xinference 1.9.0__py3-none-any.whl → 1.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +415 -1
- xinference/constants.py +2 -0
- xinference/core/model.py +3 -4
- xinference/core/supervisor.py +29 -1
- xinference/core/worker.py +4 -1
- xinference/deploy/cmdline.py +2 -0
- xinference/deploy/test/test_cmdline.py +1 -1
- xinference/model/audio/core.py +5 -0
- xinference/model/audio/cosyvoice.py +0 -1
- xinference/model/audio/kokoro.py +1 -1
- xinference/model/audio/kokoro_zh.py +124 -0
- xinference/model/audio/model_spec.json +64 -20
- xinference/model/embedding/flag/core.py +5 -0
- xinference/model/embedding/llama_cpp/core.py +22 -19
- xinference/model/embedding/sentence_transformers/core.py +19 -4
- xinference/model/embedding/vllm/core.py +40 -8
- xinference/model/image/cache_manager.py +56 -0
- xinference/model/image/core.py +9 -0
- xinference/model/image/model_spec.json +116 -9
- xinference/model/image/stable_diffusion/core.py +141 -31
- xinference/model/llm/core.py +10 -0
- xinference/model/llm/llama_cpp/core.py +42 -40
- xinference/model/llm/llm_family.json +435 -23
- xinference/model/llm/llm_family.py +1 -0
- xinference/model/llm/mlx/core.py +52 -33
- xinference/model/llm/sglang/core.py +2 -44
- xinference/model/llm/tool_parsers/__init__.py +58 -0
- xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +128 -0
- xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
- xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
- xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
- xinference/model/llm/transformers/core.py +6 -12
- xinference/model/llm/utils.py +128 -46
- xinference/model/llm/vllm/core.py +8 -61
- xinference/model/rerank/core.py +3 -0
- xinference/model/rerank/sentence_transformers/core.py +1 -1
- xinference/model/rerank/vllm/core.py +56 -6
- xinference/model/utils.py +1 -2
- xinference/model/video/model_spec.json +95 -1
- xinference/thirdparty/cosyvoice/bin/export_jit.py +3 -4
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +49 -126
- xinference/thirdparty/cosyvoice/bin/{inference.py → inference_deprecated.py} +1 -0
- xinference/thirdparty/cosyvoice/bin/train.py +23 -3
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +8 -4
- xinference/thirdparty/cosyvoice/cli/frontend.py +4 -4
- xinference/thirdparty/cosyvoice/cli/model.py +53 -75
- xinference/thirdparty/cosyvoice/dataset/dataset.py +5 -18
- xinference/thirdparty/cosyvoice/dataset/processor.py +24 -25
- xinference/thirdparty/cosyvoice/flow/decoder.py +24 -433
- xinference/thirdparty/cosyvoice/flow/flow.py +6 -14
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +33 -145
- xinference/thirdparty/cosyvoice/hifigan/generator.py +169 -1
- xinference/thirdparty/cosyvoice/llm/llm.py +108 -17
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +14 -115
- xinference/thirdparty/cosyvoice/utils/common.py +20 -0
- xinference/thirdparty/cosyvoice/utils/executor.py +8 -4
- xinference/thirdparty/cosyvoice/utils/file_utils.py +45 -1
- xinference/thirdparty/cosyvoice/utils/losses.py +37 -0
- xinference/thirdparty/cosyvoice/utils/mask.py +35 -1
- xinference/thirdparty/cosyvoice/utils/train_utils.py +24 -6
- xinference/thirdparty/cosyvoice/vllm/cosyvoice2.py +103 -0
- xinference/types.py +105 -2
- xinference/ui/gradio/chat_interface.py +2 -0
- xinference/ui/gradio/media_interface.py +353 -7
- xinference/ui/web/ui/build/asset-manifest.json +3 -3
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +3 -0
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/3c5758bd12fa334294b1de0ff6b1a4bac8d963c45472eab9dc3e530d82aa6b3f.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +1 -0
- xinference/ui/web/ui/src/locales/en.json +2 -0
- xinference/ui/web/ui/src/locales/ja.json +2 -0
- xinference/ui/web/ui/src/locales/ko.json +2 -0
- xinference/ui/web/ui/src/locales/zh.json +2 -0
- {xinference-1.9.0.dist-info → xinference-1.10.0.dist-info}/METADATA +16 -12
- {xinference-1.9.0.dist-info → xinference-1.10.0.dist-info}/RECORD +86 -77
- xinference/ui/web/ui/build/static/js/main.4918643a.js +0 -3
