xinference 1.1.0__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (210) hide show
  1. xinference/_compat.py +2 -0
  2. xinference/_version.py +3 -3
  3. xinference/api/restful_api.py +72 -66
  4. xinference/core/model.py +78 -25
  5. xinference/core/supervisor.py +81 -10
  6. xinference/core/utils.py +12 -8
  7. xinference/core/worker.py +32 -0
  8. xinference/model/audio/core.py +5 -0
  9. xinference/model/audio/cosyvoice.py +25 -3
  10. xinference/model/audio/f5tts.py +15 -10
  11. xinference/model/audio/f5tts_mlx.py +260 -0
  12. xinference/model/audio/fish_speech.py +35 -111
  13. xinference/model/audio/model_spec.json +19 -3
  14. xinference/model/audio/model_spec_modelscope.json +9 -0
  15. xinference/model/audio/utils.py +32 -0
  16. xinference/model/image/core.py +69 -1
  17. xinference/model/image/model_spec.json +145 -4
  18. xinference/model/image/model_spec_modelscope.json +150 -4
  19. xinference/model/image/stable_diffusion/core.py +45 -13
  20. xinference/model/llm/__init__.py +2 -0
  21. xinference/model/llm/llm_family.json +143 -0
  22. xinference/model/llm/llm_family.py +15 -36
  23. xinference/model/llm/llm_family_modelscope.json +148 -0
  24. xinference/model/llm/mlx/core.py +37 -32
  25. xinference/model/llm/transformers/cogagent.py +272 -0
  26. xinference/model/llm/transformers/core.py +2 -0
  27. xinference/model/llm/transformers/qwen2_vl.py +12 -1
  28. xinference/model/llm/utils.py +28 -3
  29. xinference/model/llm/vllm/core.py +48 -9
  30. xinference/model/llm/vllm/xavier/__init__.py +13 -0
  31. xinference/model/llm/vllm/xavier/allocator.py +74 -0
  32. xinference/model/llm/vllm/xavier/block.py +112 -0
  33. xinference/model/llm/vllm/xavier/block_manager.py +71 -0
  34. xinference/model/llm/vllm/xavier/block_tracker.py +116 -0
  35. xinference/model/llm/vllm/xavier/engine.py +247 -0
  36. xinference/model/llm/vllm/xavier/executor.py +132 -0
  37. xinference/model/llm/vllm/xavier/scheduler.py +422 -0
  38. xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
  39. xinference/model/llm/vllm/xavier/test/test_xavier.py +122 -0
  40. xinference/model/llm/vllm/xavier/transfer.py +298 -0
  41. xinference/model/video/diffusers.py +14 -0
  42. xinference/model/video/model_spec.json +15 -0
  43. xinference/model/video/model_spec_modelscope.json +16 -0
  44. xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
  45. xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
  46. xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
  47. xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
  48. xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
  49. xinference/thirdparty/cosyvoice/bin/train.py +42 -8
  50. xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
  51. xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
  52. xinference/thirdparty/cosyvoice/cli/model.py +330 -80
  53. xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
  54. xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
  55. xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
  56. xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
  57. xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
  58. xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
  59. xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
  60. xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
  61. xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
  62. xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
  63. xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
  64. xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
  65. xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
  66. xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
  67. xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
  68. xinference/thirdparty/cosyvoice/utils/common.py +28 -1
  69. xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
  70. xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
  71. xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
  72. xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
  73. xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
  74. xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
  75. xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
  76. xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
  77. xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
  78. xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
  79. xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
  80. xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
  81. xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
  82. xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
