xinference 1.1.0__py3-none-any.whl → 1.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +2 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +72 -66
- xinference/core/model.py +78 -25
- xinference/core/supervisor.py +81 -10
- xinference/core/utils.py +12 -8
- xinference/core/worker.py +32 -0
- xinference/model/audio/core.py +5 -0
- xinference/model/audio/cosyvoice.py +25 -3
- xinference/model/audio/f5tts.py +15 -10
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +35 -111
- xinference/model/audio/model_spec.json +19 -3
- xinference/model/audio/model_spec_modelscope.json +9 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +45 -13
- xinference/model/llm/__init__.py +2 -0
- xinference/model/llm/llm_family.json +143 -0
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +148 -0
- xinference/model/llm/mlx/core.py +37 -32
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +2 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/utils.py +28 -3
- xinference/model/llm/vllm/core.py +48 -9
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +112 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +116 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +132 -0
- xinference/model/llm/vllm/xavier/scheduler.py +422 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +122 -0
- xinference/model/llm/vllm/xavier/transfer.py +298 -0
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +11 -28
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/types.py +13 -0
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.1eb206d1.js +3 -0
- xinference/web/ui/build/static/js/main.1eb206d1.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2213d49de260e1f67c888081b18f120f5225462b829ae57c9e05a05cec83689d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/METADATA +19 -11
- {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/RECORD +178 -111
- xinference/thirdparty/cosyvoice/bin/__init__.py +0 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/cosyvoice/flow/__init__.py +0 -0
- xinference/thirdparty/cosyvoice/hifigan/__init__.py +0 -0
- xinference/thirdparty/cosyvoice/llm/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +0 -943
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
- xinference/thirdparty/fish_speech/tools/webui.py +0 -548
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.4eb4ee80.js +0 -3
- xinference/web/ui/build/static/js/main.4eb4ee80.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8c5eeb02f772d02cbe8b89c05428d0dd41a97866f75f7dc1c2164a67f5a1cf98.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/web/ui/build/static/js/{main.4eb4ee80.js.LICENSE.txt → main.1eb206d1.js.LICENSE.txt} +0 -0
- {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/LICENSE +0 -0
- {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/WHEEL +0 -0
- {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.1.0.dist-info → xinference-1.2.0.dist-info}/top_level.txt +0 -0
|
@@ -49,13 +49,14 @@ class InterpolateRegulator(nn.Module):
|
|
|
49
49
|
olens = ylens
|
|
50
50
|
return out * mask, olens
|
|
51
51
|
|
|
52
|
-
def inference(self, x1, x2, mel_len1, mel_len2):
|
|
52
|
+
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
|
|
53
53
|
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
|
|
54
54
|
# x in (B, T, D)
|
|
55
55
|
if x2.shape[1] > 40:
|
|
56
|
-
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=
|
|
57
|
-
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 -
|
|
58
|
-
|
|
56
|
+
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
|
57
|
+
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
|
|
58
|
+
mode='linear')
|
|
59
|
+
x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
|
59
60
|
x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
|
|
60
61
|
else:
|
|
61
62
|
x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
|
|
@@ -0,0 +1,140 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
from torch.nn.utils import weight_norm
|
|
4
|
+
from typing import List, Optional, Tuple
|
|
5
|
+
from einops import rearrange
|
|
6
|
+
from torchaudio.transforms import Spectrogram
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class MultipleDiscriminator(nn.Module):
|
|
10
|
+
def __init__(
|
|
11
|
+
self, mpd: nn.Module, mrd: nn.Module
|
|
12
|
+
):
|
|
13
|
+
super().__init__()
|
|
14
|
+
self.mpd = mpd
|
|
15
|
+
self.mrd = mrd
|
|
16
|
+
|
|
17
|
+
def forward(self, y: torch.Tensor, y_hat: torch.Tensor):
|
|
18
|
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
|
|
19
|
+
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1))
|
|
20
|
+
y_d_rs += this_y_d_rs
|
|
21
|
+
y_d_gs += this_y_d_gs
|
|
22
|
+
fmap_rs += this_fmap_rs
|
|
23
|
+
fmap_gs += this_fmap_gs
|
|
24
|
+
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat)
|
|
25
|
+
y_d_rs += this_y_d_rs
|
|
26
|
+
y_d_gs += this_y_d_gs
|
|
27
|
+
fmap_rs += this_fmap_rs
|
|
28
|
+
fmap_gs += this_fmap_gs
|
|
29
|
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class MultiResolutionDiscriminator(nn.Module):
|
|
33
|
+
def __init__(
|
|
34
|
+
self,
|
|
35
|
+
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
|
|
36
|
+
num_embeddings: Optional[int] = None,
|
|
37
|
+
):
|
|
38
|
+
"""
|
|
39
|
+
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
|
|
40
|
+
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
|
|
44
|
+
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
|
45
|
+
Defaults to None.