- xinference/ui/web/ui/build/static/js/main.4918643a.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/3d2a89f0eccc1f90fc5036c9a1d587c2120e6a6b128aae31d1db7d6bad52722b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/89179f8f51887b9167721860a12412549ff04f78162e921a7b6aa6532646deb2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8e5cb82c2ff3299c6a44563fe6b1c5515c9750613c51bb63abee0b1d70fc5019.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/9dc5cfc67dd0617b0272aeef8651f1589b2155a4ff1fd72ad3166b217089b619.json +0 -1
- /xinference/ui/web/ui/build/static/js/{main.4918643a.js.LICENSE.txt → main.1086c759.js.LICENSE.txt} +0 -0
- {xinference-1.9.0.dist-info → xinference-1.10.0.dist-info}/WHEEL +0 -0
- {xinference-1.9.0.dist-info → xinference-1.10.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.9.0.dist-info → xinference-1.10.0.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.9.0.dist-info → xinference-1.10.0.dist-info}/top_level.txt +0 -0
xinference/model/llm/mlx/core.py
CHANGED
|
@@ -148,6 +148,16 @@ class MLXModel(LLM):
|
|
|
148
148
|
# to call aynsc method with asyncio.run_coroutine_threadsafe
|
|
149
149
|
self._loop = loop # type: ignore
|
|
150
150
|
|
|
151
|
+
def _cleanup_memory(self):
|
|
152
|
+
import gc
|
|
153
|
+
|
|
154
|
+
import mlx.core as mx
|
|
155
|
+
|
|
156
|
+
# mandatory recycling
|
|
157
|
+
gc.collect()
|
|
158
|
+
# clear the MLX cache
|
|
159
|
+
mx.clear_cache()
|
|
160
|
+
|
|
151
161
|
@property
|
|
152
162
|
def driver_info(self) -> Optional[dict]:
|
|
153
163
|
return self._driver_info
|
|
@@ -333,6 +343,7 @@ class MLXModel(LLM):
|
|
|
333
343
|
self.prepare_parse_reasoning_content(
|
|
334
344
|
reasoning_content, enable_thinking=enable_thinking
|
|
335
345
|
)
|
|
346
|
+
self.prepare_parse_tool_calls()
|
|
336
347
|
|
|
337
348
|
kwargs = {}
|
|
338
349
|
kwargs["revision"] = self._model_config.get(
|
|
@@ -458,14 +469,18 @@ class MLXModel(LLM):
|
|
|
458
469
|
repetition_penalty=kwargs.pop("repetition_penalty"),
|
|
459
470
|
repetition_context_size=kwargs.pop("repetition_context_size"),
|
|
460
471
|
)
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
|
|
468
|
-
|
|
472
|
+
try:
|
|
473
|
+
yield from stream_generate(
|
|
474
|
+
self._model,
|
|
475
|
+
self._tokenizer,
|
|
476
|
+
prompt_token_ids,
|
|
477
|
+
sampler=sampler,
|
|
478
|
+
logits_processors=logits_processors,
|
|
479
|
+
**kwargs,
|
|
480
|
+
)
|
|
481
|
+
finally:
|
|
482
|
+
# after completing the inference, clear the memory.
|
|
483
|
+
self._cleanup_memory()
|
|
469
484
|
|
|
470
485
|
def _prepare_inputs(
|
|
471
486
|
self, prompt: Union[str, Dict[str, Any]], kwargs
|
|
@@ -755,7 +770,7 @@ class MLXChatModel(MLXModel, ChatModelMixin):
|
|
|
755
770
|
assert not isinstance(c, Iterator)
|
|
756
771
|
if tools:
|
|
757
772
|
return self._post_process_completion(
|
|
758
|
-
self.model_family, self.model_uid, c
|
|
773
|
+
self.model_family, self.model_uid, c
|
|
759
774
|
)
|
|
760
775
|
return self._to_chat_completion(c, self.reasoning_parser)
|
|
761
776
|
|
|
@@ -831,18 +846,32 @@ class MLXVisionModel(MLXModel, ChatModelMixin):
|
|
|
831
846
|
|
|
832
847
|
detokenizer.reset()
|
|
833
848
|
tic = time.perf_counter()
|
|
834
|
-
|
|
835
|
-
|
|
836
|
-
|
|
837
|
-
|
|
838
|
-
|
|
839
|
-
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
|
|
843
|
-
|
|
849
|
+
try:
|
|
850
|
+
for n, (token, logprobs) in enumerate(
|
|
851
|
+
generate_step(input_ids, self._model, pixel_values, mask, **kwargs),
|
|
852
|
+
):
|
|
853
|
+
if n == 0:
|
|
854
|
+
prompt_time = time.perf_counter() - tic
|
|
855
|
+
prompt_tps = len(input_ids) / prompt_time
|
|
856
|
+
tic = time.perf_counter()
|
|
857
|
+
if token == tokenizer.eos_token_id:
|
|
858
|
+
break
|
|
859
|
+
detokenizer.add_token(token)
|
|
860
|
+
|
|
861
|
+
# Yield the last segment if streaming
|
|
862
|
+
yield GenerationResponse(
|
|
863
|
+
text=detokenizer.last_segment,
|
|
864
|
+
token=token,
|
|
865
|
+
logprobs=logprobs,
|
|
866
|
+
from_draft=False,
|
|
867
|
+
prompt_tokens=len(input_ids),
|
|
868
|
+
prompt_tps=prompt_tps,
|
|
869
|
+
generation_tokens=n + 1,
|
|
870
|
+
generation_tps=(n + 1) / (time.perf_counter() - tic),
|
|
871
|
+
peak_memory=mx.metal.get_peak_memory() / 1e9,
|
|
872
|
+
)
|
|
844
873
|
|
|