  83. xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
  84. xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
  85. xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
  86. xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
  87. xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
  88. xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
  89. xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
  90. xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
  91. xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
  92. xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
  93. xinference/thirdparty/fish_speech/tools/schema.py +11 -28
  94. xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
  95. xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
  96. xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
  97. xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
  98. xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
  99. xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
  100. xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
  101. xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
  102. xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
  103. xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
  104. xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
  105. xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
  106. xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
  107. xinference/thirdparty/matcha/utils/utils.py +2 -2
  108. xinference/types.py +13 -0
  109. xinference/web/ui/build/asset-manifest.json +6 -6
  110. xinference/web/ui/build/index.html +1 -1
  111. xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
  112. xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
  113. xinference/web/ui/build/static/js/main.1eb206d1.js +3 -0
  114. xinference/web/ui/build/static/js/main.1eb206d1.js.map +1 -0
  115. xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
  116. xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
  117. xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
  118. xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
  119. xinference/web/ui/node_modules/.cache/babel-loader/2213d49de260e1f67c888081b18f120f5225462b829ae57c9e05a05cec83689d.json +1 -0
  120. xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
  121. xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
  122. xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
  123. xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
  124. xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
  125. xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
  126. xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
  127. xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
  128. xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
  129. xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
  130. xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
  131. xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
  132. xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
  133. xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
  134. xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
  135. xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
  136. xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
  137. xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
  138. xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
  139. xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
  140. xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
  141. xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
  142. xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
  143. xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
  144. xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
  145. xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
  146. xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
  147. xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
  148. xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
  149. xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
  150. xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
  151. xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
  152. xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
  153. xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
  154. xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
  155. xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
  156. xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
  157. xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
  158. xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
