zea 0.0.7__py3-none-any.whl → 0.0.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. zea/__init__.py +3 -3
  2. zea/agent/masks.py +2 -2
  3. zea/agent/selection.py +3 -3
  4. zea/backend/__init__.py +1 -1
  5. zea/backend/tensorflow/dataloader.py +1 -5
  6. zea/beamform/beamformer.py +4 -2
  7. zea/beamform/pfield.py +2 -2
  8. zea/beamform/pixelgrid.py +1 -1
  9. zea/data/__init__.py +0 -9
  10. zea/data/augmentations.py +222 -29
  11. zea/data/convert/__init__.py +1 -6
  12. zea/data/convert/__main__.py +164 -0
  13. zea/data/convert/camus.py +106 -40
  14. zea/data/convert/echonet.py +184 -83
  15. zea/data/convert/echonetlvh/README.md +2 -3
  16. zea/data/convert/echonetlvh/{convert_raw_to_usbmd.py → __init__.py} +174 -103
  17. zea/data/convert/echonetlvh/manual_rejections.txt +73 -0
  18. zea/data/convert/echonetlvh/precompute_crop.py +43 -64
  19. zea/data/convert/picmus.py +37 -40
  20. zea/data/convert/utils.py +86 -0
  21. zea/data/convert/verasonics.py +1247 -0
  22. zea/data/data_format.py +124 -6
  23. zea/data/dataloader.py +12 -7
  24. zea/data/datasets.py +109 -70
  25. zea/data/file.py +119 -82
  26. zea/data/file_operations.py +496 -0
  27. zea/data/preset_utils.py +2 -2
  28. zea/display.py +8 -9
  29. zea/doppler.py +5 -5
  30. zea/func/__init__.py +109 -0
  31. zea/{tensor_ops.py → func/tensor.py} +113 -69
  32. zea/func/ultrasound.py +500 -0
  33. zea/internal/_generate_keras_ops.py +5 -5
  34. zea/internal/checks.py +6 -12
  35. zea/internal/operators.py +4 -0
  36. zea/io_lib.py +108 -160
  37. zea/metrics.py +6 -5
  38. zea/models/__init__.py +1 -1
  39. zea/models/diffusion.py +63 -12
  40. zea/models/echonetlvh.py +1 -1
  41. zea/models/gmm.py +1 -1
  42. zea/models/lv_segmentation.py +2 -0
  43. zea/ops/__init__.py +188 -0
  44. zea/ops/base.py +442 -0
  45. zea/{keras_ops.py → ops/keras_ops.py} +2 -2
  46. zea/ops/pipeline.py +1472 -0
  47. zea/ops/tensor.py +356 -0
  48. zea/ops/ultrasound.py +890 -0
  49. zea/probes.py +2 -10
  50. zea/scan.py +35 -28
  51. zea/tools/fit_scan_cone.py +90 -160
  52. zea/tools/selection_tool.py +1 -1
  53. zea/tracking/__init__.py +16 -0
  54. zea/tracking/base.py +94 -0
  55. zea/tracking/lucas_kanade.py +474 -0
  56. zea/tracking/segmentation.py +110 -0
  57. zea/utils.py +11 -2
  58. {zea-0.0.7.dist-info → zea-0.0.9.dist-info}/METADATA +5 -1
  59. {zea-0.0.7.dist-info → zea-0.0.9.dist-info}/RECORD +62 -48
  60. zea/data/convert/matlab.py +0 -1237
  61. zea/ops.py +0 -3294
  62. {zea-0.0.7.dist-info → zea-0.0.9.dist-info}/WHEEL +0 -0
  63. {zea-0.0.7.dist-info → zea-0.0.9.dist-info}/entry_points.txt +0 -0
  64. {zea-0.0.7.dist-info → zea-0.0.9.dist-info}/licenses/LICENSE +0 -0
@@ -1,1237 +0,0 @@
1
- """Functionality to convert Verasonics matlab raw files to the zea format.
2
-
3
- Example (MATLAB):
4
-
5
- .. code-block:: matlab
6
-
7
- >> setup_script;
8
- >> VSX;
9
- >> save_raw('C:/path/to/raw_data.mat');
10
-
11
- Then in python:
12
-
13
- .. code-block:: python
14
-
15
- from zea.data_format.zea_from_matlab_raw import zea_from_matlab_raw
16
-
17
- zea_from_matlab_raw("C:/path/to/raw_data.mat", "C:/path/to/output.hdf5")
18
-
19
- Or alternatively, use the script below to convert all .mat files in a directory:
20
-
21
- .. code-block:: bash
22
-
23
- python zea/data/convert/matlab.py "C:/path/to/directory"
24
-
25
- or without the directory argument, the script will prompt you to select a directory
26
- using a file dialog.
27
-
28
- Event structure
29
- ---------------
30
-
31
- By default the zea dataformat saves all the data to an hdf5 file with the following structure:
32
-
33
- .. code-block:: text
34
-
35
- regular_zea_dataset.hdf5
36
- ├── data
37
- └── scan
38
- └── center_frequency: 1MHz
39
-
40
- The data is stored in the ``data`` group and the scan parameters are stored in the ``scan``.
41
- However, when we do an adaptive acquisition, some scanning parameters might change. These
42
- blocks of data with consistent scanning parameters we call events. In the case we have multiple
43
- events, we store the data in the following structure:
44
-
45
- .. code-block:: text
46
-
47
- zea_dataset.hdf5
48
- ├── event_0
49
- │ ├── data
50
- │ └── scan
51
- │ └── center_frequency: 1MHz
52
- ├── event_1
53
- │ ├── data
54
- │ └── scan
55
- │ └── center_frequency: 2MHz
56
- ├── event_2
57
- │ ├── data
58
- │ └── scan
59
- └── event_3
60
- ├── data
61
- └── scan
62
-
63
- This structure is supported by the zea toolbox. The way we can save the data in this structure
64
- from the Verasonics, is by changing the setup script to keep track of the TX struct at each event.
65
-
66
- The way this is done is still in development, an example of such an acquisition script that is
67
- compatible with saving event structures is found here:
68
- `setup_agent.m <https://github.com/tue-bmd/needle-tracking/blob/ius2024-demo-nc/verasonics/setup_agent.m>`_
69
-
70
- Adding additional elements
71
- --------------------------
72
-
73
- You can add additional elements to the dataset by defining a function that reads the
74
- data from the file and returns a ``DatasetElement``. Then pass the function to the
75
- ``zea_from_matlab_raw`` function as a list.