845
|
-
|
|
874
|
+
detokenizer.finalize()
|
|
846
875
|
yield GenerationResponse(
|
|
847
876
|
text=detokenizer.last_segment,
|
|
848
877
|
token=token,
|
|
@@ -854,19 +883,9 @@ class MLXVisionModel(MLXModel, ChatModelMixin):
|
|
|
854
883
|
generation_tps=(n + 1) / (time.perf_counter() - tic),
|
|
855
884
|
peak_memory=mx.metal.get_peak_memory() / 1e9,
|
|
856
885
|
)
|
|
857
|
-
|
|
858
|
-
|
|
859
|
-
|
|
860
|
-
text=detokenizer.last_segment,
|
|
861
|
-
token=token,
|
|
862
|
-
logprobs=logprobs,
|
|
863
|
-
from_draft=False,
|
|
864
|
-
prompt_tokens=len(input_ids),
|
|
865
|
-
prompt_tps=prompt_tps,
|
|
866
|
-
generation_tokens=n + 1,
|
|
867
|
-
generation_tps=(n + 1) / (time.perf_counter() - tic),
|
|
868
|
-
peak_memory=mx.metal.get_peak_memory() / 1e9,
|
|
869
|
-
)
|
|
886
|
+
finally:
|
|
887
|
+
# after completing the inference, clear the memory
|
|
888
|
+
self._cleanup_memory()
|
|
870
889
|
|
|
871
890
|
def _prepare_inputs(
|
|
872
891
|
self, prompt: Union[str, Dict[str, Any]], kwargs
|
|
@@ -175,6 +175,7 @@ class SGLANGModel(LLM):
|
|
|
175
175
|
self.prepare_parse_reasoning_content(
|
|
176
176
|
reasoning_content, enable_thinking=enable_thinking
|
|
177
177
|
)
|
|
178
|
+
self.prepare_parse_tool_calls()
|
|
178
179
|
|
|
179
180
|
# Fix: GH#2169
|
|
180
181
|
if sgl.__version__ >= "0.2.14":
|
|
@@ -646,49 +647,6 @@ class SGLANGChatModel(SGLANGModel, ChatModelMixin):
|
|
|
646
647
|
def is_tool_call_chunk_end(chunk):
|
|
647
648
|
return chunk["choices"][0]["text"].endswith(QWEN_TOOL_CALL_SYMBOLS[1])
|
|
648
649
|
|
|
649
|
-
async def _async_to_tool_completion_chunks(
|
|
650
|
-
self,
|
|
651
|
-
chunks: AsyncGenerator[CompletionChunk, None],
|
|
652
|
-
) -> AsyncGenerator[ChatCompletionChunk, None]:
|
|
653
|
-
i = 0
|
|
654
|
-
previous_texts = [""]
|
|
655
|
-
tool_call = False
|
|
656
|
-
tool_call_texts = [""]
|
|
657
|
-
if self.reasoning_parser:
|
|
658
|
-
chunks = self.reasoning_parser.prepare_reasoning_content_streaming(chunks)
|
|
659
|
-
async for chunk in chunks:
|
|
660
|
-
if i == 0:
|
|
661
|
-
for first_chunk in self._get_first_chat_completion_chunk(
|
|
662
|
-
chunk, self.reasoning_parser
|
|
663
|
-
):
|
|
664
|
-
yield first_chunk
|
|
665
|
-
# usage
|
|
666
|
-
choices = chunk.get("choices")
|
|
667
|
-
if not choices:
|
|
668
|
-
yield self._get_final_chat_completion_chunk(chunk)
|
|
669
|
-
else:
|
|
670
|
-
if self.is_tool_call_chunk_start(chunk):
|
|
671
|
-
tool_call = True
|
|
672
|
-
if tool_call:
|
|
673
|
-
tool_call_text = tool_call_texts[-1]
|
|
674
|
-
tool_call_text += chunk["choices"][0]["text"]
|
|
675
|
-
tool_call_texts.append(tool_call_text)
|
|
676
|
-
if self.is_tool_call_chunk_end(chunk):
|
|
677
|
-
yield self._post_process_completion_chunk(
|
|
678
|
-
self.model_family,
|
|
679
|
-
self.model_uid,
|
|
680
|
-
chunk,
|
|
681
|
-
reasoning_parser=self.reasoning_parser,
|
|
682
|
-
tool_call_text=tool_call_text,
|
|
683
|
-
)
|
|
684
|
-
tool_call = False
|
|
685
|
-
tool_call_texts = [""]
|
|
686
|
-
else:
|
|
687
|
-
yield self._to_chat_completion_chunk(
|
|
688
|
-
chunk, self.reasoning_parser, previous_texts
|
|
689
|
-
)
|
|
690
|
-
i += 1
|
|
691
|
-
|
|
692
650
|
async def async_chat(
|
|
693
651
|
self,
|
|
694
652
|
messages: List[Dict],
|
|
@@ -731,7 +689,7 @@ class SGLANGChatModel(SGLANGModel, ChatModelMixin):
|
|
|
731
689
|
assert not isinstance(c, AsyncGenerator)
|
|
732
690
|
if tools:
|
|
733
691
|
return self._post_process_completion(
|
|
734
|
-
self.model_family, self.model_uid, c
|
|
692
|
+
self.model_family, self.model_uid, c
|
|
735
693
|
)
|
|
736
694
|
return self._to_chat_completion(c, self.reasoning_parser)
|
|
737
695
|
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
from functools import wraps
|
|
2
|
+
from typing import Any, Callable, Dict, Type
|
|
3
|
+
|
|
4
|
+
# Global registry for tool parsers, mapping parser names to their classes
|
|
5
|
+
TOOL_PARSERS: Dict[str, Type[Any]] = {}
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def register_tool_parser(name: str):
|
|
9
|
+
"""
|
|
10
|
+
Decorator for registering ToolParser classes to the TOOL_PARSERS registry.