  159. xinference/web/ui/node_modules/.package-lock.json +67 -3
  160. xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
  161. xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
  162. xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
  163. xinference/web/ui/node_modules/i18next/package.json +129 -0
  164. xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
  165. xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
  166. xinference/web/ui/node_modules/react-i18next/package.json +162 -0
  167. xinference/web/ui/node_modules/void-elements/package.json +34 -0
  168. xinference/web/ui/package-lock.json +69 -3
  169. xinference/web/ui/package.json +2 -0
  170. xinference/web/ui/src/locales/en.json +186 -0
  171. xinference/web/ui/src/locales/zh.json +186 -0
  172. {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/METADATA +19 -11
  173. {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/RECORD +178 -111
  174. xinference/thirdparty/cosyvoice/bin/__init__.py +0 -0
  175. xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
  176. xinference/thirdparty/cosyvoice/flow/__init__.py +0 -0
  177. xinference/thirdparty/cosyvoice/hifigan/__init__.py +0 -0
  178. xinference/thirdparty/cosyvoice/llm/__init__.py +0 -0
  179. xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
  180. xinference/thirdparty/fish_speech/tools/api.py +0 -943
  181. xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
  182. xinference/thirdparty/fish_speech/tools/webui.py +0 -548
  183. xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
  184. xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
  185. xinference/web/ui/build/static/js/main.4eb4ee80.js +0 -3
  186. xinference/web/ui/build/static/js/main.4eb4ee80.js.map +0 -1
  187. xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
  188. xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
  189. xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
  190. xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
  191. xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
  192. xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
  193. xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
  194. xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
  195. xinference/web/ui/node_modules/.cache/babel-loader/8c5eeb02f772d02cbe8b89c05428d0dd41a97866f75f7dc1c2164a67f5a1cf98.json +0 -1
  196. xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
  197. xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
  198. xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
  199. xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
  200. xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
  201. xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
  202. xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
  203. xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
  204. xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
  205. xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
  206. /xinference/web/ui/build/static/js/{main.4eb4ee80.js.LICENSE.txt → main.1eb206d1.js.LICENSE.txt} +0 -0
  207. {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/LICENSE +0 -0
  208. {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/WHEEL +0 -0
  209. {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/entry_points.txt +0 -0
  210. {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,129 @@
1
+ import io
2
+ import re
3
+
4
+ import librosa
5
+ import torch
6
+ import torchaudio
7
+ from cachetools import LRUCache, cached
8
+
9
+ CACHE_MAXSIZE = 10000
10
+ MICRO_BATCH_SIZE = 8
11
+ ASR_SAMPLE_RATE = 16000
12
+ HUGE_GAP_THRESHOLD = 4000
13
+
14
+
15
+ @torch.no_grad()
16
+ @torch.autocast(device_type="cuda", dtype=torch.half)
17
+ def batch_encode(model, audios_list: list[bytes]):
18
+ audios: list[torch.Tensor] = [
19
+ (
20
+ torch.from_numpy(
21
+ librosa.load(io.BytesIO(audio), sr=model.spec_transform.sample_rate)[0]
22
+ )[None]
23
+ if isinstance(audio, bytes)
24
+ else audio
25
+ )
26
+ for audio in audios_list
27
+ ]
28
+
29
+ lengths = torch.tensor([audio.shape[-1] for audio in audios], device=model.device)
30
+ max_length = lengths.max().item()
31
+
32
+ print(f"Encode max length: {max_length / model.spec_transform.sample_rate:.2f}s")
33
+
34
+ padded = torch.stack(
35
+ [
36
+ torch.nn.functional.pad(audio, (0, int(max_length - audio.shape[-1])))
37
+ for audio in audios
38
+ ]
39
+ ).to(model.device)
40
+
41
+ features, feature_lengths = model.encode(padded, audio_lengths=lengths)
42
+ features, feature_lengths = features.cpu(), feature_lengths.cpu()
43
+
44
+ return [feature[..., :length] for feature, length in zip(features, feature_lengths)]
45
+
46
+
47
+ @cached(
48
