xmos-ai-tools 1.3.2.dev80__py3-none-macosx_10_15_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (395) hide show
  1. xmos_ai_tools/__init__.py +7 -0
  2. xmos_ai_tools/io_server/__init__.py +151 -0
  3. xmos_ai_tools/runtime/__init__.py +0 -0
  4. xmos_ai_tools/runtime/buildfiles/aitoolslib.cmake +13 -0
  5. xmos_ai_tools/runtime/buildfiles/aitoolslib.make +8 -0
  6. xmos_ai_tools/runtime/include/flash_server.h +74 -0
  7. xmos_ai_tools/runtime/include/flatbuffers/allocator.h +68 -0
  8. xmos_ai_tools/runtime/include/flatbuffers/array.h +243 -0
  9. xmos_ai_tools/runtime/include/flatbuffers/base.h +474 -0
  10. xmos_ai_tools/runtime/include/flatbuffers/bfbs_generator.h +43 -0
  11. xmos_ai_tools/runtime/include/flatbuffers/buffer.h +142 -0
  12. xmos_ai_tools/runtime/include/flatbuffers/buffer_ref.h +53 -0
  13. xmos_ai_tools/runtime/include/flatbuffers/code_generators.h +235 -0
  14. xmos_ai_tools/runtime/include/flatbuffers/default_allocator.h +64 -0
  15. xmos_ai_tools/runtime/include/flatbuffers/detached_buffer.h +114 -0
  16. xmos_ai_tools/runtime/include/flatbuffers/flatbuffer_builder.h +1197 -0
  17. xmos_ai_tools/runtime/include/flatbuffers/flatbuffers.h +270 -0
  18. xmos_ai_tools/runtime/include/flatbuffers/flatc.h +111 -0
  19. xmos_ai_tools/runtime/include/flatbuffers/flexbuffers.h +1897 -0
  20. xmos_ai_tools/runtime/include/flatbuffers/grpc.h +300 -0
  21. xmos_ai_tools/runtime/include/flatbuffers/hash.h +127 -0
  22. xmos_ai_tools/runtime/include/flatbuffers/idl.h +1232 -0
  23. xmos_ai_tools/runtime/include/flatbuffers/minireflect.h +419 -0
  24. xmos_ai_tools/runtime/include/flatbuffers/pch/flatc_pch.h +39 -0
  25. xmos_ai_tools/runtime/include/flatbuffers/pch/pch.h +38 -0
  26. xmos_ai_tools/runtime/include/flatbuffers/reflection.h +502 -0
  27. xmos_ai_tools/runtime/include/flatbuffers/reflection_generated.h +1449 -0
  28. xmos_ai_tools/runtime/include/flatbuffers/registry.h +128 -0
  29. xmos_ai_tools/runtime/include/flatbuffers/stl_emulation.h +509 -0
  30. xmos_ai_tools/runtime/include/flatbuffers/string.h +64 -0
  31. xmos_ai_tools/runtime/include/flatbuffers/struct.h +53 -0
  32. xmos_ai_tools/runtime/include/flatbuffers/table.h +168 -0
  33. xmos_ai_tools/runtime/include/flatbuffers/util.h +690 -0
  34. xmos_ai_tools/runtime/include/flatbuffers/vector.h +370 -0
  35. xmos_ai_tools/runtime/include/flatbuffers/vector_downward.h +271 -0
  36. xmos_ai_tools/runtime/include/flatbuffers/verifier.h +283 -0
  37. xmos_ai_tools/runtime/include/ioserver.h +44 -0
  38. xmos_ai_tools/runtime/include/lib_nn/api/TransposeConv.h +24 -0
  39. xmos_ai_tools/runtime/include/lib_nn/api/add_int16.h +27 -0
  40. xmos_ai_tools/runtime/include/lib_nn/api/add_int16_transform.h +42 -0
  41. xmos_ai_tools/runtime/include/lib_nn/api/dequantize_int16.h +22 -0
  42. xmos_ai_tools/runtime/include/lib_nn/api/dequantize_int16_transform.h +34 -0
  43. xmos_ai_tools/runtime/include/lib_nn/api/expand_8_to_16.h +8 -0
  44. xmos_ai_tools/runtime/include/lib_nn/api/multiply_int16.h +42 -0
  45. xmos_ai_tools/runtime/include/lib_nn/api/multiply_int16_transform.h +71 -0
  46. xmos_ai_tools/runtime/include/lib_nn/api/nn_api.h +15 -0
  47. xmos_ai_tools/runtime/include/lib_nn/api/nn_bin_types.h +14 -0
  48. xmos_ai_tools/runtime/include/lib_nn/api/nn_config.h +287 -0
  49. xmos_ai_tools/runtime/include/lib_nn/api/nn_conv2d_structs.h +72 -0
  50. xmos_ai_tools/runtime/include/lib_nn/api/nn_image.h +26 -0
  51. xmos_ai_tools/runtime/include/lib_nn/api/nn_layers.h +303 -0
  52. xmos_ai_tools/runtime/include/lib_nn/api/nn_op_helper.h +132 -0
  53. xmos_ai_tools/runtime/include/lib_nn/api/nn_op_utils.h +150 -0
  54. xmos_ai_tools/runtime/include/lib_nn/api/nn_operator.h +18 -0
  55. xmos_ai_tools/runtime/include/lib_nn/api/nn_pooling.h +551 -0
  56. xmos_ai_tools/runtime/include/lib_nn/api/nn_types.h +83 -0
  57. xmos_ai_tools/runtime/include/lib_nn/api/nn_window_params.h +55 -0
  58. xmos_ai_tools/runtime/include/lib_nn/api/output_transform_fn_int16.h +54 -0
  59. xmos_ai_tools/runtime/include/lib_nn/api/output_transform_fn_int16_kernel_transform.h +37 -0
  60. xmos_ai_tools/runtime/include/lib_nn/api/output_transform_fn_int16_mappings.h +13 -0
  61. xmos_ai_tools/runtime/include/lib_nn/api/quadratic_approximation.h +82 -0
  62. xmos_ai_tools/runtime/include/lib_nn/api/quadratic_interpolation.h +23 -0
  63. xmos_ai_tools/runtime/include/lib_nn/api/quantize_int16.h +22 -0
  64. xmos_ai_tools/runtime/include/lib_nn/api/quantize_int16_transform.h +33 -0
  65. xmos_ai_tools/runtime/include/lib_nn/api/version.h +13 -0
  66. xmos_ai_tools/runtime/include/lib_nn/api/vpu_memmove_word_aligned.h +15 -0
  67. xmos_ai_tools/runtime/include/lib_nn/api/vpu_memset_256.h +55 -0
  68. xmos_ai_tools/runtime/include/lib_nn/api/vpu_sim.h +118 -0
  69. xmos_ai_tools/runtime/include/lib_nn/api/xs3_vpu.h +216 -0
  70. xmos_ai_tools/runtime/include/lib_nn/api/xs3a_registers.h +2869 -0
  71. xmos_ai_tools/runtime/include/lib_nn/src/asm/asm_constants.h +41 -0
  72. xmos_ai_tools/runtime/include/lib_nn/src/asm/window_op_plan.h +25 -0
  73. xmos_ai_tools/runtime/include/lib_tflite_micro/api/fast_flash.h +47 -0
  74. xmos_ai_tools/runtime/include/lib_tflite_micro/api/inference_engine.h +218 -0
  75. xmos_ai_tools/runtime/include/lib_tflite_micro/api/memory_parallel_transport.h +52 -0
  76. xmos_ai_tools/runtime/include/lib_tflite_micro/api/version.h +13 -0
  77. xmos_ai_tools/runtime/include/lib_tflite_micro/api/xcore_config.h +17 -0
  78. xmos_ai_tools/runtime/include/lib_tflite_micro/api/xcore_device_memory.h +62 -0
  79. xmos_ai_tools/runtime/include/lib_tflite_micro/api/xcore_shared_config.h +31 -0
  80. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/conv2d_float.h +155 -0
  81. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_common.h +19 -0
  82. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_custom_options.h +28 -0
  83. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_error_reporter.h +32 -0
  84. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_interpreter.h +49 -0
  85. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_ops.h +71 -0
  86. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_profiler.h +49 -0
  87. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_utils.h +160 -0
  88. xmos_ai_tools/runtime/include/lib_tflite_micro/src/thread_call.h +119 -0
  89. xmos_ai_tools/runtime/include/lib_xud/lib_xud/api/legacy/usb_defs.h +4 -0
  90. xmos_ai_tools/runtime/include/lib_xud/lib_xud/api/legacy/usb_device.h +4 -0
  91. xmos_ai_tools/runtime/include/lib_xud/lib_xud/api/legacy/usb_std_descriptors.h +4 -0
  92. xmos_ai_tools/runtime/include/lib_xud/lib_xud/api/legacy/usb_std_requests.h +4 -0
  93. xmos_ai_tools/runtime/include/lib_xud/lib_xud/api/xud.h +518 -0
  94. xmos_ai_tools/runtime/include/lib_xud/lib_xud/api/xud_conf_default.h +11 -0
  95. xmos_ai_tools/runtime/include/lib_xud/lib_xud/api/xud_device.h +87 -0
  96. xmos_ai_tools/runtime/include/lib_xud/lib_xud/api/xud_std_descriptors.h +191 -0
  97. xmos_ai_tools/runtime/include/lib_xud/lib_xud/api/xud_std_requests.h +120 -0
  98. xmos_ai_tools/runtime/include/lib_xud/lib_xud/src/user/XUD_USB_Defines.h +70 -0
  99. xmos_ai_tools/runtime/include/lib_xud/lib_xud/src/user/class/hid.h +23 -0
  100. xmos_ai_tools/runtime/include/lib_xud/lib_xud/src/user/class/usbaudio10.h +30 -0
  101. xmos_ai_tools/runtime/include/lib_xud/lib_xud/src/user/class/usbaudio20.h +357 -0
  102. xmos_ai_tools/runtime/include/lib_xud/lib_xud/src/user/class/usbaudiocommon.h +168 -0
  103. xmos_ai_tools/runtime/include/signal/micro/kernels/delay_flexbuffers_generated_data.h +25 -0
  104. xmos_ai_tools/runtime/include/signal/micro/kernels/energy_flexbuffers_generated_data.h +28 -0
  105. xmos_ai_tools/runtime/include/signal/micro/kernels/fft_flexbuffers_generated_data.h +37 -0
  106. xmos_ai_tools/runtime/include/signal/micro/kernels/filter_bank_flexbuffers_generated_data.h +25 -0