|
|
11
|
+
|
|
12
|
+
This decorator allows tool parser classes to be automatically registered
|
|
13
|
+
when they are defined, making them available for dynamic lookup.
|
|
14
|
+
|
|
15
|
+
Args:
|
|
16
|
+
name (str): The name to register the tool parser under. This should
|
|
17
|
+
typically match the model family name (e.g., "qwen", "glm4").
|
|
18
|
+
|
|
19
|
+
Returns:
|
|
20
|
+
Callable: The decorator function that registers the class.
|
|
21
|
+
|
|
22
|
+
Example:
|
|
23
|
+
@register_tool_parser("qwen")
|
|
24
|
+
class QwenToolParser(ToolParser):
|
|
25
|
+
def parse_tool_calls(self, text: str) -> List[ToolCall]:
|
|
26
|
+
# Implementation for parsing Qwen model tool calls
|
|
27
|
+
pass
|
|
28
|
+
|
|
29
|
+
Note:
|
|
30
|
+
The registered class should implement the ToolParser interface
|
|
31
|
+
and provide methods for parsing tool calls from model outputs.
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
def decorator(cls: Type[Any]) -> Type[Any]:
|
|
35
|
+
"""
|
|
36
|
+
The actual decorator that performs the registration.
|
|
37
|
+
|
|
38
|
+
Args:
|
|
39
|
+
cls: The tool parser class to register.
|
|
40
|
+
|
|
41
|
+
Returns:
|
|
42
|
+
The same class (unmodified) after registration.
|
|
43
|
+
"""
|
|
44
|
+
TOOL_PARSERS[name] = cls
|
|
45
|
+
return cls
|
|
46
|
+
|
|
47
|
+
return decorator
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
# Import all tool parser modules to trigger decorator registration
|
|
51
|
+
# This ensures all tool parsers are automatically registered when this module is imported
|
|
52
|
+
from . import (
|
|
53
|
+
deepseek_r1_tool_parser,
|
|
54
|
+
deepseek_v3_tool_parser,
|
|
55
|
+
glm4_tool_parser,
|
|
56
|
+
llama3_tool_parser,
|
|
57
|
+
qwen_tool_parser,
|
|
58
|
+
)
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
class ToolParser:
|
|
2
|
+
"""
|
|
3
|
+
Abstract ToolParser class that should not be used directly. Provided
|
|
4
|
+
properties and methods should be used in
|
|
5
|
+
derived classes.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
def extract_tool_calls(self, model_output: str):
|
|
9
|
+
"""
|
|
10
|
+
Static method that should be implemented for extracting tool calls from
|
|
11
|
+
a complete model-generated string.
|
|
12
|
+
Used for non-streaming responses where we have the entire model response
|
|
13
|
+
available before sending to the client.
|
|
14
|
+
Static because it's stateless.
|
|
15
|
+
"""
|
|
16
|
+
raise NotImplementedError(
|
|
17
|
+
"AbstractToolParser.extract_tool_calls has not been implemented!"