+ cache=LRUCache(maxsize=CACHE_MAXSIZE),
49
+ key=lambda model, audios: (model.device, tuple(audios)),
50
+ )
51
+ def cached_vqgan_batch_encode(model, audios: list[bytes]):
52
+ return batch_encode(model, audios)
53
+
54
+
55
+ @torch.no_grad()
56
+ @torch.autocast(device_type="cuda", dtype=torch.half)
57
+ def vqgan_decode(model, features):
58
+ lengths = torch.tensor(
59
+ [feature.shape[-1] for feature in features], device=model.device
60
+ )
61
+ max_length = lengths.max().item()
62
+ padded = torch.stack(
63
+ [
64
+ torch.nn.functional.pad(feature, (0, max_length - feature.shape[-1]))
65
+ for feature in features
66
+ ]
67
+ ).to(model.device)
68
+
69
+ # If bs too large, we do micro batch decode
70
+ audios, audio_lengths = [], []
71
+ for i in range(0, padded.shape[0], MICRO_BATCH_SIZE):
72
+ audio, audio_length = model.decode(
73
+ padded[i : i + MICRO_BATCH_SIZE],
74
+ feature_lengths=lengths[i : i + MICRO_BATCH_SIZE],
75
+ )
76
+ audios.append(audio)
77
+ audio_lengths.append(audio_length)
78
+ audios = torch.cat(audios, dim=0)
79
+ audio_lengths = torch.cat(audio_lengths, dim=0)
80
+ audios, audio_lengths = audios.cpu(), audio_lengths.cpu()
81
+
82
+ return [audio[..., :length].numpy() for audio, length in zip(audios, audio_lengths)]
83
+
84
+
85
+ @torch.no_grad()
86
+ def batch_asr(model, lock, audios, sr, language="auto"):
87
+ resampled_audios = []
88
+ for audio in audios:
89
+ audio = torchaudio.functional.resample(audio, sr, ASR_SAMPLE_RATE)
90
+ assert audio.ndim == 1
91
+ resampled_audios.append(audio)
92
+
93
+ with lock:
94
+ res = model.generate(
95
+ input=resampled_audios,
96
+ batch_size=len(resampled_audios),
97
+ language=language,
98
+ use_itn=True,
99
+ )
100
+
101
+ results = []
102
+ for r, audio in zip(res, audios):
103
+ text = r["text"]
104
+ text = re.sub(r"<\|.*?\|>", "", text)
105
+ duration = len(audio) / sr * 1000
106
+ huge_gap = False
107
+
108
+ if "timestamp" in r and len(r["timestamp"]) > 2:
109
+ for timestamp_a, timestamp_b in zip(
110
+ r["timestamp"][:-1], r["timestamp"][1:]
111
+ ):
112
+ # If there is a gap of more than 4 seconds, we consider it as a huge gap
113
+ if timestamp_b[0] - timestamp_a[1] > HUGE_GAP_THRESHOLD:
114
+ huge_gap = True
115
+ break
116
+
117
+ # Doesn't make sense to have a huge gap at the end
118
+ if duration - r["timestamp"][-1][1] > HUGE_GAP_THRESHOLD:
119
+ huge_gap = True
120
+
121
+ results.append(
122
+ {
123
+ "text": text,
124
+ "duration": duration,
125
+ "huge_gap": huge_gap,
126
+ }
127
+ )
128
+
129
+ return results
@@ -0,0 +1,246 @@
1
+ import io
2
+ import os
3
+ import time
4
+ from http import HTTPStatus
5
+
6
+ import numpy as np
7
+ import ormsgpack
8
+ import soundfile as sf
9
+ import torch
10
+ from kui.asgi import HTTPException, HttpView, JSONResponse, StreamResponse, request
11
+ from loguru import logger
12
+
13
+ from tools.schema import (
14
+ ServeASRRequest,
15
+ ServeASRResponse,
16
+ ServeChatRequest,
17
+ ServeTTSRequest,
18
+ ServeVQGANDecodeRequest,
19
+ ServeVQGANDecodeResponse,
20
+ ServeVQGANEncodeRequest,
21
+ ServeVQGANEncodeResponse,
22
+ )
23
+ from tools.server.agent import get_response_generator
24
+ from tools.server.api_utils import (
25
+ buffer_to_async_generator,
26
+ get_content_type,
27
+ inference_async,
28
+ )
29
+ from tools.server.inference import inference_wrapper as inference
30
+ from tools.server.model_manager import ModelManager
31
+ from tools.server.model_utils import batch_asr, cached_vqgan_batch_encode, vqgan_decode
32
+
33
+ MAX_NUM_SAMPLES = int(os.getenv("NUM_SAMPLES", 1))
34
+
35
+
36
+ class HealthView(HttpView):
37
+ """
38
+ Return the health status of the server.
39
+ """
40
+
41
+ @classmethod
42
+ async def post(cls):
43
+ return JSONResponse({"status": "ok"})
44
+
45
+
46
+ class VQGANEncodeView(HttpView):
47
+ """
48
+ Encode the audio into symbolic tokens.
49
+ """
50
+
51
+ @classmethod
52
+ async def post(cls):
53
+ # Decode the request
54
+ payload = await request.data()
55
+ req = ServeVQGANEncodeRequest(**payload)
56
+
57
+ # Get the model from the app
58
+ model_manager: ModelManager = request.app.state.model_manager
59
+ decoder_model = model_manager.decoder_model
60
+
61
+ # Encode the audio
62
+ start_time = time.time()
63
+ tokens = cached_vqgan_batch_encode(decoder_model, req.audios)
64
+ logger.info(
65
+ f"[EXEC] VQGAN encode time: {(time.time() - start_time) * 1000:.2f}ms"
66
+ )
67
+
68
+ # Return the response
69
+ return ormsgpack.packb(
70
+ ServeVQGANEncodeResponse(tokens=[i.tolist() for i in tokens]),
71
+ option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
72
+ )
73
+
74
+
75
+ class VQGANDecodeView(HttpView):
76
+ """
77
+ Decode the symbolic tokens into audio.