76
-
77
- .. code-block:: python
78
-
79
- def read_max_high_voltage(file):
80
- lens_correction = file["Trans"]["lensCorrection"][0, 0].item()
81
- return lens_correction
82
-
83
-
84
- def read_high_voltage_func(file):
85
- return DatasetElement(
86
- group_name="scan",
87
- dataset_name="max_high_voltage",
88
- data=read_max_high_voltage(file),
89
- description="The maximum high voltage used by the Verasonics system.",
90
- unit="V",
91
- )
92
-
93
-
94
- zea_from_matlab_raw(
95
- "C:/path/to/raw_data.mat",
96
- "C:/path/to/output.hdf5",
97
- [read_high_voltage_func],
98
- )
99
- """ # noqa: E501
100
-
101
- import argparse
102
- import os
103
- import sys
104
- import traceback
105
- from pathlib import Path
106
-
107
- import h5py
108
- import numpy as np
109
-
110
- from zea import log
111
- from zea.data.data_format import DatasetElement, generate_zea_dataset
112
- from zea.ops import LogCompress, Normalize
113
- from zea.utils import strtobool
114
-
115
- _VERASONICS_TO_ZEA_PROBE_NAMES = {
116
- "L11-4v": "verasonics_l11_4v",
117
- "L11-5v": "verasonics_l11_5v",
118
- }
119
-
120
-
121
- def dereference_index(file, dataset, index, event=None, subindex=None):
122
- """Get the element at the given index from the dataset, dereferencing it if
123
- necessary.
124
-
125
- MATLAB stores items in struct array differently depending on the size. If the size
126
- is 1, the item is stored as a regular dataset. If the size is larger, the item is
127
- stored as a dataset of references to the actual data.
128
-
129
- This function dereferences the dataset if it is a reference. Otherwise, it returns
130
- the dataset.
131
-
132
- Args:
133
- file (h5py.File): The file to read the dataset from.
134
- dataset (h5py.Dataset): The dataset to read the element from.
135
- index (int): The index of the element to read.
136
- event (int, optional): The event index. Usually we store each event in the
137
- second dimension of the dataset. Defaults to None in this case we assume
138
- that there is only a single event.
139
- subindex (slice, optional): The subindex of the element to read after
140
- referencing the actual data. Defaults to None. In this case, all the data
141
- is returned.
142
- """
143
- if isinstance(dataset.fillvalue, h5py.h5r.Reference):
144
- if event is not None:
145
- reference = dataset[index, event]
146
- else:
147
- reference = dataset[index, 0]
148
- if subindex is None:
149
- return file[reference][:]
150
- else:
151
- return file[reference][subindex]
152
- else:
153
- if index > 0:
154
- log.warning(
155
- f"index {index} is not a reference. You are probably "
156
- "incorrectly indexing a dataset."
157
- )
158
- return dataset
159
-
160
-
161
- def get_reference_size(dataset):
162
- """Get the size of a reference dataset."""
163
- if isinstance(dataset.fillvalue, h5py.h5r.Reference):
164
- return len(dataset)
165
- else:
166
- return 1
167
-
168
-
169
- def decode_string(dataset):
170
- """Decode a string dataset."""
171
- return "".join([chr(c) for c in dataset.squeeze()])
172
-
173
-
174
- def read_probe_geometry(file):
175
- """
176
- Read the probe geometry from the file.
177
-
178
- Args:
179
- file (h5py.File): The file to read the probe geometry from. (The file should
180
- be opened in read mode.)
181
-
182
- Returns:
183
- probe_geometry (np.ndarray): The probe geometry of shape (n_el, 3).
184
- """
185
- # Read the probe geometry from the file
186
- probe_geometry = file["Trans"]["ElementPos"][:3, :]
187
-
188
- # Transpose the probe geometry to have the shape (n_el, 3)
189
- probe_geometry = probe_geometry.T
190
-
191
- # Read the unit
192
- unit = decode_string(file["Trans"]["units"][:])
193
-
194
- # Convert the probe geometry to meters
195
- if unit == "mm":
196
- probe_geometry = probe_geometry / 1000
197
- else:
198
- wavelength = read_wavelength(file)
199
- probe_geometry = probe_geometry * wavelength
200
-
201
- return probe_geometry
202
-
203
-
204
- def read_wavelength(file):
205
- """Reads the wavelength from the file.
206
-
207
- Args:
208
- `file` (`h5py.File`): The file to read the wavelength from. (The file should be
209
- opened in read mode.)
210
-
211
- Returns:
212
- `wavelength` (`float`): The wavelength of the probe.
213
- """
214
- center_frequency = read_probe_center_frequency(file)
215
- sound_speed = read_sound_speed(file)
216
- wavelength = sound_speed / center_frequency
217
- return wavelength
218
-
219
-
220
- def read_transmit_events(file, event=None, frames="all"):
221
- """Read the events from the file and finds the order in which transmits and receives
222
- appear in the events.
223
-
224
- Args:
225
- file (h5py.File): The file to read the events from.
226
- The file should be opened in read mode.
227
- event (int, optional): The event index. Defaults to None.
228
- frames (str or list, optional): The frames to read. Defaults to "all".
229
-
230
- Returns:
231
- tuple: (tx_order, rcv_order, time_to_next_acq)
232
- tx_order (list): The order in which the transmits appear in the events.
233
- rcv_order (list): The order in which the receives appear in the events.
234
- time_to_next_acq (np.ndarray): The time to next acquisition of shape (n_acq, n_tx).
235
- """
236
-
237
- num_events = file["Event"]["info"].shape[0]
238
-
239
- # In the Verasonics the transmits may not be in order in the TX structure and a
240
- # transmit might be reused. Therefore, we need to keep track of the order in which
241
- # the transmits appear in the Events.