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
def extract_tool_calls_streaming(
|
|
21
|
+
self, previous_text, current_text: str, delta_text: str
|
|
22
|
+
):
|
|
23
|
+
"""
|
|
24
|
+
Instance method that should be implemented for extracting tool calls
|
|
25
|
+
from an incomplete response; for use when handling tool calls and
|
|
26
|
+
streaming. Has to be an instance method because it requires state -
|
|
27
|
+
the current tokens/diffs, but also the information about what has
|
|
28
|
+
previously been parsed and extracted (see constructor)
|
|
29
|
+
"""
|
|
30
|
+
raise NotImplementedError(
|
|
31
|
+
"AbstractToolParser.extract_tool_calls_streaming has not been "
|
|
32
|
+
"implemented!"
|
|
33
|
+
)
|
|
@@ -0,0 +1,128 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import logging
|
|
3
|
+
import re
|
|
4
|
+
from typing import Any, List, Optional, Tuple
|
|
5
|
+
|
|
6
|
+
from . import register_tool_parser
|
|
7
|
+
from .abstract_tool_parser import ToolParser
|
|
8
|
+
|
|
9
|
+
logger = logging.getLogger(__name__)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@register_tool_parser("deepseek-r1")
|
|
13
|
+
class DeepseekR1ToolParser(ToolParser):
|
|
14
|
+
"""
|
|
15
|
+
Tool parser implementation for DeepSeek R1 model.
|
|
16
|
+
|
|
17
|
+
This parser handles the specific format used by DeepSeek R1 for tool calls,
|
|
18
|
+
which includes special Unicode tokens and JSON-formatted function arguments.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
def __init__(self):
|
|
22
|
+
"""
|
|
23
|
+
Initialize the DeepSeek R1 tool parser.
|
|
24
|
+
"""
|
|
25
|
+
super().__init__()
|
|
26
|
+
# Regex pattern to match DeepSeek R1 tool call format
|
|
27
|
+
self.tool_calls_regex = (
|
|
28
|
+
r"<\|tool▁call▁begin|>function<\|tool▁sep|>([^\n]+)\n"
|
|
29
|
+
r"```json\n(.*?)\n```<\|tool▁call▁end|>"
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
def extract_tool_calls(
|
|
33
|
+
self, model_output: str
|
|
34
|
+
) -> List[Tuple[Optional[str], Optional[str], Optional[dict]]]:
|
|
35
|
+
"""
|
|
36
|
+
Extract tool calls from complete model output.
|
|
37
|
+
|
|
38
|
+
Parses the model output to find tool call patterns and extracts
|
|
39
|
+
function names and arguments. Handles JSON parsing errors gracefully
|
|
40
|
+
and deduplicates identical tool calls.
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
model_output (str): The complete output string from the model.
|
|
44
|
+
|
|
45
|
+
Returns:
|
|
46
|
+
List[Tuple[Optional[str], Optional[str], Optional[dict]]]:
|
|
47
|
+
A list of tuples where each tuple contains:
|
|
48
|
+
- content (str or None): Raw content if parsing failed, None if successful
|
|
49
|
+
- function_name (str or None): Name of the function to call
|
|
50
|
+
- arguments (dict or None): Parsed function arguments
|
|
51
|
+
|
|
52
|
+
Example:
|
|
53
|
+
>>> parser = DeepseekR1ToolParser()
|
|
54
|
+
>>> output = '<|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "上海", "unit": "celsius"}\n```<|tool▁call▁end|>'
|
|
55
|
+
>>> result = parser.extract_tool_calls(output)
|
|
56
|
+
>>> print(result)
|
|
57
|
+
[(None, 'get_current_weather', {'location': 'Beijing'})]
|
|
58
|
+
"""
|
|
59
|
+
matches = re.findall(self.tool_calls_regex, model_output, re.DOTALL)
|
|
60
|
+
if not matches:
|
|
61
|
+
# No tool calls found, return the original output as content
|
|
62
|
+
return [(model_output, None, None)]
|
|
63
|
+
|
|
64
|
+
# Use set for deduplication of identical tool calls
|
|
65
|
+
tool_calls = set()
|
|
66
|
+
results: List[Tuple[Optional[str], Optional[str], Optional[dict]]] = []
|
|
67
|
+
|
|
68
|
+
for func_name, raw_json in matches:
|
|
69
|
+
func_and_args = None
|
|
70
|
+
try:
|
|
71
|
+
# Parse JSON arguments
|
|
72
|
+
func_and_args = json.loads(raw_json)
|
|
73
|
+
# Create hashable representation for deduplication
|
|
74
|
+
arguments_hashable = frozenset(func_and_args.items())
|
|
75
|
+
tool_call_tuple = (
|
|
76
|
+
None, # No content error
|
|
77
|
+
func_name,
|
|
78
|
+
func_and_args,
|
|
79
|
+
)
|
|
80
|
+
except Exception as e:
|
|
81
|
+
# JSON parsing failed, treat as raw content
|
|
82
|
+
logger.warning(
|
|
83
|
+
f"Failed to parse tool call JSON: {raw_json}, error: {e}"
|
|
84
|
+
)
|
|
85
|
+
tool_call_tuple = (raw_json, None, None)
|
|
86
|
+
arguments_hashable = None
|
|
87
|
+
|
|
88
|
+
# Create deduplication key
|
|
89
|
+
dedup_key = (
|
|
90
|
+
(func_name, arguments_hashable)
|
|
91
|
+
if func_and_args is not None
|
|
92
|
+
else raw_json
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
# Add to results if not already seen
|
|
96
|
+
if dedup_key not in tool_calls:
|
|
97
|
+
tool_calls.add(dedup_key)
|
|
98
|
+
results.append(tool_call_tuple)
|
|
99
|
+
|
|
100
|
+
return results
|
|
101
|
+
|
|
102
|
+
def extract_tool_calls_streaming(
|
|
103
|
+
self, previous_text: List[str], current_text: str, delta_text: str
|
|
104
|
+
) -> Optional[Any]:
|
|
105
|
+
"""
|
|
106
|
+
Extract tool calls from streaming output.