  107. xmos_ai_tools/runtime/include/signal/micro/kernels/filter_bank_log_flexbuffers_generated_data.h +27 -0
  108. xmos_ai_tools/runtime/include/signal/micro/kernels/filter_bank_spectral_subtraction_flexbuffers_generated_data.h +26 -0
  109. xmos_ai_tools/runtime/include/signal/micro/kernels/framer_flexbuffers_generated_data.h +25 -0
  110. xmos_ai_tools/runtime/include/signal/micro/kernels/irfft.h +31 -0
  111. xmos_ai_tools/runtime/include/signal/micro/kernels/overlap_add_flexbuffers_generated_data.h +25 -0
  112. xmos_ai_tools/runtime/include/signal/micro/kernels/pcan_flexbuffers_generated_data.h +7 -0
  113. xmos_ai_tools/runtime/include/signal/micro/kernels/rfft.h +31 -0
  114. xmos_ai_tools/runtime/include/signal/micro/kernels/stacker_flexbuffers_generated_data.h +25 -0
  115. xmos_ai_tools/runtime/include/signal/micro/kernels/window_flexbuffers_generated_data.h +25 -0
  116. xmos_ai_tools/runtime/include/signal/src/circular_buffer.h +118 -0
  117. xmos_ai_tools/runtime/include/signal/src/complex.h +29 -0
  118. xmos_ai_tools/runtime/include/signal/src/energy.h +38 -0
  119. xmos_ai_tools/runtime/include/signal/src/fft_auto_scale.h +35 -0
  120. xmos_ai_tools/runtime/include/signal/src/filter_bank.h +69 -0
  121. xmos_ai_tools/runtime/include/signal/src/filter_bank_log.h +38 -0
  122. xmos_ai_tools/runtime/include/signal/src/filter_bank_spectral_subtraction.h +73 -0
  123. xmos_ai_tools/runtime/include/signal/src/filter_bank_square_root.h +34 -0
  124. xmos_ai_tools/runtime/include/signal/src/irfft.h +84 -0
  125. xmos_ai_tools/runtime/include/signal/src/kiss_fft_wrappers/kiss_fft_common.h +49 -0
  126. xmos_ai_tools/runtime/include/signal/src/kiss_fft_wrappers/kiss_fft_float.h +31 -0
  127. xmos_ai_tools/runtime/include/signal/src/kiss_fft_wrappers/kiss_fft_int16.h +30 -0
  128. xmos_ai_tools/runtime/include/signal/src/kiss_fft_wrappers/kiss_fft_int32.h +31 -0
  129. xmos_ai_tools/runtime/include/signal/src/log.h +30 -0
  130. xmos_ai_tools/runtime/include/signal/src/max_abs.h +31 -0
  131. xmos_ai_tools/runtime/include/signal/src/msb.h +32 -0
  132. xmos_ai_tools/runtime/include/signal/src/overlap_add.h +46 -0
  133. xmos_ai_tools/runtime/include/signal/src/pcan_argc_fixed.h +41 -0
  134. xmos_ai_tools/runtime/include/signal/src/rfft.h +85 -0
  135. xmos_ai_tools/runtime/include/signal/src/square_root.h +32 -0
  136. xmos_ai_tools/runtime/include/signal/src/window.h +31 -0
  137. xmos_ai_tools/runtime/include/signal/testdata/fft_test_data.h +48 -0
  138. xmos_ai_tools/runtime/include/tensorflow/lite/array.h +156 -0
  139. xmos_ai_tools/runtime/include/tensorflow/lite/builtin_op_data.h +22 -0
  140. xmos_ai_tools/runtime/include/tensorflow/lite/builtin_ops.h +241 -0
  141. xmos_ai_tools/runtime/include/tensorflow/lite/c/builtin_op_data.h +20 -0
  142. xmos_ai_tools/runtime/include/tensorflow/lite/c/c_api_types.h +26 -0
  143. xmos_ai_tools/runtime/include/tensorflow/lite/c/common.h +30 -0
  144. xmos_ai_tools/runtime/include/tensorflow/lite/context_util.h +54 -0
  145. xmos_ai_tools/runtime/include/tensorflow/lite/core/api/error_reporter.h +72 -0
  146. xmos_ai_tools/runtime/include/tensorflow/lite/core/api/flatbuffer_conversions.h +440 -0
  147. xmos_ai_tools/runtime/include/tensorflow/lite/core/api/tensor_utils.h +28 -0
  148. xmos_ai_tools/runtime/include/tensorflow/lite/core/c/builtin_op_data.h +626 -0
  149. xmos_ai_tools/runtime/include/tensorflow/lite/core/c/c_api_types.h +178 -0
  150. xmos_ai_tools/runtime/include/tensorflow/lite/core/c/common.h +1496 -0
  151. xmos_ai_tools/runtime/include/tensorflow/lite/core/macros.h +78 -0
  152. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/bits.h +102 -0
  153. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/fft.h +50 -0
  154. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/fft_io.h +34 -0
  155. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/fft_util.h +34 -0
  156. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/filterbank.h +63 -0
  157. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/filterbank_io.h +35 -0
  158. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/filterbank_util.h +50 -0
  159. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/frontend.h +64 -0
  160. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/frontend_io.h +31 -0
  161. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/frontend_util.h +52 -0
  162. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/kiss_fft_common.h +48 -0
  163. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/kiss_fft_int16.h +33 -0
  164. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/log_lut.h +40 -0
  165. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/log_scale.h +39 -0
  166. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/log_scale_io.h +33 -0
  167. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/log_scale_util.h +45 -0
  168. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/noise_reduction.h +46 -0
  169. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/noise_reduction_io.h +36 -0
  170. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/noise_reduction_util.h +50 -0
  171. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/pcan_gain_control.h +47 -0
  172. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/pcan_gain_control_util.h +57 -0
  173. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/window.h +49 -0
  174. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/window_io.h +34 -0
  175. xmos_ai_tools/runtime/include/tensorflow/lite/experimental/microfrontend/lib/window_util.h +45 -0
  176. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/common.h +1358 -0
  177. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/compatibility.h +122 -0
  178. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/cppmath.h +40 -0
  179. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/max.h +35 -0
  180. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/min.h +35 -0
  181. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/optimized/neon_check.h +20 -0
  182. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/portable_tensor.h +141 -0
  183. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/portable_tensor_utils.h +623 -0
  184. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/quantization_util.h +292 -0
  185. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/add.h +561 -0
  186. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/add_n.h +86 -0
  187. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/arg_min_max.h +88 -0
  188. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/batch_matmul.h +275 -0
  189. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/batch_to_space_nd.h +101 -0
  190. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/binary_function.h +91 -0
  191. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/broadcast_args.h +56 -0
  192. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/broadcast_to.h +97 -0
  193. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/ceil.h +37 -0
  194. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/comparisons.h +271 -0
  195. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/concatenation.h +141 -0
  196. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/conv.h +289 -0
  197. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/cumsum.h +175 -0
  198. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/depth_to_space.h +79 -0
  199. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h +100 -0
  200. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h +319 -0
  201. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/dequantize.h +78 -0
  202. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/div.h +247 -0
  203. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/elu.h +37 -0
  204. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/exp.h +38 -0
  205. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/fill.h +38 -0
  206. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/floor.h +39 -0