78
+ """
79
+
80
+ @classmethod
81
+ async def post(cls):
82
+ # Decode the request
83
+ payload = await request.data()
84
+ req = ServeVQGANDecodeRequest(**payload)
85
+
86
+ # Get the model from the app
87
+ model_manager: ModelManager = request.app.state.model_manager
88
+ decoder_model = model_manager.decoder_model
89
+
90
+ # Decode the audio
91
+ tokens = [torch.tensor(token, dtype=torch.int) for token in req.tokens]
92
+ start_time = time.time()
93
+ audios = vqgan_decode(decoder_model, tokens)
94
+ logger.info(
95
+ f"[EXEC] VQGAN decode time: {(time.time() - start_time) * 1000:.2f}ms"
96
+ )
97
+ audios = [audio.astype(np.float16).tobytes() for audio in audios]
98
+
99
+ # Return the response
100
+ return ormsgpack.packb(
101
+ ServeVQGANDecodeResponse(audios=audios),
102
+ option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
103
+ )
104
+
105
+
106
+ class ASRView(HttpView):
107
+ """
108
+ Perform automatic speech recognition on the audio.
109
+ """
110
+
111
+ @classmethod
112
+ async def post(cls):
113
+ # Decode the request
114
+ payload = await request.data()
115
+ req = ServeASRRequest(**payload)
116
+
117
+ # Get the model from the app
118
+ model_manager: ModelManager = request.app.state.model_manager
119
+ asr_model = model_manager.asr_model
120
+ lock = request.app.state.lock
121
+
122
+ # Perform ASR
123
+ start_time = time.time()
124
+ audios = [np.frombuffer(audio, dtype=np.float16) for audio in req.audios]
125
+ audios = [torch.from_numpy(audio).float() for audio in audios]
126
+
127
+ if any(audios.shape[-1] >= 30 * req.sample_rate for audios in audios):
128
+ raise HTTPException(status_code=400, content="Audio length is too long")
129
+
130
+ transcriptions = batch_asr(
131
+ asr_model, lock, audios=audios, sr=req.sample_rate, language=req.language
132
+ )
133
+ logger.info(f"[EXEC] ASR time: {(time.time() - start_time) * 1000:.2f}ms")
134
+
135
+ # Return the response
136
+ return ormsgpack.packb(
137
+ ServeASRResponse(transcriptions=transcriptions),
138
+ option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
139
+ )
140
+
141
+
142
+ class TTSView(HttpView):
143
+ """
144
+ Perform text-to-speech on the input text.
145
+ """
146
+
147
+ @classmethod
148
+ async def post(cls):
149
+ # Decode the request
150
+ payload = await request.data()
151
+ req = ServeTTSRequest(**payload)
152
+
153
+ # Get the model from the app
154
+ app_state = request.app.state
155
+ model_manager: ModelManager = app_state.model_manager
156
+ engine = model_manager.tts_inference_engine
157
+ sample_rate = engine.decoder_model.spec_transform.sample_rate
158
+
159
+ # Check if the text is too long
160
+ if app_state.max_text_length > 0 and len(req.text) > app_state.max_text_length:
161
+ raise HTTPException(
162
+ HTTPStatus.BAD_REQUEST,
163
+ content=f"Text is too long, max length is {app_state.max_text_length}",
164
+ )
165
+
166
+ # Check if streaming is enabled
167
+ if req.streaming and req.format != "wav":
168
+ raise HTTPException(
169
+ HTTPStatus.BAD_REQUEST,
170
+ content="Streaming only supports WAV format",
171
+ )
172
+
173
+ # Perform TTS
174
+ if req.streaming:
175
+ return StreamResponse(
176
+ iterable=inference_async(req, engine),
177
+ headers={
178
+ "Content-Disposition": f"attachment; filename=audio.{req.format}",
179
+ },
180
+ content_type=get_content_type(req.format),
181
+ )
182
+ else:
183
+ fake_audios = next(inference(req, engine))
184
+ buffer = io.BytesIO()
185
+ sf.write(
186
+ buffer,
187
+ fake_audios,
188
+ sample_rate,
189
+ format=req.format,
190
+ )
191
+
192
+ return StreamResponse(
193
+ iterable=buffer_to_async_generator(buffer.getvalue()),
194
+ headers={
195
+ "Content-Disposition": f"attachment; filename=audio.{req.format}",
196
+ },
197
+ content_type=get_content_type(req.format),
198
+ )
199
+
200
+
201
+ class ChatView(HttpView):
202
+ """
203
+ Perform chatbot inference on the input text.