|
|
107
|
+
|
|
108
|
+
Currently not supported for DeepSeek R1 model. This method raises
|
|
109
|
+
a ValueError indicating that streaming tool call extraction is only
|
|
110
|
+
available for specific model/backend combinations.
|
|
111
|
+
|
|
112
|
+
Args:
|
|
113
|
+
previous_text (List[str]): Previous text chunks from the stream.
|
|
114
|
+
current_text (str): Current accumulated text.
|
|
115
|
+
delta_text (str): New text delta in this chunk.
|
|
116
|
+
|
|
117
|
+
Raises:
|
|
118
|
+
ValueError: Always raised as streaming is not supported.
|
|
119
|
+
|
|
120
|
+
Note:
|
|
121
|
+
DeepSeek R1 model does not currently support streaming tool call
|
|
122
|
+
extraction. Use extract_tool_calls() with complete output instead.
|
|
123
|
+
"""
|
|
124
|
+
raise NotImplementedError(
|
|
125
|
+
"Streaming support for tool calls is available only when using "
|
|
126
|
+
"Qwen models with vLLM backend or GLM4-chat models without vLLM backend. "
|
|
127
|
+
"DeepSeek R1 does not support streaming tool call extraction."
|
|
128
|
+
)
|
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import logging
|
|
3
|
+
import re
|
|
4
|
+
from typing import Any, Dict, List, Optional, Tuple
|
|
5
|
+
|
|
6
|
+
from . import register_tool_parser
|
|
7
|
+
from .abstract_tool_parser import ToolParser
|
|
8
|
+
|
|
9
|
+
logger = logging.getLogger(__name__)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@register_tool_parser("deepseek-v3")
|
|
13
|
+
class DeepseekV3ToolParser(ToolParser):
|
|
14
|
+
"""
|
|
15
|
+
Tool parser implementation for DeepSeek V3 model.
|
|
16
|
+
|
|
17
|
+
This parser handles the specific format used by DeepSeek V3 for tool calls,
|
|
18
|
+
which uses JSON code blocks wrapped in markdown format.
|
|
19
|
+
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
def __init__(self):
|
|
23
|
+
"""
|
|
24
|
+
Initialize the DeepSeek V3 tool parser.
|
|
25
|
+
"""
|
|
26
|
+
super().__init__()
|
|
27
|
+
# Regex pattern to match JSON code blocks
|
|
28
|
+
self.tool_calls_regex = r"\s*```json\s*(.*?)\s*```"
|
|
29
|
+
|
|
30
|
+
def _parse_json_function_call(
|
|
31
|
+
self,
|
|
32
|
+
function_call_str: str,
|
|
33
|
+
) -> str:
|
|
34
|
+
"""
|
|
35
|
+
Parse JSON function call from string.
|
|
36
|
+
|
|
37
|
+
Args:
|
|
38
|
+
function_call_str (str): The function call string to parse.
|
|
39
|
+
|
|
40
|
+
Returns:
|
|
41
|
+
str: Parsed result or original string if no match found.
|
|
42
|
+
|
|
43
|
+
"""
|
|
44
|
+
match = self.tool_calls_regex.search(function_call_str)
|
|
45
|
+
if match:
|
|
46
|
+
result = match.group(1)
|
|
47
|
+
return result
|
|
48
|
+
return function_call_str
|
|
49
|
+
|
|
50
|
+
def extract_tool_calls(
|
|
51
|
+
self, model_output: str
|
|
52
|
+
) -> List[Tuple[Optional[str], Optional[str], Optional[Dict[str, Any]]]]:
|
|
53
|
+
"""
|
|
54
|
+
Extract tool calls from complete model output.
|
|
55
|
+
|
|
56
|
+
Parses the model output to find JSON code blocks containing tool calls
|
|
57
|
+
and extracts function names and parameters. Handles JSON parsing errors
|
|
58
|
+
gracefully and deduplicates identical tool calls.