242
- tx_order = []
243
- rcv_order = []
244
- time_to_next_acq = []
245
-
246
- frame_indices = get_frame_indices(file, frames)
247
-
248
- for i in range(num_events):
249
- # Get the tx
250
- event_tx = dereference_index(file, file["Event"]["tx"], i)
251
- event_tx = int(event_tx.item())
252
-
253
- # Get the rcv
254
- event_rcv = dereference_index(file, file["Event"]["rcv"], i)
255
- event_rcv = int(event_rcv.item())
256
-
257
- if not bool(event_tx) == bool(event_rcv):
258
- log.warning(
259
- "Events should have both a transmit and a receive or neither. "
260
- f"Event {i} has a transmit but no receive or vice versa."
261
- )
262
-
263
- if not event_tx:
264
- continue
265
-
266
- # Subtract one to make the indices 0-based
267
- event_tx -= 1
268
- event_rcv -= 1
269
-
270
- # Check in the Receive structure if this is still the first frame
271
- framenum_ref = file["Receive"]["framenum"][event_rcv, 0]
272
- framenum = file[framenum_ref][:].item()
273
-
274
- # Only add the event to the list if it is the first frame since we assume
275
- # that all frames have the same transmits and receives
276
- if framenum == 1:
277
- # Add the event to the list
278
- tx_order.append(event_tx)
279
- rcv_order.append(event_rcv)
280
-
281
- # Read the time_to_next_acq
282
- seq_control_indices = dereference_index(file, file["Event"]["seqControl"], i)
283
-
284
- for seq_control_index in seq_control_indices:
285
- seq_control_index = int(seq_control_index.item() - 1)
286
- seq_control = dereference_index(file, file["SeqControl"]["command"], seq_control_index)
287
- # Decode the seq_control int array into a string
288
- seq_control = decode_string(seq_control)
289
- if seq_control == "timeToNextAcq":
290
- value = dereference_index(
291
- file, file["SeqControl"]["argument"], seq_control_index
292
- ).item()
293
- value = value * 1e-6
294
- time_to_next_acq.append(value)
295
-
296
- n_tx = len(tx_order)
297
- time_to_next_acq = np.array(time_to_next_acq)
298
- time_to_next_acq = np.reshape(time_to_next_acq, (-1, n_tx))
299
-
300
- if event is not None:
301
- time_to_next_acq = time_to_next_acq[event]
302
- time_to_next_acq = np.expand_dims(time_to_next_acq, axis=0)
303
-
304
- time_to_next_acq = time_to_next_acq[frame_indices]
305
-
306
- return tx_order, rcv_order, time_to_next_acq
307
-
308
-
309
- def read_t0_delays_apod(file, tx_order, event=None):
310
- """
311
- Read the t0 delays and apodization from the file.
312
-
313
- Args:
314
- file (h5py.File): The file to read the t0 delays from. (The file should be
315
- opened in read mode.)
316
-
317
- Returns:
318
- t0_delays (np.ndarray): The t0 delays of shape (n_tx, n_el).
319
- apod (np.ndarray): The apodization of shape (n_el,).
320
- """
321
-
322
- t0_delays_list = []
323
- tx_apodizations_list = []
324
-
325
- wavelength = read_wavelength(file)
326
- sound_speed = read_sound_speed(file)
327
-
328
- for n in tx_order:
329
- # Get column vector of t0_delays
330
- if event is None:
331
- t0_delays = dereference_index(file, file["TX"]["Delay"], n)
332
- else:
333
- t0_delays = dereference_index(file, file["TX_Agent"]["Delay"], n, event)
334
- # Turn into 1d array
335
- t0_delays = t0_delays[:, 0]
336
-
337
- t0_delays_list.append(t0_delays)
338
-
339
- # Get column vector of apodizations
340
- if event is None:
341
- tx_apodizations = dereference_index(file, file["TX"]["Apod"], n)
342
- else:
343
- tx_apodizations = dereference_index(file, file["TX_Agent"]["Apod"], n, event)
344
- # Turn into 1d array
345
- tx_apodizations = tx_apodizations[:, 0]
346
- tx_apodizations_list.append(tx_apodizations)
347
-
348
- t0_delays = np.stack(t0_delays_list, axis=0)
349
- apodizations = np.stack(tx_apodizations_list, axis=0)
350
-
351
- # Convert the t0_delays to meters
352
- t0_delays = t0_delays * wavelength / sound_speed
353
-
354
- return t0_delays, apodizations
355
-
356
-
357
- def read_sampling_frequency(file):
358
- """
359
- Read the sampling frequency from the file.
360
-
361
- Args:
362
- file (h5py.File): The file to read the sampling frequency from. (The file
363
- should be opened in read mode.)
364
-
365
- Returns:
366
- sampling_frequency (float): The sampling frequency.
367
- """
368
- # Read the sampling frequency from the file
369
- adc_rate = dereference_index(file, file["Receive"]["decimSampleRate"], 0)
370
-
371
- # The Vantage NXT has renamed this field to sampleSkip
372
- if "quadDecim" in file["Receive"]:
373
- quaddecim = dereference_index(file, file["Receive"]["quadDecim"], 0)
374
- else:
375
- quaddecim = 1.0
376
-
377
- sampling_frequency = adc_rate / quaddecim * 1e6
378
-
379
- return sampling_frequency[0, 0]
380
-
381
-
382
- def read_waveforms(file, tx_order, event=None):
383
- """
384
- Read the waveforms from the file.
385
-
386
- Args:
387
- file (h5py.File): The file to read the waveforms from. (The file should be
388
- opened in read mode.)
389
-
390
- Returns:
391
- waveforms (np.ndarray): The waveforms of shape (n_tx, n_samples).