204
+ """
205
+
206
+ @classmethod
207
+ async def post(cls):
208
+ # Decode the request
209
+ payload = await request.data()
210
+ req = ServeChatRequest(**payload)
211
+
212
+ # Check that the number of samples requested is correct
213
+ if req.num_samples < 1 or req.num_samples > MAX_NUM_SAMPLES:
214
+ raise HTTPException(
215
+ HTTPStatus.BAD_REQUEST,
216
+ content=f"Number of samples must be between 1 and {MAX_NUM_SAMPLES}",
217
+ )
218
+
219
+ # Get the type of content provided
220
+ content_type = request.headers.get("Content-Type", "application/json")
221
+ json_mode = "application/json" in content_type
222
+
223
+ # Get the models from the app
224
+ model_manager: ModelManager = request.app.state.model_manager
225
+ llama_queue = model_manager.llama_queue
226
+ tokenizer = model_manager.tokenizer
227
+ config = model_manager.config
228
+
229
+ device = request.app.state.device
230
+
231
+ # Get the response generators
232
+ response_generator = get_response_generator(
233
+ llama_queue, tokenizer, config, req, device, json_mode
234
+ )
235
+
236
+ # Return the response in the correct format
237
+ if req.streaming is False:
238
+ result = response_generator()
239
+ if json_mode:
240
+ return JSONResponse(result.model_dump())
241
+ else:
242
+ return ormsgpack.packb(result, option=ormsgpack.OPT_SERIALIZE_PYDANTIC)
243
+
244
+ return StreamResponse(
245
+ iterable=response_generator(), content_type="text/event-stream"
246
+ )
@@ -0,0 +1,173 @@
1
+ from typing import Callable
2
+
3
+ import gradio as gr
4
+
5
+ from fish_speech.i18n import i18n
6
+ from tools.inference_engine.utils import normalize_text
7
+ from tools.webui.variables import HEADER_MD, TEXTBOX_PLACEHOLDER
8
+
9
+
10
+ def build_app(inference_fct: Callable, theme: str = "light") -> gr.Blocks:
11
+ with gr.Blocks(theme=gr.themes.Base()) as app:
12
+ gr.Markdown(HEADER_MD)
13
+
14
+ # Use light theme by default
15
+ app.load(
16
+ None,
17
+ None,
18
+ js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
19
+ % theme,
20
+ )
21
+
22
+ # Inference
23
+ with gr.Row():
24
+ with gr.Column(scale=3):
25
+ text = gr.Textbox(
26
+ label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10
27
+ )
28
+ refined_text = gr.Textbox(
29
+ label=i18n("Realtime Transform Text"),
30
+ placeholder=i18n(
31
+ "Normalization Result Preview (Currently Only Chinese)"
32
+ ),
33
+ lines=5,
34
+ interactive=False,
35
+ )
36
+
37
+ with gr.Row():
38
+ normalize = gr.Checkbox(
39
+ label=i18n("Text Normalization"),
40
+ value=False,
41
+ )
42
+
43
+ with gr.Row():
44
+ with gr.Column():
45
+ with gr.Tab(label=i18n("Advanced Config")):
46
+ with gr.Row():
47
+ chunk_length = gr.Slider(
48
+ label=i18n("Iterative Prompt Length, 0 means off"),
49
+ minimum=0,
50
+ maximum=300,
51
+ value=200,
52
+ step=8,
53
+ )
54
+
55
+ max_new_tokens = gr.Slider(
56
+ label=i18n(
57
+ "Maximum tokens per batch, 0 means no limit"
58
+ ),
59
+ minimum=0,
60
+ maximum=2048,
61
+ value=0,
62
+ step=8,
63
+ )
64
+
65
+ with gr.Row():
66
+ top_p = gr.Slider(
67
+ label="Top-P",
68
+ minimum=0.6,
69
+ maximum=0.9,
70
+ value=0.7,
71
+ step=0.01,
72
+ )
73
+
74
+ repetition_penalty = gr.Slider(
75
+ label=i18n("Repetition Penalty"),
76
+ minimum=1,
77
+ maximum=1.5,
78
+ value=1.2,
79
+ step=0.01,
80
+ )
81
+
82
+ with gr.Row():
83
+ temperature = gr.Slider(
84
+ label="Temperature",
85
+ minimum=0.6,
86
+ maximum=0.9,
87
+ value=0.7,
88
+ step=0.01,
89
+ )
90
+ seed = gr.Number(
91
+ label="Seed",
92
+ info="0 means randomized inference, otherwise deterministic",
93
+ value=0,
94
+ )
95
+
96
+ with gr.Tab(label=i18n("Reference Audio")):
97
+ with gr.Row():
98
+ gr.Markdown(
99
+ i18n(
100
+ "5 to 10 seconds of reference audio, useful for specifying speaker."