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
model_output (str): The complete output string from the model.
|
|
62
|
+
|
|
63
|
+
Returns:
|
|
64
|
+
List[Tuple[Optional[str], Optional[str], Optional[Dict[str, Any]]]]:
|
|
65
|
+
A list of tuples where each tuple contains:
|
|
66
|
+
- content (str or None): Raw content if parsing failed, None if successful
|
|
67
|
+
- function_name (str or None): Name of the function to call
|
|
68
|
+
- parameters (dict or None): Function parameters
|
|
69
|
+
|
|
70
|
+
Example:
|
|
71
|
+
>>> parser = DeepseekV3ToolParser()
|
|
72
|
+
>>> output = '```json\n{"name": "get_weather", "parameters": {"location": "Beijing"}}\n```'
|
|
73
|
+
>>> result = parser.extract_tool_calls(output)
|
|
74
|
+
>>> print(result)
|
|
75
|
+
[(None, 'get_weather', {'location': 'Beijing'})]
|
|
76
|
+
"""
|
|
77
|
+
matches = re.findall(self.tool_calls_regex, model_output, re.DOTALL)
|
|
78
|
+
|
|
79
|
+
if not matches:
|
|
80
|
+
# No tool calls found, return the original output as content
|
|
81
|
+
return [(model_output, None, None)]
|
|
82
|
+
|
|
83
|
+
# Use set for deduplication of identical tool calls
|
|
84
|
+
tool_calls = set()
|
|
85
|
+
results: List[Tuple[Optional[str], Optional[str], Optional[Dict[str, Any]]]] = (
|
|
86
|
+
[]
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
for raw_json in matches:
|
|
90
|
+
func_and_args = None
|
|
91
|
+
try:
|
|
92
|
+
# Parse JSON to extract function call information
|
|
93
|
+
func_and_args = json.loads(raw_json)
|
|
94
|
+
# Convert dictionary to frozenset for deduplication
|
|
95
|
+
arguments_hashable = frozenset(func_and_args["parameters"])
|
|
96
|
+
tool_call_tuple = (
|
|
97
|
+
None, # No content error
|
|
98
|
+
func_and_args["name"],
|
|
99
|
+
func_and_args["parameters"],
|
|
100
|
+
)
|
|
101
|
+
except json.JSONDecodeError:
|
|
102
|
+
tool_call_tuple = (
|
|
103
|
+
raw_json,
|
|
104
|
+
None,
|
|
105
|
+
None,
|
|
106
|
+
) # If parsing fails, treat as raw content
|
|
107
|
+
arguments_hashable = None # No need for hashing
|
|
108
|
+
|
|
109
|
+
# Avoid duplicate entries
|
|
110
|
+
dedup_key = (
|
|
111
|
+
(func_and_args["name"], arguments_hashable)
|
|
112
|
+
if func_and_args is not None
|
|
113
|
+
else (raw_json)
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
# Add to results if not already seen
|
|
117
|
+
if dedup_key not in tool_calls:
|
|
118
|
+
tool_calls.add(dedup_key)
|
|
119
|
+
results.append(tool_call_tuple)
|
|
120
|
+
|
|
121
|
+
return results
|
|
122
|
+
|
|
123
|
+
def extract_tool_calls_streaming(
|
|
124
|
+
self, previous_text: List[str], current_text: str, delta_text: str
|
|
125
|
+
) -> Optional[Any]:
|
|
126
|
+
"""
|
|
127
|
+
Extract tool calls from streaming output.
|
|
128
|
+
|
|
129
|
+
Currently not supported for DeepSeek V3 model. This method raises
|
|
130
|
+
a ValueError indicating that streaming tool call extraction is only
|
|
131
|
+
available for specific model/backend combinations.
|
|
132
|
+
|
|
133
|
+
Args:
|
|
134
|
+
previous_text (List[str]): Previous text chunks from the stream.
|
|
135
|
+
current_text (str): Current accumulated text.
|
|
136
|
+
delta_text (str): New text delta in this chunk.
|
|
137
|
+
|
|
138
|
+
Raises:
|
|
139
|
+
ValueError: Always raised as streaming is not supported.
|
|
140
|
+
"""
|
|
141
|
+
raise NotImplementedError(
|
|
142
|
+
"Streaming support for tool calls is available only when using "
|
|
143
|
+
"Qwen models with vLLM backend or GLM4-chat models without vLLM backend. "
|
|
144
|
+
"DeepSeek V3 does not support streaming tool call extraction."
|
|
145
|
+
)
|
|
@@ -0,0 +1,123 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import logging
|
|
3
|
+
from typing import Any, Dict, List, Optional, Tuple
|
|
4
|
+
|
|
5
|
+
from . import register_tool_parser
|
|
6
|
+
from .abstract_tool_parser import ToolParser
|
|
7
|
+
|
|
8
|
+
logger = logging.getLogger(__name__)
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@register_tool_parser("glm4")
|
|
12
|
+
class Glm4ToolParser(ToolParser):
|
|
13
|
+
"""
|
|
14
|
+
Tool parser implementation for GLM4 model.
|
|
15
|
+
|
|
16
|
+
This parser handles the specific format used by GLM4 for tool calls,
|
|
17
|
+
which uses JSON code blocks wrapped in markdown format.
|
|
18
|
+
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
def __init__(self):
|
|
22
|
+
"""
|
|
23
|
+
Initialize the GLM4 tool parser.
|
|
24
|
+
"""
|
|
25
|
+
super().__init__()
|
|
26
|
+
# Regex pattern to match JSON code blocks
|
|
27
|
+
self.tool_calls_regex = r"\s*```json\s*(.*?)\s*```"
|
|
28
|
+
|
|
29
|
+
def _parse_json_function_call(
|
|
30
|
+
self,
|
|
31
|
+
function_call_str: str,
|
|
32
|
+
) -> str:
|
|
33
|
+
"""
|
|
34
|
+
Parse JSON function call from string.