  207. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/floor_div.h +35 -0
  208. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/floor_mod.h +44 -0
  209. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/fully_connected.h +323 -0
  210. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/hard_swish.h +168 -0
  211. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/add.h +250 -0
  212. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/conv.h +241 -0
  213. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h +291 -0
  214. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h +126 -0
  215. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h +67 -0
  216. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h +121 -0
  217. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/mean.h +18 -0
  218. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/mul.h +194 -0
  219. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h +264 -0
  220. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h +117 -0
  221. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/transpose_conv.h +224 -0
  222. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/l2normalization.h +90 -0
  223. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/leaky_relu.h +69 -0
  224. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/log_softmax.h +256 -0
  225. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/logistic.h +132 -0
  226. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/lstm_cell.h +422 -0
  227. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/maximum_minimum.h +64 -0
  228. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/mul.h +267 -0
  229. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/neg.h +37 -0
  230. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/pad.h +169 -0
  231. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/pooling.h +303 -0
  232. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/portable_tensor_utils.h +333 -0
  233. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/portable_tensor_utils_impl.h +244 -0
  234. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/prelu.h +111 -0
  235. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h +140 -0
  236. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/quantize.h +89 -0
  237. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/reduce.h +491 -0
  238. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/requantize.h +70 -0
  239. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/resize_bilinear.h +233 -0
  240. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/resize_nearest_neighbor.h +102 -0
  241. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/round.h +51 -0
  242. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/select.h +151 -0
  243. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/slice.h +80 -0
  244. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/softmax.h +233 -0
  245. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/space_to_batch_nd.h +109 -0
  246. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/space_to_depth.h +80 -0
  247. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/strided_slice.h +147 -0
  248. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/sub.h +465 -0
  249. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/tanh.h +129 -0
  250. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/transpose.h +203 -0
  251. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/transpose_conv.h +225 -0
  252. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/runtime_shape.h +168 -0
  253. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/strided_slice_logic.h +278 -0
  254. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/tensor_ctypes.h +42 -0
  255. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/types.h +1096 -0
  256. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/kernel_util.h +341 -0
  257. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/op_macros.h +49 -0
  258. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/padding.h +115 -0
  259. xmos_ai_tools/runtime/include/tensorflow/lite/micro/arena_allocator/ibuffer_allocator.h +100 -0
  260. xmos_ai_tools/runtime/include/tensorflow/lite/micro/arena_allocator/non_persistent_arena_buffer_allocator.h +104 -0
  261. xmos_ai_tools/runtime/include/tensorflow/lite/micro/arena_allocator/persistent_arena_buffer_allocator.h +58 -0
  262. xmos_ai_tools/runtime/include/tensorflow/lite/micro/arena_allocator/recording_single_arena_buffer_allocator.h +63 -0
  263. xmos_ai_tools/runtime/include/tensorflow/lite/micro/arena_allocator/single_arena_buffer_allocator.h +144 -0
  264. xmos_ai_tools/runtime/include/tensorflow/lite/micro/benchmarks/micro_benchmark.h +95 -0
  265. xmos_ai_tools/runtime/include/tensorflow/lite/micro/compatibility.h +32 -0
  266. xmos_ai_tools/runtime/include/tensorflow/lite/micro/cortex_m_generic/debug_log_callback.h +49 -0
  267. xmos_ai_tools/runtime/include/tensorflow/lite/micro/debug_log.h +38 -0
  268. xmos_ai_tools/runtime/include/tensorflow/lite/micro/examples/micro_speech/micro_model_settings.h +37 -0
  269. xmos_ai_tools/runtime/include/tensorflow/lite/micro/examples/network_tester/expected_output_data.h +47 -0
  270. xmos_ai_tools/runtime/include/tensorflow/lite/micro/examples/network_tester/input_data.h +108 -0
  271. xmos_ai_tools/runtime/include/tensorflow/lite/micro/examples/network_tester/network_model.h +166 -0
  272. xmos_ai_tools/runtime/include/tensorflow/lite/micro/examples/person_detection/detection_responder.h +32 -0
  273. xmos_ai_tools/runtime/include/tensorflow/lite/micro/examples/person_detection/image_provider.h +38 -0
  274. xmos_ai_tools/runtime/include/tensorflow/lite/micro/examples/person_detection/main_functions.h +37 -0
  275. xmos_ai_tools/runtime/include/tensorflow/lite/micro/examples/person_detection/model_settings.h +35 -0
  276. xmos_ai_tools/runtime/include/tensorflow/lite/micro/fake_micro_context.h +70 -0
  277. xmos_ai_tools/runtime/include/tensorflow/lite/micro/flatbuffer_utils.h +65 -0
  278. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/activation_utils.h +57 -0
  279. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/activations.h +64 -0
  280. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/add.h +78 -0
  281. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/mli_function_specializations.h +141 -0
  282. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/mli_interface.h +75 -0
  283. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/mli_slicers.h +56 -0
  284. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/mli_tf_utils.h +310 -0
  285. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/scratch_buf_mgr.h +145 -0
  286. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/scratch_buffers.h +78 -0
  287. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/ceva/ceva_common.h +24 -0
  288. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/ceva/ceva_tflm_lib.h +613 -0
  289. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/ceva/mcps_macros.h +115 -0
  290. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/ceva/types.h +1286 -0
  291. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/circular_buffer.h +45 -0
  292. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/circular_buffer_flexbuffers_generated_data.h +22 -0
  293. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/conv.h +117 -0
  294. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/conv_test.h +94 -0
  295. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/depthwise_conv.h +80 -0
  296. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/dequantize.h +38 -0
  297. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/detection_postprocess_flexbuffers_generated_data.h +25 -0
  298. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/ethosu.h +28 -0
  299. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/fully_connected.h +112 -0
