is_directory = os.path.isdir(selected_path)
|
|
1131
|
+
|
|
1132
|
+
# Set the output path to be next to the input directory with _zea appended
|
|
1133
|
+
# to the name
|
|
1134
|
+
if args.dst is None:
|
|
1135
|
+
if selected_path_is_directory:
|
|
1136
|
+
output_path = selected_path.parent / (Path(selected_path).name + "_zea")
|
|
1137
|
+
else:
|
|
1138
|
+
output_path = str(selected_path.with_suffix("")) + "_zea.hdf5"
|
|
1139
|
+
output_path = Path(output_path)
|
|
1140
|
+
else:
|
|
1141
|
+
output_path = Path(args.dst)
|
|
1142
|
+
if selected_path.is_file() and output_path.suffix not in (".hdf5", ".h5"):
|
|
1143
|
+
log.error(
|
|
1144
|
+
"When converting a single file, the output path should have the .hdf5 "
|
|
1145
|
+
"or .h5 extension."
|
|
1146
|
+
)
|
|
1147
|
+
sys.exit()
|
|
1148
|
+
elif selected_path.is_dir() and output_path.is_file():
|
|
1149
|
+
log.error("When converting a directory, the output path should be a directory.")
|
|
1150
|
+
sys.exit()
|
|
1151
|
+
|
|
1152
|
+
if output_path.is_dir() and not selected_path_is_directory:
|
|
1153
|
+
output_path = output_path / (selected_path.name + "_zea.hdf5")
|
|
1154
|
+
|
|
1155
|
+
log.info(f"Selected path: {log.yellow(selected_path)}")
|
|
1156
|
+
|
|
1157
|
+
# Parse frames
|
|
1158
|
+
frames = args.frames
|
|
1159
|
+
if frames[0] == "all":
|
|
1160
|
+
frames = "all"
|
|
1161
|
+
else:
|
|
1162
|
+
indices = set()
|
|
1163
|
+
for frame in frames:
|
|
1164
|
+
if "-" in frame:
|
|
1165
|
+
start, end = frame.split("-")
|
|
1166
|
+
indices.update(range(int(start), int(end) + 1))
|
|
1167
|
+
else:
|
|
1168
|
+
indices.add(int(frame))
|
|
1169
|
+
frames = list(indices)
|
|
1170
|
+
frames.sort()
|
|
1171
|
+
# Do the conversion of a single file
|
|
1172
|
+
if not selected_path_is_directory:
|
|
1173
|
+
if output_path.is_file():
|
|
1174
|
+
answer = get_answer(
|
|
1175
|
+
f"File {log.yellow(output_path)} exists. Overwrite?"
|
|
1176
|
+
"\n\ty\t - Overwrite"
|
|
1177
|
+
"\n\tn\t - Skip"
|
|
1178
|
+
"\nAnswer: "
|
|
1179
|
+
)
|
|
1180
|
+
if answer is True:
|
|
1181
|
+
log.warning(f"{selected_path} exists. Deleting...")
|
|
1182
|
+
output_path.unlink(missing_ok=False)
|
|
1183
|
+
else:
|
|
1184
|
+
log.info("Aborting...")
|
|
1185
|
+
sys.exit()
|
|
1186
|
+
_zea_from_verasonics_workspace(
|
|
1187
|
+
selected_path, output_path, frames=frames, allow_accumulate=args.allow_accumulate
|
|
1188
|
+
)
|
|
1189
|
+
else:
|
|
1190
|
+
# Continue with the rest of your code...
|
|
1191
|
+
for root, dirs, files in os.walk(selected_path):
|
|
1192
|
+
for mat_file in files:
|
|
1193
|
+
# Skip non-mat files
|
|
1194
|
+
if not mat_file.endswith(".mat"):
|
|
1195
|
+
continue
|
|
1196
|
+
|
|
1197
|
+
log.info(f"Found raw data file {log.yellow(mat_file)}")
|
|
1198
|
+
|
|
1199
|
+
# Convert the file to a Path object
|
|
1200
|
+
mat_file = Path(mat_file)
|
|
1201
|
+
|
|
1202
|
+
# Construct the output path
|
|
1203
|
+
relative_path = (Path(root) / Path(mat_file)).relative_to(selected_path)
|
|
1204
|
+
file_output_path = output_path / (relative_path.with_suffix(".hdf5"))
|
|
1205
|
+
|
|
1206
|
+
full_path = selected_path / relative_path
|
|
1207
|
+
|
|
1208
|
+
# Handle existing files
|
|
1209
|
+
if file_output_path.is_file():
|
|
1210
|
+
if existing_file_policy is None:
|
|
1211
|
+
answer = get_answer(
|
|
1212
|
+
f"File {log.yellow(file_output_path)} exists. Overwrite?"
|
|
1213
|
+
"\n\ty\t - Overwrite"
|
|
1214
|
+
"\n\tn\t - Skip"
|
|
1215
|
+
"\n\tya\t - Overwrite all existing files"
|
|
1216
|
+
"\n\tna\t - Skip all existing files"
|
|
1217
|
+
"\nAnswer: ",
|
|
1218
|
+
additional_options=("ya", "na"),
|
|
1219
|
+
)
|
|
1220
|
+
if answer == "ya":
|
|
1221
|
+
existing_file_policy = "overwrite"
|
|
1222
|
+
elif answer == "na":
|
|
1223
|
+
existing_file_policy = "skip"
|
|
1224
|
+
continue
|
|
1225
|
+
|
|
1226
|
+
if existing_file_policy == "skip" or answer is False:
|
|
1227
|
+
log.info("Skipping...")
|
|
1228
|
+
continue
|
|
1229
|
+
|
|
1230
|
+
if existing_file_policy == "overwrite" or answer is True:
|
|
1231
|
+
log.warning(f"{log.yellow(file_output_path)} exists. Deleting...")
|
|
1232
|
+
file_output_path.unlink(missing_ok=False)
|
|
1233
|
+
|
|
1234
|
+
try:
|
|
1235
|
+
_zea_from_verasonics_workspace(
|
|
1236
|
+
full_path,
|
|
1237
|
+
file_output_path,
|
|
1238
|
+
frames=frames,
|
|
1239
|
+
allow_accumulate=args.allow_accumulate,
|
|
1240
|
+
)
|
|
1241
|
+
except Exception:
|
|
1242
|
+
# Print error message without raising it
|
|
1243
|
+
log.error(f"Failed to convert {mat_file}")
|
|
1244
|
+
# Print stacktrace
|
|
1245
|
+
traceback.print_exc()
|
|
1246
|
+
|
|
1247
|
+
continue
|