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
function_call_str (str): The function call string to parse.
|
|
38
|
+
|
|
39
|
+
Returns:
|
|
40
|
+
str: Parsed result or original string if no match found.
|
|
41
|
+
|
|
42
|
+
"""
|
|
43
|
+
match = self.tool_calls_regex.search(function_call_str)
|
|
44
|
+
if match:
|
|
45
|
+
result = match.group(1)
|
|
46
|
+
return result
|
|
47
|
+
return function_call_str
|
|
48
|
+
|
|
49
|
+
def extract_tool_calls(
|
|
50
|
+
self, model_output: str
|
|
51
|
+
) -> List[Tuple[Optional[str], Optional[str], Optional[Dict[str, Any]]]]:
|
|
52
|
+
"""
|
|
53
|
+
Extract tool calls from complete model output.
|
|
54
|
+
|
|
55
|
+
Parses the model output to find JSON code blocks containing tool calls
|
|
56
|
+
and extracts function names and parameters. Handles JSON parsing errors
|
|
57
|
+
gracefully and deduplicates identical tool calls.
|
|
58
|
+
|
|
59
|
+
Args:
|
|
60
|
+
model_output (str): The complete output string from the model.
|
|
61
|
+
|
|
62
|
+
Returns:
|
|
63
|
+
List[Tuple[Optional[str], Optional[str], Optional[Dict[str, Any]]]]:
|
|
64
|
+
A list of tuples where each tuple contains:
|
|
65
|
+
- content (str or None): Raw content if parsing failed, None if successful
|
|
66
|
+
- function_name (str or None): Name of the function to call
|
|
67
|
+
- parameters (dict or None): Function parameters
|
|
68
|
+
|
|
69
|
+
Example:
|
|
70
|
+
>>> parser = Glm4ToolParser()
|
|
71
|
+
>>> output = {"name": "get_weather", "parameters": {"location": "Beijing"}}
|
|
72
|
+
>>> result = parser.extract_tool_calls(output)
|
|
73
|
+
>>> print(result)
|
|
74
|
+
[(None, 'get_weather', {'location': 'Beijing'})]
|
|
75
|
+
"""
|
|
76
|
+
try:
|
|
77
|
+
if isinstance(model_output, dict):
|
|
78
|
+
try:
|
|
79
|
+
return [
|
|
80
|
+
(
|
|
81
|
+
None,
|
|
82
|
+
model_output["name"],
|
|
83
|
+
json.loads(model_output["arguments"]),
|
|
84
|
+
)
|
|
85
|
+
]
|
|
86
|
+
except Exception:
|
|
87
|
+
return [(None, model_output["name"], model_output["arguments"])]
|
|
88
|
+
except KeyError:
|
|
89
|
+
logger.error("Can't parse glm output: %s", model_output)
|
|
90
|
+
return [(str(model_output), None, None)]
|
|
91
|
+
else:
|
|
92
|
+
return [(str(model_output), None, None)]
|
|
93
|
+
|
|
94
|
+
def extract_tool_calls_streaming(
|
|
95
|
+
self, previous_text: List[str], current_text: str, delta_text: str
|
|
96
|
+
) -> Optional[Any]:
|
|
97
|
+
"""
|
|
98
|
+
Extract tool calls from streaming output.
|
|
99
|
+
|
|
100
|
+
Currently has limited support for GLM4 model streaming. This method raises
|
|
101
|
+
a ValueError indicating that streaming tool call extraction is only
|
|
102
|
+
available for specific model/backend combinations.
|
|
103
|
+
|
|
104
|
+
Args:
|
|
105
|
+
previous_text (List[str]): Previous text chunks from the stream.
|
|
106
|
+
current_text (str): Current accumulated text.
|
|
107
|
+
delta_text (str): New text delta in this chunk.
|
|
108
|
+
"""
|
|
109
|
+
try:
|
|
110
|
+
if isinstance(current_text, dict):
|
|
111
|
+
try:
|
|
112
|
+
return (
|
|
113
|
+
None,
|
|
114
|
+
current_text["name"],
|
|
115
|
+
json.loads(current_text["arguments"]),
|
|
116
|
+
)
|
|
117
|
+
except Exception:
|
|
118
|
+
return (None, current_text["name"], current_text["arguments"])
|
|
119
|
+
except KeyError:
|
|
120
|
+
logger.error("Can't parse glm output: %s", current_text)
|
|
121
|
+
return (str(current_text), None, None)
|
|
122
|
+
else:
|
|
123
|
+
return (str(current_text), None, None)
|