  300. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/hard_swish.h +30 -0
  301. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/kernel_runner.h +86 -0
  302. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/kernel_util.h +150 -0
  303. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/leaky_relu.h +43 -0
  304. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/logical.h +35 -0
  305. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/logistic.h +42 -0
  306. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/lstm_eval.h +541 -0
  307. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/lstm_eval_test.h +817 -0
  308. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/lstm_shared.h +150 -0
  309. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/micro_ops.h +158 -0
  310. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/micro_tensor_utils.h +56 -0
  311. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/mul.h +74 -0
  312. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/pad.h +27 -0
  313. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/pooling.h +142 -0
  314. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/prelu.h +39 -0
  315. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/quantize.h +37 -0
  316. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/reduce.h +65 -0
  317. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/reshape.h +26 -0
  318. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/softmax.h +67 -0
  319. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/strided_slice.h +40 -0
  320. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/sub.h +60 -0
  321. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/svdf.h +100 -0
  322. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/testdata/conv_test_data.h +37 -0
  323. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/testdata/lstm_test_data.h +579 -0
  324. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/unidirectional_sequence_lstm.h +47 -0
  325. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/hifimini/fixedpoint_utils.h +139 -0
  326. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/lstm_eval.h +216 -0
  327. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/lstm_shared.h +78 -0
  328. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa.h +38 -0
  329. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_add.h +48 -0
  330. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_conv.h +89 -0
  331. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_depthwise_conv.h +74 -0
  332. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_fully_connected.h +78 -0
  333. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_pad.h +49 -0
  334. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_pooling.h +76 -0
  335. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_reduce.h +47 -0
  336. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_reshape.h +44 -0
  337. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_softmax.h +58 -0
  338. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_svdf.h +39 -0
  339. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_helpers.h +64 -0
  340. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_planner/greedy_memory_planner.h +170 -0
  341. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_planner/linear_memory_planner.h +53 -0
  342. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_planner/memory_plan_struct.h +73 -0
  343. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_planner/micro_memory_planner.h +95 -0
  344. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_planner/non_persistent_buffer_planner_shim.h +133 -0
  345. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_allocation_info.h +138 -0
  346. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_allocator.h +351 -0
  347. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_arena_constants.h +28 -0
  348. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_common.h +38 -0
  349. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_context.h +176 -0
  350. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_graph.h +79 -0
  351. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_interpreter.h +189 -0
  352. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_interpreter_context.h +125 -0
  353. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_interpreter_graph.h +110 -0
  354. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_log.h +42 -0
  355. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_mutable_op_resolver.h +708 -0
  356. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_op_resolver.h +62 -0
  357. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_profiler.h +140 -0
  358. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_profiler_interface.h +38 -0
  359. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_resource_variable.h +89 -0
  360. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_time.h +36 -0
  361. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_utils.h +162 -0
  362. xmos_ai_tools/runtime/include/tensorflow/lite/micro/mock_micro_graph.h +60 -0
  363. xmos_ai_tools/runtime/include/tensorflow/lite/micro/python/interpreter/src/python_ops_resolver.h +21 -0
  364. xmos_ai_tools/runtime/include/tensorflow/lite/micro/python/tflite_size/src/flatbuffer_size.h +30 -0
  365. xmos_ai_tools/runtime/include/tensorflow/lite/micro/python/tflite_size/src/flatbuffer_size_wrapper.h +33 -0
  366. xmos_ai_tools/runtime/include/tensorflow/lite/micro/recording_micro_allocator.h +125 -0
  367. xmos_ai_tools/runtime/include/tensorflow/lite/micro/recording_micro_interpreter.h +69 -0
  368. xmos_ai_tools/runtime/include/tensorflow/lite/micro/system_setup.h +27 -0
  369. xmos_ai_tools/runtime/include/tensorflow/lite/micro/test_helper_custom_ops.h +49 -0
  370. xmos_ai_tools/runtime/include/tensorflow/lite/micro/test_helpers.h +334 -0
  371. xmos_ai_tools/runtime/include/tensorflow/lite/micro/testing/micro_test.h +267 -0
  372. xmos_ai_tools/runtime/include/tensorflow/lite/micro/testing/test_conv_model.h +23 -0
  373. xmos_ai_tools/runtime/include/tensorflow/lite/micro/tflite_bridge/flatbuffer_conversions_bridge.h +45 -0
  374. xmos_ai_tools/runtime/include/tensorflow/lite/micro/tflite_bridge/micro_error_reporter.h +36 -0
  375. xmos_ai_tools/runtime/include/tensorflow/lite/micro/tools/benchmarking/log_utils.h +273 -0
  376. xmos_ai_tools/runtime/include/tensorflow/lite/micro/tools/benchmarking/metrics.h +41 -0
  377. xmos_ai_tools/runtime/include/tensorflow/lite/micro/tools/benchmarking/op_resolver.h +127 -0
  378. xmos_ai_tools/runtime/include/tensorflow/lite/portable_type_to_tflitetype.h +75 -0
  379. xmos_ai_tools/runtime/include/tensorflow/lite/schema/schema_generated.h +24644 -0
  380. xmos_ai_tools/runtime/include/tensorflow/lite/schema/schema_utils.h +33 -0
  381. xmos_ai_tools/runtime/include/tile_ram_server.h +38 -0
  382. xmos_ai_tools/runtime/lib/libhost_xtflitemicro.a +0 -0
  383. xmos_ai_tools/runtime/lib/libxtflitemicro.a +0 -0
  384. xmos_ai_tools/xformer/__init__.py +60 -0
  385. xmos_ai_tools/xformer/flash.py +190 -0
  386. xmos_ai_tools/xinterpreters/__init__.py +1 -0
  387. xmos_ai_tools/xinterpreters/exceptions.py +38 -0
  388. xmos_ai_tools/xinterpreters/host_interpreter.py +652 -0
  389. xmos_ai_tools/xinterpreters/libs/macos/xtflm_python.1.0.1.dylib +0 -0
  390. xmos_ai_tools/xinterpreters/libs/macos/xtflm_python.dylib +0 -0
  391. xmos_ai_tools-1.3.2.dev80.data/data/bin/xcore-opt +0 -0
  392. xmos_ai_tools-1.3.2.dev80.dist-info/METADATA +33 -0
  393. xmos_ai_tools-1.3.2.dev80.dist-info/RECORD +395 -0
  394. xmos_ai_tools-1.3.2.dev80.dist-info/WHEEL +5 -0
  395. xmos_ai_tools-1.3.2.dev80.dist-info/top_level.txt +1 -0
@@ -0,0 +1,465 @@
1
+ /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License");
4
+ you may not use this file except in compliance with the License.