392
- """
393
- waveforms_one_way_list = []
394
- waveforms_two_way_list = []
395
-
396
- # Read all the waveforms from the file
397
- n_waveforms = get_reference_size(file["TW"]["Wvfm1Wy"])
398
- for n in range(n_waveforms):
399
- # Get the row vector of the 1-way waveform
400
- waveform_one_way = dereference_index(file, file["TW"]["Wvfm1Wy"], n)[:]
401
- # Turn into 1d array
402
- waveform_one_way = waveform_one_way[0, :]
403
-
404
- # Get the row vector of the 2-way waveform
405
- waveform_two_way = dereference_index(file, file["TW"]["Wvfm2Wy"], n)[:]
406
- # Turn into 1d array
407
- waveform_two_way = waveform_two_way[0, :]
408
-
409
- waveforms_one_way_list.append(waveform_one_way)
410
- waveforms_two_way_list.append(waveform_two_way)
411
-
412
- tx_waveform_indices = []
413
-
414
- for n in tx_order:
415
- # Read the waveform
416
- if event is None:
417
- waveform_index = dereference_index(file, file["TX"]["waveform"], n)[:]
418
- else:
419
- waveform_index = dereference_index(file, file["TX_Agent"]["waveform"], n, event)[:]
420
- # Subtract one to make the indices 0-based
421
- waveform_index -= 1
422
- # Turn into integer
423
- waveform_index = int(waveform_index.item())
424
- tx_waveform_indices.append(waveform_index)
425
-
426
- return tx_waveform_indices, waveforms_one_way_list, waveforms_two_way_list
427
-
428
-
429
- def read_polar_angles(file, tx_order, event=None):
430
- """
431
- Read the polar angles from the file.
432
-
433
- Args:
434
- file (h5py.File): The file to read the polar angles from. (The file should
435
- be opened in read mode.)
436
-
437
- Returns:
438
- polar_angles (np.ndarray): The polar angles of shape (n_tx,).
439
- """
440
- polar_angles_list = []
441
-
442
- for n in tx_order:
443
- # Read the polar angle
444
- if event is None:
445
- polar_angle = dereference_index(file, file["TX"]["Steer"], n)[:]
446
- else:
447
- polar_angle = dereference_index(file, file["TX_Agent"]["Steer"], n, event)[:]
448
- # Turn into 1d array
449
- polar_angle = polar_angle[0, 0]
450
-
451
- polar_angles_list.append(polar_angle)
452
-
453
- polar_angles = np.stack(polar_angles_list, axis=0)
454
-
455
- return polar_angles
456
-
457
-
458
- def read_azimuth_angles(file, tx_order, event=None):
459
- """
460
- Read the azimuth angles from the file.
461
-
462
- Args:
463
- file (h5py.File): The file to read the azimuth angles from. (The file should
464
- be opened in read mode.)
465
-
466
- Returns:
467
- azimuth_angles (np.ndarray): The azimuth angles of shape (n_tx,).
468
- """
469
- azimuth_angles_list = []
470
-
471
- for n in tx_order:
472
- # Read the azimuth angle
473
- if event is None:
474
- azimuth_angle = dereference_index(file, file["TX"]["Steer"], n)[:]
475
- else:
476
- azimuth_angle = dereference_index(file, file["TX_Agent"]["Steer"], n, event)[:]
477
- # Turn into 1d array
478
- azimuth_angle = azimuth_angle[1, 0]
479
-
480
- azimuth_angles_list.append(azimuth_angle)
481
-
482
- azimuth_angles = np.stack(azimuth_angles_list, axis=0)
483
-
484
- return azimuth_angles
485
-
486
-
487
- def read_raw_data(file, event=None, frames="all"):
488
- """
489
- Read the raw data from the file.
490
-
491
- Args:
492
- file (h5py.File): The file to read the raw data from. (The file should be
493
- opened in read mode.)
494
-
495
- Returns:
496
- raw_data (np.ndarray): The raw data of shape (n_rcv, n_samples).
497
- """
498
-
499
- # Get the number of axial samples
500
- start_sample = dereference_index(file, file["Receive"]["startSample"], 0).item()
501
- end_sample = dereference_index(file, file["Receive"]["endSample"], 0).item()
502
- n_ax = int(end_sample - start_sample + 1)
503
-
504
- # Obtain the number of transmit events per frame
505
- tx_order, _, _ = read_transmit_events(file)
506
- n_tx = len(tx_order)
507
-
508
- # Read the raw data from the file
509
- if event is None:
510
- raw_data = dereference_index(file, file["RcvData"], 0)
511
- else:
512
- # for now we only index frames as events
513
- raw_data = dereference_index(file, file["RcvData"], 0, subindex=event)
514
- raw_data = np.expand_dims(raw_data, axis=0)
515
-
516
- frame_indices = get_frame_indices(file, frames)
517
-
518
- raw_data = raw_data[frame_indices]
519
-
520
- raw_data = raw_data[:, :, : n_ax * n_tx]
521
-
522
- raw_data = raw_data.reshape((raw_data.shape[0], raw_data.shape[1], n_tx, -1))
523
-
524
- raw_data = np.transpose(raw_data, (0, 2, 3, 1))
525
-
526
- # Add channel dimension
527
- raw_data = raw_data[..., None]
528
-
529
- return raw_data
530
-
531
-
532
- def read_probe_center_frequency(file):
533
- """Reads the center frequency of the probe from the file.
534
-
535
- Args:
536
- file (h5py.File): The file to read the center frequency from. (The file
537
- should be opened in read mode.)
538
-
539
- Returns:
540
- center_frequency (float): The center frequency of the probe.
541
- """
542
- center_frequency = file["Trans"]["frequency"][0, 0] * 1e6
543
- return center_frequency
544
-
545
-
546
- def read_sound_speed(file):
547
- """Reads the speed of sound from the file.
548
-
549
- Args:
550
- file (h5py.File): The file to read the speed of sound from. (The file
551
- should be opened in read mode.)
552
-
553
- Returns:
554
- sound_speed (float): The speed of sound.
555
- """
556
-
557
- sound_speed = file["Resource"]["Parameters"]["speedOfSound"][0, 0].item()
558
- return sound_speed
559
-
560
-
561
- def read_initial_times(file, rcv_order, sound_speed):
562
- """Reads the initial times from the file.
563
-
564
- Args:
565
- file (h5py.File): The file to read the initial times from. (The file should
566
- be opened in read mode.)
567
- rcv_order (list): The order in which the receives appear in the events.
568
- wavelength (float): The wavelength of the probe.
569
- sound_speed (float): The speed of sound.
570
-
571
- Returns:
572
- initial_times (np.ndarray): The initial times of shape (n_rcv,).
573
- """
574
- wavelength = read_wavelength(file)
575
- initial_times = []
576
- for n in rcv_order:
577
- start_depth = dereference_index(file, file["Receive"]["startDepth"], n).item()
578
-
579
- initial_times.append(2 * start_depth * wavelength / sound_speed)
580
-
581
- return np.array(initial_times).astype(np.float32)
582
-
583
-
584
- def read_probe_name(file):
585
- """Reads the name of the probe from the file.