101
+ )
102
+ )
103
+ with gr.Row():
104
+ reference_id = gr.Textbox(
105
+ label=i18n("Reference ID"),
106
+ placeholder="Leave empty to use uploaded references",
107
+ )
108
+
109
+ with gr.Row():
110
+ use_memory_cache = gr.Radio(
111
+ label=i18n("Use Memory Cache"),
112
+ choices=["on", "off"],
113
+ value="on",
114
+ )
115
+
116
+ with gr.Row():
117
+ reference_audio = gr.Audio(
118
+ label=i18n("Reference Audio"),
119
+ type="filepath",
120
+ )
121
+ with gr.Row():
122
+ reference_text = gr.Textbox(
123
+ label=i18n("Reference Text"),
124
+ lines=1,
125
+ placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
126
+ value="",
127
+ )
128
+
129
+ with gr.Column(scale=3):
130
+ with gr.Row():
131
+ error = gr.HTML(
132
+ label=i18n("Error Message"),
133
+ visible=True,
134
+ )
135
+ with gr.Row():
136
+ audio = gr.Audio(
137
+ label=i18n("Generated Audio"),
138
+ type="numpy",
139
+ interactive=False,
140
+ visible=True,
141
+ )
142
+
143
+ with gr.Row():
144
+ with gr.Column(scale=3):
145
+ generate = gr.Button(
146
+ value="\U0001F3A7 " + i18n("Generate"),
147
+ variant="primary",
148
+ )
149
+
150
+ text.input(fn=normalize_text, inputs=[text, normalize], outputs=[refined_text])
151
+
152
+ # Submit
153
+ generate.click(
154
+ inference_fct,
155
+ [
156
+ refined_text,
157
+ normalize,
158
+ reference_id,
159
+ reference_audio,
160
+ reference_text,
161
+ max_new_tokens,
162
+ chunk_length,
163
+ top_p,
164
+ repetition_penalty,
165
+ temperature,
166
+ seed,
167
+ use_memory_cache,
168
+ ],
169
+ [audio, error],
170
+ concurrency_limit=1,
171
+ )
172
+
173
+ return app
@@ -0,0 +1,91 @@
1
+ import html
2
+ from functools import partial
3
+ from typing import Any, Callable
4
+
5
+ from fish_speech.i18n import i18n
6
+ from tools.schema import ServeReferenceAudio, ServeTTSRequest
7
+
8
+
9
+ def inference_wrapper(
10
+ text,
11
+ normalize,
12
+ reference_id,
13
+ reference_audio,
14
+ reference_text,
15
+ max_new_tokens,
16
+ chunk_length,
17
+ top_p,
18
+ repetition_penalty,
19
+ temperature,
20
+ seed,
21
+ use_memory_cache,
22
+ engine,
23
+ ):
24
+ """
25
+ Wrapper for the inference function.