5
+ You may obtain a copy of the License at
6
+
7
+ http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ Unless required by applicable law or agreed to in writing, software
10
+ distributed under the License is distributed on an "AS IS" BASIS,
11
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ See the License for the specific language governing permissions and
13
+ limitations under the License.
14
+ ==============================================================================*/
15
+ #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
16
+ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
17
+
18
+ #include <stdint.h>
19
+
20
+ #include <algorithm>
21
+ #include <cstddef>
22
+ #include <limits>
23
+
24
+ #include "ruy/profiler/instrumentation.h" // from @ruy
25
+ #include "tensorflow/lite/kernels/internal/common.h"
26
+ #include "tensorflow/lite/kernels/internal/compatibility.h"
27
+ #include "tensorflow/lite/kernels/internal/types.h"
28
+
29
+ namespace tflite_micro {
30
+
31
+ namespace reference_ops {
32
+
33
+ template <class T>
34
+ struct SubImpl {
35
+ template <class F>
36
+ static void BroadcastInput1(const ArithmeticParams& params,
37
+ const T* input1_data, const T* input2_data,
38
+ T* output_data, size_t size, F binary_func) {
39
+ for (size_t c = 0; c < size; ++c) {
40
+ output_data[c] = binary_func(input1_data[0], input2_data[c], params);
41
+ }
42
+ }
43
+
44
+ template <class F>
45
+ static void BroadcastInput2(const ArithmeticParams& params,
46
+ const T* input1_data, const T* input2_data,
47
+ T* output_data, size_t size, F binary_func) {
48
+ for (size_t c = 0; c < size; ++c) {
49
+ output_data[c] = binary_func(input1_data[c], input2_data[0], params);
50
+ }
51
+ }
52
+
53
+ template <class F>
54
+ static void ElementWise(const ArithmeticParams& params, const T* input1_data,
55
+ const T* input2_data, T* output_data, size_t size,
56
+ F binary_func) {
57
+ for (size_t c = 0; c < size; ++c) {
58
+ output_data[c] = binary_func(input1_data[c], input2_data[c], params);
59
+ }
60
+ }
61
+ };
62
+
63
+ template <>
64
+ struct SubImpl<int32_t> {
65
+ template <class F>
66
+ static void BroadcastInput1(const ArithmeticParams& params,
67
+ const int32_t* input1_data,
68
+ const int32_t* input2_data, int32_t* output_data,
69
+ size_t size, F binary_func) {
70
+ size_t c = 0;
71
+ int32_t activation_min, activation_max;
72
+ GetActivationParams(params, &activation_min, &activation_max);
73
+ #ifdef USE_NEON
74
+ const int32x4_t vmax = vdupq_n_s32(activation_max);
75
+ const int32x4_t vmin = vdupq_n_s32(activation_min);
76
+ const int32x4_t va = vdupq_n_s32(input1_data[0]);
77
+ for (; c + 4 <= size; c += 4) {
78
+ const int32x4_t vb = vld1q_s32(&input2_data[c]);
79
+ int32x4_t vres = vsubq_s32(va, vb);
80
+ vres = vmaxq_s32(vmin, vres);
81
+ vres = vminq_s32(vmax, vres);
82
+ vst1q_s32(&output_data[c], vres);
83
+ }
84
+ #endif
85
+ for (; c < size; ++c) {
86
+ output_data[c] = binary_func(input1_data[0], input2_data[c], params);
87
+ }
88
+ }
89
+
90
+ template <class F>
91
+ static void BroadcastInput2(const ArithmeticParams& params,
92
+ const int32_t* input1_data,
93
+ const int32_t* input2_data, int32_t* output_data,
94
+ size_t size, F binary_func) {
95
+ size_t c = 0;
96
+ int32_t activation_min, activation_max;
97
+ GetActivationParams(params, &activation_min, &activation_max);
98
+ #ifdef USE_NEON
99
+ const int32x4_t vmax = vdupq_n_s32(activation_max);
100
+ const int32x4_t vmin = vdupq_n_s32(activation_min);
101
+ const int32x4_t vb = vdupq_n_s32(input2_data[0]);
102
+ for (; c + 4 <= size; c += 4) {
103
+ const int32x4_t va = vld1q_s32(&input1_data[c]);
104
+ int32x4_t vres = vsubq_s32(va, vb);
105
+ vres = vmaxq_s32(vmin, vres);
106
+ vres = vminq_s32(vmax, vres);
107
+ vst1q_s32(&output_data[c], vres);
108
+ }
109
+ #endif
110
+ for (; c < size; ++c) {
111
+ output_data[c] = binary_func(input1_data[c], input2_data[0], params);
112
+ }
113
+ }
114
+
115
+ template <class F>
116
+ static void ElementWise(const ArithmeticParams& params,
117
+ const int32_t* input1_data,
118
+ const int32_t* input2_data, int32_t* output_data,
119
+ size_t size, F binary_func) {
120
+ size_t c = 0;
121
+ int32_t activation_min, activation_max;
122
+ GetActivationParams(params, &activation_min, &activation_max);
123
+ #ifdef USE_NEON
124
+ int32x4_t vmax = vdupq_n_s32(activation_max);
125
+ int32x4_t vmin = vdupq_n_s32(activation_min);
126
+ for (; c + 4 <= size; c += 4) {
127
+ const int32x4_t va = vld1q_s32(&input1_data[c]);
128
+ const int32x4_t vb = vld1q_s32(&input2_data[c]);
129
+ int32x4_t vres = vsubq_s32(va, vb);
130
+ vres = vmaxq_s32(vmin, vres);
131
+ vres = vminq_s32(vmax, vres);
132
+ vst1q_s32(&output_data[c], vres);
133
+ }
134
+ #endif
135
+ for (; c < size; ++c) {
136
+ output_data[c] = binary_func(input1_data[c], input2_data[c], params);
137
+ }
138
+ }
139
+ };
140
+
141
+ template <typename T, typename F>
142
+ inline void BroadcastSubRecursiveDimensions(
143
+ int dimension, const ArithmeticParams& params, const T* input1_data,
144
+ const T* input2_data, T* output_data, size_t* input1_offset_p,
145
+ size_t* input2_offset_p, size_t* output_offset,
146
+ size_t* compressed_input1_stride, size_t* compressed_input2_stride,
147
+ size_t* compressed_output_shape, F binary_func) {
148
+ if (dimension > 0) {
149
+ for (size_t c = 0; c < compressed_output_shape[dimension]; ++c) {
150
+ size_t input1_offset_c = *input1_offset_p;
151
+ size_t input2_offset_c = *input2_offset_p;
152
+ BroadcastSubRecursiveDimensions(
153
+ dimension - 1, params, input1_data, input2_data, output_data,
154
+ &input1_offset_c, &input2_offset_c, output_offset,
155
+ compressed_input1_stride, compressed_input2_stride,
156
+ compressed_output_shape, binary_func);
157
+ *input1_offset_p += compressed_input1_stride[dimension];
158
+ *input2_offset_p += compressed_input2_stride[dimension];
159
+ }
160
+ } else {
161
+ TFLITE_DCHECK(dimension == 0);
162
+ bool input1_is_broadcast = compressed_input1_stride[dimension] == 0;
163
+ bool input2_is_broadcast = compressed_input2_stride[dimension] == 0;
164
+ TFLITE_DCHECK(!(input1_is_broadcast && input2_is_broadcast));
165
+ const T* input1_data_ptr = input1_data + *input1_offset_p;
166
+ const T* input2_data_ptr = input2_data + *input2_offset_p;
167
+ T* output_data_ptr = output_data + *output_offset;
168
+ if (input1_is_broadcast) {
169
+ // input1 is broadcast.