586
-
587
- Args:
588
- file (h5py.File): The file to read the name of the probe from. (The file
589
- should be opened in read mode.)
590
-
591
- Returns:
592
- probe_name (str): The name of the probe.
593
- """
594
- probe_name = file["Trans"]["name"][:]
595
- probe_name = decode_string(probe_name)
596
- # Translates between verasonics probe names and zea probe names
597
- if probe_name in _VERASONICS_TO_ZEA_PROBE_NAMES:
598
- probe_name = _VERASONICS_TO_ZEA_PROBE_NAMES[probe_name]
599
- else:
600
- log.warning(
601
- f"Probe name {probe_name} is not in the list of known probes. "
602
- "Please add it to the _VERASONICS_TO_ZEA_PROBE_NAMES dictionary. "
603
- "Falling back to generic probe."
604
- )
605
- probe_name = "generic"
606
-
607
- return probe_name
608
-
609
-
610
- def read_focus_distances(file, tx_order, event=None):
611
- """Reads the focus distances from the file.
612
-
613
- Args:
614
- file (h5py.File): The file to read the focus distances from. (The file
615
- should be opened in read mode.)
616
- tx_order (list): The order in which the transmits appear in the events.
617
-
618
- Returns:
619
- focus_distances (list): The focus distances.
620
- """
621
- focus_distances = []
622
- for n in tx_order:
623
- if event is None:
624
- focus_distance = dereference_index(file, file["TX"]["focus"], n)[0, 0]
625
- else:
626
- focus_distance = dereference_index(file, file["TX_Agent"]["focus"], n, event)[0, 0]
627
- focus_distances.append(focus_distance)
628
- return np.array(focus_distances)
629
-
630
-
631
- def _probe_geometry_is_ordered_ula(probe_geometry):
632
- """Checks if the probe geometry is ordered as a uniform linear array (ULA)."""
633
- diff_vec = probe_geometry[1:] - probe_geometry[:-1]
634
- return np.isclose(diff_vec, diff_vec[0]).all()
635
-
636
-
637
- def planewave_focal_distance_to_inf(focus_distances, t0_delays, tx_apodizations, probe_geometry):
638
- """Detects plane wave transmits and sets the focus distance to infinity.
639
-
640
- Args:
641
- focus_distances (np.ndarray): The focus distances of shape (n_tx,).
642
- t0_delays (np.ndarray): The t0 delays of shape (n_tx, n_el).
643
- tx_apodizations (np.ndarray): The apodization of shape (n_tx, n_el).
644
-
645
- Returns:
646
- focus_distances (np.ndarray): The focus distances of shape (n_tx,).
647
-
648
- Note:
649
- This function assumes that the probe_geometry is a 1d uniform linear array.
650
- If not it will warn and return.
651
- """
652
- if not _probe_geometry_is_ordered_ula(probe_geometry):
653
- log.warning(
654
- "The probe geometry is not ordered as a uniform linear array. "
655
- "Focal distances are not set to infinity for plane waves."
656
- )
657
- return focus_distances
658
-
659
- for tx in range(focus_distances.size):
660
- mask_active = np.abs(tx_apodizations[tx]) > 0
661
- if np.sum(mask_active) < 2:
662
- continue
663
- t0_delays_active = t0_delays[tx][mask_active]
664
-
665
- # If the t0_delays all have the same offset, we assume it is a plane wave
666
- if np.std(np.diff(t0_delays_active)) < 1e-16:
667
- focus_distances[tx] = np.inf
668
-
669
- return focus_distances
670
-
671
-
672
- def read_bandwidth_percent(file):
673
- """Reads the bandwidth percent from the file.
674
-
675
- Args:
676
- file (h5py.File): The file to read the bandwidth percent from. (The file
677
- should be opened in read mode.)
678
-
679
- Returns:
680
- bandwidth_percent (int): The bandwidth percent.
681
- """
682
- bandwidth_percent = dereference_index(file, file["Receive"]["sampleMode"], 0)
683
- bandwidth_percent = decode_string(bandwidth_percent)
684
- bandwidth_percent = int(bandwidth_percent[2:-2])
685
- return bandwidth_percent
686
-
687
-
688
- def read_lens_correction(file):
689
- """Reads the lens correction from the file.
690
-
691
- Args:
692
- `file` (`h5py.File`): The file to read the lens correction from. (The file
693
- should be opened in read mode.)
694
-
695
- Returns:
696
- `lens_correction` (`np.ndarray`): The lens correction.
697
- """
698
- lens_correction = file["Trans"]["lensCorrection"][0, 0].item()
699
- return lens_correction
700
-
701
-
702
- def read_tgc_gain_curve(file):
703
- """Reads the TGC gain curve from the file.
704
-
705
- Parameters
706
- ----------
707
- file : h5py.File
708
- The file to read the TGC gain curve from. (The file should be opened in read
709
- mode.)
710
-
711
- Returns
712
- -------
713
- np.ndarray
714
- The TGC gain curve of shape `(n_ax,)`.
715
- """
716
-
717
- gain_curve = file["TGC"]["Waveform"][:][:, 0]
718
-
719
- # Normalize the gain_curve to [0, 40]dB
720
- gain_curve = gain_curve / 1023 * 40
721
-
722
- # The gain curve is sampled at 800ns (See Verasonics documentation for details.
723
- # Specifically the tutorial sequence programming)
724
- gain_curve_sampling_period = 800e-9
725
-
726
- # Define the time axis for the gain curve
727
- t_gain_curve = np.arange(gain_curve.size) * gain_curve_sampling_period
728
-
729
- # Read the number of axial samples
730
- start_sample = dereference_index(file, file["Receive"]["startSample"], 0).item()
731
- end_sample = dereference_index(file, file["Receive"]["endSample"], 0).item()
732
- n_ax = int(end_sample - start_sample + 1)
733
-
734
- # Read the sampling frequency
735
- sampling_frequency = read_sampling_frequency(file)
736
-
737
- # Define the time axis for the axial samples
738
- t_samples = np.arange(n_ax) / sampling_frequency
739
-
740
- # Interpolate the gain_curve to the number of axial samples
741
- gain_curve = np.interp(t_samples, t_gain_curve, gain_curve)
742
-
743
- # The gain_curve gains are in dB, so we need to convert them to linear scale
744
- gain_curve = 10 ** (gain_curve / 20)
745
-
746
- return gain_curve
747
-
748
-
749
- def read_image_data_p(file, event=None, frames="all"):
750
- """Reads the image data from the file.