26
+ Used in the Gradio interface.
27
+ """
28
+
29
+ if reference_audio:
30
+ references = get_reference_audio(reference_audio, reference_text)
31
+ else:
32
+ references = []
33
+
34
+ req = ServeTTSRequest(
35
+ text=text,
36
+ normalize=normalize,
37
+ reference_id=reference_id if reference_id else None,
38
+ references=references,
39
+ max_new_tokens=max_new_tokens,
40
+ chunk_length=chunk_length,
41
+ top_p=top_p,
42
+ repetition_penalty=repetition_penalty,
43
+ temperature=temperature,
44
+ seed=int(seed) if seed else None,
45
+ use_memory_cache=use_memory_cache,
46
+ )
47
+
48
+ for result in engine.inference(req):
49
+ match result.code:
50
+ case "final":
51
+ return result.audio, None
52
+ case "error":
53
+ return None, build_html_error_message(i18n(result.error))
54
+ case _:
55
+ pass
56
+
57
+ return None, i18n("No audio generated")
58
+
59
+
60
+ def get_reference_audio(reference_audio: str, reference_text: str) -> list:
61
+ """
62
+ Get the reference audio bytes.
63
+ """
64
+
65
+ with open(reference_audio, "rb") as audio_file:
66
+ audio_bytes = audio_file.read()
67
+
68
+ return [ServeReferenceAudio(audio=audio_bytes, text=reference_text)]
69
+
70
+
71
+ def build_html_error_message(error: Any) -> str:
72
+
73
+ error = error if isinstance(error, Exception) else Exception("Unknown error")
74
+
75
+ return f"""
76
+ <div style="color: red;
77
+ font-weight: bold;">
78
+ {html.escape(str(error))}
79
+ </div>
80
+ """
81
+
82
+
83
+ def get_inference_wrapper(engine) -> Callable:
84
+ """
85
+ Get the inference function with the immutable arguments.
86
+ """
87
+
88
+ return partial(
89
+ inference_wrapper,
90
+ engine=engine,
91
+ )
@@ -0,0 +1,14 @@
1
+ from fish_speech.i18n import i18n
2
+
3
+ HEADER_MD = f"""# Fish Speech
4
+
5
+ {i18n("A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).")}
6
+
7
+ {i18n("You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1.5).")}
8
+
9
+ {i18n("Related code and weights are released under CC BY-NC-SA 4.0 License.")}
10
+
11
+ {i18n("We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.")}
12
+ """
13
+
14
+ TEXTBOX_PLACEHOLDER = i18n("Put your text here.")
@@ -7,10 +7,10 @@ from pathlib import Path
7
7
  from typing import Any, Callable, Dict, Tuple
8
8
 
9
9
  import gdown
10
- import matplotlib.pyplot as plt
10
+ # import matplotlib.pyplot as plt
11
11
  import numpy as np
12
12
  import torch
13
- import wget
13
+ # import wget
14
14
  from omegaconf import DictConfig
15
15
 
16
16
  from matcha.utils import pylogger, rich_utils
xinference/types.py CHANGED
@@ -302,6 +302,19 @@ class PytorchGenerateConfig(TypedDict, total=False):
302
302
  request_id: Optional[str]
303
303
 
304
304
 
305
+ class CogagentGenerateConfig(PytorchGenerateConfig, total=False):
306
+ platform: Optional[Literal["Mac", "WIN", "Mobile"]]
307
+ format: Optional[
308
+ Literal[
309
+ "(Answer in Action-Operation-Sensitive format.)",
310
+ "(Answer in Status-Plan-Action-Operation format.)",
311
+ "(Answer in Status-Action-Operation-Sensitive format.)",
312
+ "(Answer in Status-Action-Operation format.)",
313
+ "(Answer in Action-Operation format.)",
314
+ ]
315
+ ]
316
+
317
+
305
318
  class PytorchModelConfig(TypedDict, total=False):
306
319
  revision: Optional[str]
307
320
  device: str