170
+ SubImpl<T>::BroadcastInput1(
171
+ params, input1_data_ptr, input2_data_ptr, output_data_ptr,
172
+ compressed_output_shape[dimension], binary_func);
173
+ *input2_offset_p += compressed_output_shape[dimension];
174
+ } else if (input2_is_broadcast) {
175
+ // input2 is broadcast.
176
+ SubImpl<T>::BroadcastInput2(
177
+ params, input1_data_ptr, input2_data_ptr, output_data_ptr,
178
+ compressed_output_shape[dimension], binary_func);
179
+ *input1_offset_p += compressed_output_shape[dimension];
180
+ } else {
181
+ // Add element-wise.
182
+ SubImpl<T>::ElementWise(params, input1_data_ptr, input2_data_ptr,
183
+ output_data_ptr,
184
+ compressed_output_shape[dimension], binary_func);
185
+ *input1_offset_p += compressed_output_shape[dimension];
186
+ *input2_offset_p += compressed_output_shape[dimension];
187
+ }
188
+ *output_offset += compressed_output_shape[dimension];
189
+ }
190
+ }
191
+
192
+ // TODO: b/296510380 - we may be able to factor out this to common.h for all
193
+ // binary arithmetic ops (add, sub, mul).
194
+ template <typename T, typename F>
195
+ inline void BroadcastSubCommon(const ArithmeticParams& params,
196
+ const RuntimeShape& input1_shape,
197
+ const T* input1_data,
198
+ const RuntimeShape& input2_shape,
199
+ const T* input2_data,
200
+ const RuntimeShape& output_shape, T* output_data,
201
+ F binary_func) {
202
+ constexpr int kMaxBroadcastDim = 6;
203
+ TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), kMaxBroadcastDim);
204
+ TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), kMaxBroadcastDim);
205
+ TFLITE_DCHECK_LE(output_shape.DimensionsCount(), kMaxBroadcastDim);
206
+
207
+ // In Tensorflow, the dimensions are canonically named (batch_number, row,
208
+ // col, channel), with extents (batches, height, width, depth), with the
209
+ // trailing dimension changing most rapidly (channels has the smallest stride,
210
+ // typically 1 element).
211
+ //
212
+ // In generated C code, we store arrays with the dimensions reversed. The
213
+ // first dimension has smallest stride.
214
+ //
215
+ // We name our variables by their Tensorflow convention, but generate C code
216
+ // nesting loops such that the innermost loop has the smallest stride for the
217
+ // best cache behavior.
218
+
219
+ // In Tensorflow, the dimensions are canonically named (batch_number, row,
220
+ // col, channel), with extents (batches, height, width, depth), with the
221
+ // trailing dimension changing most rapidly (channels has the smallest stride,
222
+ // typically 1 element).
223
+ //
224
+ // In generated C code, we store arrays with the dimensions reversed. The
225
+ // first dimension has smallest stride.
226
+ //
227
+ // We name our variables by their Tensorflow convention, but generate C code
228
+ // nesting loops such that the innermost loop has the smallest stride for the
229
+ // best cache behavior.
230
+
231
+ size_t compressed_input1_stride[kMaxBroadcastDim];
232
+ size_t compressed_input2_stride[kMaxBroadcastDim];
233
+ size_t compressed_output_shape[kMaxBroadcastDim];
234
+ bool broadcastable_shape = ReduceDimensionsForBroadcast<kMaxBroadcastDim>(
235
+ input1_shape, input2_shape, compressed_input1_stride,
236
+ compressed_input2_stride, compressed_output_shape);
237
+ // Skip broadcasting for degenerate shapes.
238
+ if (!broadcastable_shape) {
239
+ return;
240
+ }
241
+
242
+ size_t input1_offset = 0;
243
+ size_t input2_offset = 0;
244
+ size_t output_offset = 0;
245
+ BroadcastSubRecursiveDimensions(
246
+ kMaxBroadcastDim - 1, params, input1_data, input2_data, output_data,
247
+ &input1_offset, &input2_offset, &output_offset, compressed_input1_stride,
248
+ compressed_input2_stride, compressed_output_shape, binary_func);
249
+ }
250
+
251
+ // TODO(b/151345304): We can implement BroadcastSub on buffers of arbitrary
252
+ // dimensionality if the runtime code does a single loop over one dimension
253
+ // that handles broadcasting as the base case. The code generator would then
254
+ // generate max(D1, D2) nested for loops.