751
-
752
- Args:
753
- `file` (`h5py.File`): The file to read the image data from. (The file should be
754
- opened in read mode.)
755
-
756
- Returns:
757
- `image_data` (`np.ndarray`): The image data.
758
- """
759
- # Check if the file contains image data
760
- if "ImgDataP" not in file:
761
- return None
762
-
763
- frame_indices = get_frame_indices(file, frames)
764
-
765
- # Get the dataset reference
766
- image_data_ref = file["ImgDataP"][0, 0]
767
- # Dereference the dataset
768
- if event is None:
769
- image_data = file[image_data_ref][:]
770
- else:
771
- image_data = file[image_data_ref][event]
772
- image_data = np.expand_dims(image_data, axis=0)
773
-
774
- # Get the relevant dimensions
775
- image_data = image_data[:, 0, :, :]
776
-
777
- # Convert to [-60, 0] dB range based on min and max values
778
- normalize = Normalize(output_range=(0, 1), input_range=None)
779
- log_compress = LogCompress()
780
-
781
- image_data = normalize(data=image_data)["data"]
782
- image_data = log_compress(data=image_data, dynamic_range=(-np.inf, 0))["data"]
783
-
784
- # Reshape so that [n_frames, n_samples, n_lines]
785
- image_data = np.transpose(image_data, (0, 2, 1))
786
-
787
- image_data = image_data[frame_indices]
788
-
789
- return image_data
790
-
791
-
792
- def read_probe_element_width(file):
793
- """Reads the element width from the file.
794
-
795
- Args:
796
- file (h5py.File): The file to read the element width from.
797
- The file should be opened in read mode.
798
-
799
- Returns:
800
- float: The element width.
801
- """
802
- element_width = file["Trans"]["elementWidth"][:][0, 0]
803
-
804
- # Read the unit
805
- unit = decode_string(file["Trans"]["units"][:])
806
-
807
- # Convert the probe element width to meters
808
- if unit == "mm":
809
- element_width = element_width / 1000
810
- else:
811
- wavelength = read_wavelength(file)
812
- element_width = element_width * wavelength
813
-
814
- return element_width
815
-
816
-
817
- def read_verasonics_file(file, event=None, additional_functions=None, frames="all"):
818
- """Reads data from a .mat Verasonics output file.
819
-
820
- Args:
821
- file (h5py.File): The file to read the data from. (The file should be opened in
822
- read mode.)
823
- event (int, optional): The event index. Defaults to None in this case we assume
824
- the data file is stored without event structure.
825
- additional_functions (list, optional): A list of functions that read additional
826
- data from the file. Each function should take the file as input and return a
827
- `DatasetElement`. Defaults to None.
828
- """
829
-
830
- probe_geometry = read_probe_geometry(file)
831
-
832
- # same for all events
833
- tx_order, rcv_order, time_to_next_transmit = read_transmit_events(file, frames=frames)
834
- sampling_frequency = read_sampling_frequency(file)
835
- bandwidth_percent = read_bandwidth_percent(file)
836
- center_frequency = read_probe_center_frequency(file)
837
- sound_speed = read_sound_speed(file)
838
- initial_times = read_initial_times(file, rcv_order, sound_speed)
839
- probe_name = read_probe_name(file)
840
- tgc_gain_curve = read_tgc_gain_curve(file)
841
- element_width = read_probe_element_width(file)
842
-
843
- # these are capable of handling multiple events
844
- raw_data = read_raw_data(file, event, frames=frames)
845
- image = read_image_data_p(file, event, frames=frames)
846
-
847
- polar_angles = read_polar_angles(file, tx_order, event)
848
- azimuth_angles = read_azimuth_angles(file, tx_order, event)
849
- t0_delays, tx_apodizations = read_t0_delays_apod(file, tx_order, event)
850
- focus_distances = read_focus_distances(file, tx_order, event)
851
-
852
- tx_waveform_indices, waveforms_one_way_list, waveforms_two_way_list = read_waveforms(
853
- file, tx_order, event
854
- )
855
- focus_distances = planewave_focal_distance_to_inf(
856
- focus_distances, t0_delays, tx_apodizations, probe_geometry
857
- )
858
-
859
- # If the data is captured in BS100BW mode or BS50BW mode, the data is stored in
860
- # as complex IQ data and the sampling frequency is halved.
861
- if bandwidth_percent in (50, 100):
862
- raw_data = np.concatenate(
863
- (
864
- raw_data[:, :, 0::2, :, :],
865
- -raw_data[:, :, 1::2, :, :],
866
- ),
867
- axis=-1,
868
- )
869
- # Two sequential samples are interpreted as a single complex sample
870
- # Therefore, we need to halve the sampling frequency
871
- sampling_frequency = sampling_frequency / 2
872
-
873
- # We have halved the number of samples, so we need to halve the number
874
- # of samples in the gain curve as well
875
- tgc_gain_curve = tgc_gain_curve[0::2]
876
-
877
- lens_correction = read_lens_correction(file)
878
- if event is None:
879
- group_name = "scan"
880
- else:
881
- group_name = f"event_{event}/scan"
882
-
883
- el_lens_correction = DatasetElement(
884
- group_name=group_name,
885
- dataset_name="lens_correction",
886
- data=lens_correction,
887
- description=(
888
- "The lens correction value used by Verasonics. This value is the "
889
- "additional path length in wavelength that the lens introduces. "
890
- "(This disregards refraction.)"
891
- ),
892
- unit="wavelengths",
893
- )
894
-
895
- additional_elements = []
896
- if additional_functions is not None:
897
- for additional_function in additional_functions:
898
- additional_elements.append(additional_function(file))
899
-
900
- data = {
901
- "probe_geometry": probe_geometry,
902
- "time_to_next_transmit": time_to_next_transmit,
903
- "t0_delays": t0_delays,
904
- "tx_apodizations": tx_apodizations,
905
- "sampling_frequency": sampling_frequency,
906
- "polar_angles": polar_angles,
907
- "azimuth_angles": azimuth_angles,
908
- "bandwidth_percent": bandwidth_percent,
909
- "raw_data": raw_data,
910
- "image": image,
911
- "center_frequency": center_frequency,
912
- "sound_speed": sound_speed,
913
- "initial_times": initial_times,
914
- "probe_name": probe_name,
915
- "focus_distances": focus_distances,
916
- "tx_waveform_indices": tx_waveform_indices,
917
- "waveforms_one_way": waveforms_one_way_list,
918
- "waveforms_two_way": waveforms_two_way_list,
919
- "tgc_gain_curve": tgc_gain_curve,
920
- "element_width": element_width,
921
- "additional_elements": [el_lens_correction, *additional_elements],
922
- }
923
-
924
- return data
925
-
926
-
927
- def get_frame_indices(file, frames):
928
- """Creates a numpy array of frame indices from the file and the frames argument.
929
-
930
- Args:
931
- file (h5py.File): The file to read the frame indices from.
932
- frames (str): The frames argument. This can be "all" or a list of frame indices.
933
-
934
- Returns:
935
- frame_indices (np.ndarray): The frame indices.
936
- """
937
- # Read the number of frames from the file
938
- n_frames = int(file["Resource"]["RcvBuffer"]["numFrames"][0][0])
939
-
940
- if isinstance(frames, str) and frames == "all":
941
- # Create an array of all frame-indices
942
- frame_indices = np.arange(n_frames)
943
- else:
944
- frame_indices = np.array(frames)
945
- frame_indices.sort()
946
-
947
- if np.any(frame_indices >= n_frames):
948
- log.error(
949
- f"Frame indices {frame_indices} are out of bounds. "
950
- f"The file contains {n_frames} frames. "
951
- f"Using only the indices that are within bounds."
952
- )
953
- # Remove out of bounds indices
954
- frame_indices = frame_indices[frame_indices < n_frames]
955
-
956
- return frame_indices
957
-
958
-
959
- def zea_from_matlab_raw(input_path, output_path, additional_functions=None, frames="all"):
960
- """Converts a Verasonics matlab raw file to the zea format. The MATLAB file
961
- should be created using the `save_raw` function and be stored in "v7.3" format.
962
-
963
- Args:
964
- input_path (str): The path to the input file (.mat file).
965
- output_path (str): The path to the output file (.hdf5 file).
966
- additional_functions (list, optional): A list of functions that read additional
967
- data from the file. Each function should take the file as input and return a
968
- `DatasetElement`. Defaults to None.
969
- frames (str or list of int, optional): The frames to add to the file. This can be
970
- a list of integers, a range of integers (e.g. 4-8), or 'all'. Defaults to
971
- 'all'.
972
- """
973
- # Create the output directory if it does not exist
974
- input_path = Path(input_path)
975
- output_path = Path(output_path)
976
-
977
- output_path.parent.mkdir(parents=True, exist_ok=True)
978
-
979
- assert input_path.is_file(), log.error(f"Input file {log.yellow(input_path)} does not exist.")
980
-
981
- # Load the data
982
- with h5py.File(input_path, "r") as file:
983
- if "TX_Agent" in file:
984
- active_keys = file["TX_Agent"].keys()
985
- log.info(
986
- f"Found active imaging data with {len(active_keys)} events. "
987
- "Will convert and save all parameters for each event separately."
988
- )
989
- num_events = set(file["TX_Agent"][key].shape[-1] for key in active_keys)
990
- assert len(num_events) == 1, (
991
- "All TX_Agent entries should have the same number of events."
992
- )
993
- num_events = num_events.pop()
994
-
995
- # loop over TX_Agent entries and overwrite TX each time
996
- data = {}
997
- for event in range(num_events):
998
- data[event] = read_verasonics_file(
999
- file,
1000
- event=event,
1001
- additional_functions=additional_functions,
1002
- )
1003
-
1004
- # convert dict of events to dict of lists
1005
- data = {key: [data[event][key] for event in data] for key in data[0]}
1006
- description = ["Verasonics data with multiple events"] * num_events
1007
- # Generate the zea dataset
1008
- generate_zea_dataset(
1009
- path=output_path,
1010
- **data,
1011
- event_structure=True,
1012
- description=description,
1013
- )
1014
-
1015
- else:
1016
- # Here we call al the functions to read the data from the file
1017
- data = read_verasonics_file(
1018
- file, additional_functions=additional_functions, frames=frames
1019
- )
1020
-
1021
- # Generate the zea dataset
1022
- generate_zea_dataset(path=output_path, **data, description="Verasonics data")
1023
-
1024
- log.success(f"Converted {log.yellow(input_path)} to {log.yellow(output_path)}")
1025
-
1026
-
1027
- def parse_args():
1028
- """Parse command line arguments."""
1029
- parser = argparse.ArgumentParser(
1030
- description="Convert Verasonics matlab raw files to the zea format."
1031
- "Example usage: python zea/data/convert/matlab.py raw_file.mat output.hdf5 --frames 1-5 7"
1032
- )
1033
- parser.add_argument(
1034
- "input_path",
1035
- default=None,
1036
- type=str,
1037
- nargs="?",
1038
- help="The path to a file or directory containing raw Verasonics data.",
1039
- )
1040
-
1041
- parser.add_argument(
1042
- "output_path",
1043
- default=None,
1044
- type=str,
1045
- nargs="?",
1046
- help="The path to the output file or directory.",
1047
- )
1048
-
1049
- parser.add_argument(
1050
- "--frames",
1051
- default=["all"],
1052
- type=str,
1053
- nargs="+",
1054
- help="The frames to add to the file. This can be a list of integers, a range "
1055
- "of integers (e.g. 4-8), or 'all'.",
1056
- )
1057
-
1058
- return parser.parse_args()
1059
-
1060
-
1061
- def get_answer(prompt, additional_options=None):
1062
- """Get a yes or no answer from the user. There is also the option to provide
1063
- additional options. In case yes or no is selected, the function returns a boolean.
1064
- In case an additional option is selected, the function returns the selected option
1065
- as a string.
1066
-
1067
- Args:
1068
- prompt (str): The prompt to show the user.