255
+ template <typename T>
256
+ void BroadcastSubSlow(const ArithmeticParams& params,
257
+ const RuntimeShape& input1_shape, const T* input1_data,
258
+ const RuntimeShape& input2_shape, const T* input2_data,
259
+ const RuntimeShape& output_shape, T* output_data) {
260
+ ruy::profiler::ScopeLabel label("BroadcastSubSlow/T");
261
+ BroadcastSubCommon<T>(
262
+ params, input1_shape, input1_data, input2_shape, input2_data,
263
+ output_shape, output_data,
264
+ [](T input1_val, T input2_val, const ArithmeticParams& params) {
265
+ T activation_min, activation_max;
266
+ GetActivationParams(params, &activation_min, &activation_max);
267
+ return ActivationFunctionWithMinMax(input1_val - input2_val,
268
+ activation_min, activation_max);
269
+ });
270
+ }
271
+
272
+ inline void BroadcastSub16POTSlow(const ArithmeticParams& params,
273
+ const RuntimeShape& input1_shape,
274
+ const int16_t* input1_data,
275
+ const RuntimeShape& input2_shape,
276
+ const int16_t* input2_data,
277
+ const RuntimeShape& output_shape,
278
+ int16_t* output_data) {
279
+ ruy::profiler::ScopeLabel label("BroadcastSub16POTSlow/int16_t");
280
+ BroadcastSubCommon<int16_t>(
281
+ params, input1_shape, input1_data, input2_shape, input2_data,
282
+ output_shape, output_data,
283
+ [](int16_t input1_val, int16_t input2_val,
284
+ const ArithmeticParams& params) {
285
+ const int32_t scaled_input1_val =
286
+ gemmlowp::RoundingDivideByPOT(input1_val, -params.input1_shift);
287
+ const int32_t scaled_input2_val =
288
+ gemmlowp::RoundingDivideByPOT(input2_val, -params.input2_shift);
289
+ const int32_t raw_output = scaled_input1_val - scaled_input2_val;
290
+ const int32_t clamped_output =
291
+ std::min(params.quantized_activation_max,
292
+ std::max(params.quantized_activation_min, raw_output));
293
+ return static_cast<int16_t>(clamped_output);
294
+ });
295
+ }
296
+
297
+ template <typename T>
298
+ void BroadcastQuantSubSlow(const ArithmeticParams& params,
299
+ const RuntimeShape& input1_shape,
300
+ const T* input1_data,
301
+ const RuntimeShape& input2_shape,
302
+ const T* input2_data,
303
+ const RuntimeShape& output_shape, T* output_data) {
304
+ ruy::profiler::ScopeLabel label("BroadcastQuantSubSlow/T");
305
+ BroadcastSubCommon<T>(
306
+ params, input1_shape, input1_data, input2_shape, input2_data,
307
+ output_shape, output_data,
308
+ [](T input1_val, T input2_val, const ArithmeticParams& params) {
309
+ const int32_t shifted_input1_val =
310
+ (params.input1_offset + input1_val) * (1 << params.left_shift);
311
+ const int32_t shifted_input2_val =
312
+ (params.input2_offset + input2_val) * (1 << params.left_shift);
313
+ const int32_t scaled_input1_val =
314
+ MultiplyByQuantizedMultiplierSmallerThanOneExp(
315
+ shifted_input1_val, params.input1_multiplier,
316
+ params.input1_shift);
317
+ const int32_t scaled_input2_val =
318
+ MultiplyByQuantizedMultiplierSmallerThanOneExp(
319
+ shifted_input2_val, params.input2_multiplier,
320
+ params.input2_shift);
321
+ const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
322
+ const int32_t raw_output =
323
+ MultiplyByQuantizedMultiplierSmallerThanOneExp(
324
+ raw_sub, params.output_multiplier, params.output_shift) +
325
+ params.output_offset;
326
+ const int32_t clamped_output =
327
+ std::min(params.quantized_activation_max,
328
+ std::max(params.quantized_activation_min, raw_output));
329
+ return static_cast<T>(clamped_output);
330
+ });
331
+ }
332
+
333
+ // Element-wise add that can often be used for inner loop of broadcast add as
334
+ // well as the non-broadcast add.
335
+ template <typename T>
336
+ inline void SubElementwise(int size, const ArithmeticParams& params,
337
+ const T* input1_data, const T* input2_data,
338
+ T* output_data) {
339
+ for (int i = 0; i < size; ++i) {
340
+ const int32_t input1_val = params.input1_offset + input1_data[i];
341
+ const int32_t input2_val = params.input2_offset + input2_data[i];
342
+ const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
343
+ const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
344
+ const int32_t scaled_input1_val =
345
+ MultiplyByQuantizedMultiplierSmallerThanOneExp(
346
+ shifted_input1_val, params.input1_multiplier, params.input1_shift);
347
+ const int32_t scaled_input2_val =
348
+ MultiplyByQuantizedMultiplierSmallerThanOneExp(
349
+ shifted_input2_val, params.input2_multiplier, params.input2_shift);
350
+ const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
351
+ const int32_t raw_output =
352
+ MultiplyByQuantizedMultiplierSmallerThanOneExp(
353
+ raw_sub, params.output_multiplier, params.output_shift) +
354
+ params.output_offset;
355
+ const int32_t clamped_output =
356
+ std::min(params.quantized_activation_max,
357
+ std::max(params.quantized_activation_min, raw_output));
358
+ output_data[i] = static_cast<T>(clamped_output);
359
+ }
360
+ }
361
+
362
+ inline void Sub(const ArithmeticParams& params,
363
+ const RuntimeShape& input1_shape, const uint8_t* input1_data,
364
+ const RuntimeShape& input2_shape, const uint8_t* input2_data,
365
+ const RuntimeShape& output_shape, uint8_t* output_data) {
366
+ TFLITE_DCHECK_LE(params.quantized_activation_min,
367
+ params.quantized_activation_max);
368
+ const int flat_size =
369
+ MatchingElementsSize(input1_shape, input2_shape, output_shape);
370
+
371
+ TFLITE_DCHECK_GT(params.input1_offset, -256);
372
+ TFLITE_DCHECK_GT(params.input2_offset, -256);
373
+ TFLITE_DCHECK_LT(params.input1_offset, 256);
374
+ TFLITE_DCHECK_LT(params.input2_offset, 256);
375
+ SubElementwise(flat_size, params, input1_data, input2_data, output_data);
376
+ }
377
+
378
+ inline void Sub(const ArithmeticParams& params,
379
+ const RuntimeShape& input1_shape, const int8_t* input1_data,
380
+ const RuntimeShape& input2_shape, const int8_t* input2_data,
381
+ const RuntimeShape& output_shape, int8_t* output_data) {
382
+ TFLITE_DCHECK_LE(params.quantized_activation_min,
383
+ params.quantized_activation_max);
384
+
385
+ const int flat_size =
386
+ MatchingElementsSize(input1_shape, input2_shape, output_shape);
387
+
388
+ TFLITE_DCHECK_GE(params.input1_offset, -128);
389
+ TFLITE_DCHECK_GE(params.input2_offset, -128);
390
+ // offset = -quantization_params.zero_point in PrepareGeneralSubOp().
391
+ // So it's maximum can be 128 not 127.