1069
- additional_options (list, optional): Additional options to show the user.
1070
- Defaults to None.
1071
-
1072
- Returns:
1073
- str: The user's answer.
1074
- """
1075
- while True:
1076
- answer = input(prompt)
1077
- try:
1078
- bool_answer = strtobool(answer)
1079
- return bool_answer
1080
- except ValueError:
1081
- if additional_options is not None and answer in additional_options:
1082
- return answer
1083
- log.warning("Invalid input.")
1084
-
1085
-
1086
- if __name__ == "__main__":
1087
- args = parse_args()
1088
-
1089
- # Variable to indicate what to do with existing files.
1090
- # Is set by the user in case these are found.
1091
- existing_file_policy = None
1092
-
1093
- if args.input_path is None:
1094
- log.info("Select a directory containing Verasonics matlab raw files.")
1095
- # Create a Tkinter root window
1096
- try:
1097
- import tkinter as tk
1098
- from tkinter import filedialog
1099
-
1100
- root = tk.Tk()
1101
- root.withdraw()
1102
- # Prompt the user to select a file or directory
1103
- selected_path = filedialog.askdirectory()
1104
- except ImportError as e:
1105
- raise ImportError(
1106
- log.error(
1107
- "tkinter is not installed. Please install it with 'apt install python3-tk'."
1108
- )
1109
- ) from e
1110
- except Exception as e:
1111
- raise ValueError(
1112
- log.error(
1113
- "Failed to open a file dialog (possibly in headless state). "
1114
- "Please provide a path as an argument. "
1115
- )
1116
- ) from e
1117
- else:
1118
- selected_path = args.input_path
1119
-
1120
- # Exit when no path is selected
1121
- if not selected_path:
1122
- log.error("No path selected.")
1123
- sys.exit()
1124
- else:
1125
- selected_path = Path(selected_path)
1126
-
1127
- selected_path_is_directory = os.path.isdir(selected_path)
1128
-
1129
- # Set the output path to be next to the input directory with _zea appended
1130
- # to the name
1131
- if args.output_path is None:
1132
- if selected_path_is_directory:
1133
- output_path = selected_path.parent / (Path(selected_path).name + "_zea")
1134
- else:
1135
- output_path = str(selected_path.with_suffix("")) + "_zea.hdf5"
1136
- output_path = Path(output_path)
1137
- else:
1138
- output_path = Path(args.output_path)
1139
- if selected_path.is_file() and output_path.suffix not in (".hdf5", ".h5"):
1140
- log.error(
1141
- "When converting a single file, the output path should have the .hdf5 "
1142
- "or .h5 extension."
1143
- )
1144
- sys.exit()
1145
- elif selected_path.is_dir() and output_path.is_file():
1146
- log.error("When converting a directory, the output path should be a directory.")
1147
- sys.exit()
1148
- #
1149
- if output_path.is_dir() and not selected_path_is_directory:
1150
- output_path = output_path / (selected_path.name + "_zea.hdf5")
1151
-
1152
- log.info(f"Selected path: {log.yellow(selected_path)}")
1153
-
1154
- # Parse frames
1155
- frames = args.frames
1156
- if frames[0] == "all":
1157
- frames = "all"
1158
- else:
1159
- indices = set()
1160
- for frame in frames:
1161
- if "-" in frame:
1162
- start, end = frame.split("-")
1163
- indices.update(range(int(start), int(end) + 1))
1164
- else:
1165
- indices.add(int(frame))
1166
- frames = list(indices)
1167
- frames.sort()
1168
- # Do the conversion of a single file
1169
- if not selected_path_is_directory:
1170
- if output_path.is_file():
1171
- answer = get_answer(
1172
- f"File {log.yellow(output_path)} exists. Overwrite?"
1173
- "\n\ty\t - Overwrite"
1174
- "\n\tn\t - Skip"
1175
- "\nAnswer: "
1176
- )
1177
- if answer is True:
1178
- log.warning(f"{selected_path} exists. Deleting...")
1179
- output_path.unlink(missing_ok=False)
1180
- else:
1181
- log.info("Aborting...")
1182
- sys.exit()
1183
- zea_from_matlab_raw(selected_path, output_path, frames=frames)
1184
- else:
1185
- # Continue with the rest of your code...
1186
- for root, dirs, files in os.walk(selected_path):
1187
- for mat_file in files:
1188
- # Skip non-mat files
1189
- if not mat_file.endswith(".mat"):
1190
- continue
1191
-
1192
- log.info(f"Found raw data file {log.yellow(mat_file)}")
1193
-
1194
- # Convert the file to a Path object
1195
- mat_file = Path(mat_file)
1196
-
1197
- # Construct the output path
1198
- relative_path = (Path(root) / Path(mat_file)).relative_to(selected_path)
1199
- file_output_path = output_path / (relative_path.with_suffix(".hdf5"))
1200
-
1201
- full_path = selected_path / relative_path
1202
-
1203
- # Handle existing files
1204
- if file_output_path.is_file():
1205
- if existing_file_policy is None:
1206
- answer = get_answer(
1207
- f"File {log.yellow(file_output_path)} exists. Overwrite?"
1208
- "\n\ty\t - Overwrite"
1209
- "\n\tn\t - Skip"
1210
- "\n\tya\t - Overwrite all existing files"
1211
- "\n\tna\t - Skip all existing files"
1212
- "\nAnswer: ",
1213
- additional_options=("ya", "na"),
1214
- )
1215
- if answer == "ya":
1216
- existing_file_policy = "overwrite"
1217
- elif answer == "na":
1218
- existing_file_policy = "skip"
1219
- continue
1220
-
1221
- if existing_file_policy == "skip" or answer is False:
1222
- log.info("Skipping...")
1223
- continue
1224
-
1225
- if existing_file_policy == "overwrite" or answer is True:
1226
- log.warning(f"{log.yellow(full_path)} exists. Deleting...")
1227
- file_output_path.unlink(missing_ok=False)
1228
-
1229
- try:
1230
- zea_from_matlab_raw(full_path, file_output_path, frames=frames)
1231
- except Exception:
1232
- # Print error message without raising it
1233
- log.error(f"Failed to convert {mat_file}")
1234
- # Print stacktrace
1235
- traceback.print_exc()
1236
-
1237
- continue