392
+ TFLITE_DCHECK_LE(params.input1_offset, 128);
393
+ TFLITE_DCHECK_LE(params.input2_offset, 128);
394
+ SubElementwise(flat_size, params, input1_data, input2_data, output_data);
395
+ }
396
+
397
+ inline void Sub(const ArithmeticParams& params,
398
+ const RuntimeShape& input1_shape, const int16_t* input1_data,
399
+ const RuntimeShape& input2_shape, const int16_t* input2_data,
400
+ const RuntimeShape& output_shape, int16_t* output_data) {
401
+ TFLITE_DCHECK_LE(params.quantized_activation_min,
402
+ params.quantized_activation_max);
403
+
404
+ const int flat_size =
405
+ MatchingElementsSize(input1_shape, input2_shape, output_shape);
406
+
407
+ TFLITE_DCHECK_EQ(params.input1_offset, 0);
408
+ TFLITE_DCHECK_EQ(params.input2_offset, 0);
409
+ SubElementwise(flat_size, params, input1_data, input2_data, output_data);
410
+ }
411
+
412
+ template <typename T>
413
+ void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape,
414
+ const T* input1_data, const RuntimeShape& input2_shape,
415
+ const T* input2_data, const RuntimeShape& output_shape,
416
+ T* output_data) {
417
+ BroadcastSubCommon<T>(
418
+ params, input1_shape, input1_data, input2_shape, input2_data,
419
+ output_shape, output_data,
420
+ [](T input1_val, T input2_val, const ArithmeticParams& params) {
421
+ return input1_val - input2_val;
422
+ });
423
+ }
424
+
425
+ inline void SetActivationMinMax(const ArithmeticParams& params,
426
+ int32_t* activation_min,
427
+ int32_t* activation_max) {
428
+ *activation_min = params.quantized_activation_min;
429
+ *activation_max = params.quantized_activation_max;
430
+ }
431
+
432
+ inline void SetActivationMinMax(const ArithmeticParams& params,
433
+ float* activation_min, float* activation_max) {
434
+ *activation_min = params.float_activation_min;
435
+ *activation_max = params.float_activation_max;
436
+ }
437
+
438
+ inline void SetActivationMinMax(const ArithmeticParams& params,
439
+ int64_t* activation_min,
440
+ int64_t* activation_max) {
441
+ *activation_min = params.int64_activation_min;
442
+ *activation_max = params.int64_activation_max;
443
+ }
444
+
445
+ template <typename T>
446
+ inline void SubWithActivation(
447
+ const ArithmeticParams& params, const RuntimeShape& input1_shape,
448
+ const T* input1_data, const RuntimeShape& input2_shape,
449
+ const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
450
+ ruy::profiler::ScopeLabel label("SubWithActivation");
451
+ const int flat_size =
452
+ MatchingElementsSize(input1_shape, input2_shape, output_shape);
453
+ T activation_min, activation_max;
454
+ SetActivationMinMax(params, &activation_min, &activation_max);
455
+
456
+ for (int i = 0; i < flat_size; ++i) {
457
+ output_data[i] = ActivationFunctionWithMinMax(
458
+ input1_data[i] - input2_data[i], activation_min, activation_max);
459
+ }
460
+ }
461
+
462
+ } // namespace reference_ops
463
+ } // namespace tflite_micro
464
+
465
+ #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
@@ -0,0 +1,129 @@
1
+ /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License");
4
+ you may not use this file except in compliance with the License.
5
+ You may obtain a copy of the License at
6
+
7
+ http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ Unless required by applicable law or agreed to in writing, software
10
+ distributed under the License is distributed on an "AS IS" BASIS,
11
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ See the License for the specific language governing permissions and
13
+ limitations under the License.
14
+ ==============================================================================*/
15
+ #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
16
+ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
17
+
18
+ #include <cmath>
19
+
20
+ #include "fixedpoint/fixedpoint.h"
21
+ #include "tensorflow/lite/kernels/internal/common.h"
22
+ #include "tensorflow/lite/kernels/internal/cppmath.h"
23
+ #include "tensorflow/lite/kernels/internal/types.h"
24
+ #include "tensorflow/lite/kernels/op_macros.h"
25
+
26
+ namespace tflite_micro {
27
+ namespace reference_ops {
28
+
29
+ inline void Tanh(const RuntimeShape& input_shape, const float* input_data,
30
+ const RuntimeShape& output_shape, float* output_data) {
31
+ const int flat_size = MatchingFlatSize(input_shape, output_shape);
32
+
33
+ for (int i = 0; i < flat_size; i++) {
34
+ float val = input_data[i];
35
+ float result = std::tanh(val);
36
+ output_data[i] = result;
37
+ }
38
+ }
39
+
40
+ // Convenience version that allows, for example, generated-code calls to be
41
+ // uniform between data types.
42
+ inline void Tanh(const TanhParams&, const RuntimeShape& input_shape,
43
+ const float* input_data, const RuntimeShape& output_shape,
44
+ float* output_data) {
45
+ // Drop params: not needed.
46
+ Tanh(input_shape, input_data, output_shape, output_data);
47
+ }
48
+
49
+ inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape,
50
+ const int16_t* input_data, const RuntimeShape& output_shape,
51
+ int16_t* output_data) {
52
+ const int input_left_shift = params.input_left_shift;
53
+ // Support for shifts is limited until we have a parameterized version of
54
+ // SaturatingRoundingMultiplyByPOT().
55
+ TFLITE_DCHECK_GE(input_left_shift, 0);
56
+ TFLITE_DCHECK_LE(input_left_shift, 1);
57
+
58
+ const int flat_size = MatchingFlatSize(input_shape, output_shape);
59
+
60
+ // F0 uses 0 integer bits, range [-1, 1].
61
+ // This is the return type of math functions such as tanh, logistic,
62
+ // whose range is in [-1, 1].
63
+ using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
64
+ // F3 uses 3 integer bits, range [-8, 8], the input range expected here.
65
+ using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
66
+
67
+ if (input_left_shift == 0) {
68
+ for (int i = 0; i < flat_size; i++) {
69
+ F3 input = F3::FromRaw(input_data[i]);
70
+ F0 output = gemmlowp::tanh(input);
71
+ output_data[i] = output.raw();
72
+ }
73
+ } else {
74
+ for (int i = 0; i < flat_size; i++) {
75
+ F3 input = F3::FromRaw(
76
+ gemmlowp::SaturatingRoundingMultiplyByPOT<1>(input_data[i]));
77
+ F0 output = gemmlowp::tanh(input);
78
+ output_data[i] = output.raw();
79
+ }
80
+ }
81
+ }
82
+
83
+ inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape,
84
+ const uint8_t* input_data, const RuntimeShape& output_shape,
85
+ uint8_t* output_data) {
86
+ const int32_t input_zero_point = params.input_zero_point;
87
+ const int32_t input_range_radius = params.input_range_radius;
88
+ const int32_t input_multiplier = params.input_multiplier;
89
+ const int input_left_shift = params.input_left_shift;
90
+ const int32_t output_zero_point = 128;
91
+ const int flat_size = MatchingFlatSize(input_shape, output_shape);
92
+
93
+ for (int i = 0; i < flat_size; i++) {
94
+ const uint8_t input_val_u8 = input_data[i];
95
+ const int32_t input_val_centered =
96
+ static_cast<int32_t>(input_val_u8) - input_zero_point;
97
+ uint8_t output_val;
98
+ if (input_val_centered <= -input_range_radius) {
99
+ output_val = 0;
100
+ } else if (input_val_centered >= input_range_radius) {
101
+ output_val = 255;
102
+ } else {
103
+ const int32_t input_val_rescaled =
104
+ MultiplyByQuantizedMultiplierGreaterThanOne(
105
+ input_val_centered, input_multiplier, input_left_shift);
106
+ using FixedPoint4 = gemmlowp::FixedPoint<int32_t, 4>;
107
+ using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
108
+ const FixedPoint4 input_val_f4 = FixedPoint4::FromRaw(input_val_rescaled);
109
+ const FixedPoint0 output_val_f0 = gemmlowp::tanh(input_val_f4);
110
+ // Convert from Q0.31 to Q24.7.
111
+ using gemmlowp::RoundingDivideByPOT;
112
+ int32_t output_val_s32 = RoundingDivideByPOT(output_val_f0.raw(), 24);
113
+ output_val_s32 += output_zero_point;
114
+ if (output_val_s32 == 256) {
115
+ output_val_s32 = 255;
116
+ }
117
+ // Reinterpret as Q0.7, encoded in uint8_t.
118
+ TFLITE_DCHECK_GE(output_val_s32, 0);
119
+ TFLITE_DCHECK_LE(output_val_s32, 255);
120
+ output_val = static_cast<uint8_t>(output_val_s32);
121
+ }
122
+ output_data[i] = output_val;
123
+ }
124
+ }
125
+
126
+ } // namespace reference_ops
127
+ } // namespace tflite_micro
128
+
129
+ #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_