|
|
46
|
+
"""
|
|
47
|
+
|
|
48
|
+
super().__init__()
|
|
49
|
+
self.discriminators = nn.ModuleList(
|
|
50
|
+
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
def forward(
|
|
54
|
+
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
|
55
|
+
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
|
56
|
+
y_d_rs = []
|
|
57
|
+
y_d_gs = []
|
|
58
|
+
fmap_rs = []
|
|
59
|
+
fmap_gs = []
|
|
60
|
+
|
|
61
|
+
for d in self.discriminators:
|
|
62
|
+
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
|
63
|
+
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
|
64
|
+
y_d_rs.append(y_d_r)
|
|
65
|
+
fmap_rs.append(fmap_r)
|
|
66
|
+
y_d_gs.append(y_d_g)
|
|
67
|
+
fmap_gs.append(fmap_g)
|
|
68
|
+
|
|
69
|
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class DiscriminatorR(nn.Module):
|
|
73
|
+
def __init__(
|
|
74
|
+
self,
|
|
75
|
+
window_length: int,
|
|
76
|
+
num_embeddings: Optional[int] = None,
|
|
77
|
+
channels: int = 32,
|
|
78
|
+
hop_factor: float = 0.25,
|
|
79
|
+
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
|
|
80
|
+
):
|
|
81
|
+
super().__init__()
|
|
82
|
+
self.window_length = window_length
|
|
83
|
+
self.hop_factor = hop_factor
|
|
84
|
+
self.spec_fn = Spectrogram(
|
|
85
|
+
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
|
|
86
|
+
)
|
|
87
|
+
n_fft = window_length // 2 + 1
|
|
88
|
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
|
89
|
+
self.bands = bands
|
|
90
|
+
convs = lambda: nn.ModuleList(
|
|
91
|
+
[
|
|
92
|
+
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
|
93
|
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
|
94
|
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
|
95
|
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
|
96
|
+
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
|
|
97
|
+
]
|
|
98
|
+
)
|
|
99
|
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
|
100
|
+
|
|
101
|
+
if num_embeddings is not None:
|
|
102
|
+
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
|
|
103
|
+
torch.nn.init.zeros_(self.emb.weight)
|
|
104
|
+
|
|
105
|
+
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
|
|
106
|
+
|
|
107
|
+
def spectrogram(self, x):
|
|
108
|
+
# Remove DC offset
|
|
109
|
+
x = x - x.mean(dim=-1, keepdims=True)
|
|
110
|
+
# Peak normalize the volume of input audio
|
|
111
|
+
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
|
112
|
+
x = self.spec_fn(x)
|
|
113
|
+
x = torch.view_as_real(x)
|
|
114
|
+
x = rearrange(x, "b f t c -> b c t f")
|
|
115
|
+
# Split into bands
|
|
116
|
+
x_bands = [x[..., b[0]: b[1]] for b in self.bands]
|
|
117
|
+
return x_bands
|
|
118
|
+
|
|
119
|
+
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
|
|
120
|
+
x_bands = self.spectrogram(x)
|
|
121
|
+
fmap = []
|
|
122
|
+
x = []
|
|
123
|
+
for band, stack in zip(x_bands, self.band_convs):
|
|
124
|
+
for i, layer in enumerate(stack):
|
|
125
|
+
band = layer(band)
|
|
126
|
+
band = torch.nn.functional.leaky_relu(band, 0.1)
|
|
127
|
+
if i > 0:
|
|
128
|
+
fmap.append(band)
|
|
129
|
+
x.append(band)
|
|
130
|
+
x = torch.cat(x, dim=-1)
|
|
131
|
+
if cond_embedding_id is not None:
|
|
132
|
+
emb = self.emb(cond_embedding_id)
|
|
133
|
+
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
|
134
|
+
else:
|
|
135
|
+
h = 0
|
|
136
|
+
x = self.conv_post(x)
|
|
137
|
+
fmap.append(x)
|
|
138
|
+
x += h
|
|
139
|
+
|
|
140
|
+
return x, fmap
|
|
@@ -14,7 +14,7 @@
|
|
|
14
14
|
|
|
15
15
|
"""HIFI-GAN"""
|
|
16
16
|
|
|
17
|
-
|
|
17
|
+
from typing import Dict, Optional, List
|
|
18
18
|
import numpy as np
|
|
19
19
|
from scipy.signal import get_window
|
|
20
20
|
import torch
|
|
@@ -38,13 +38,15 @@ This code is modified from https://github.com/jik876/hifi-gan
|
|
|
38
38
|
https://github.com/NVIDIA/BigVGAN
|
|
39
39
|
|
|
40
40
|
"""
|
|
41
|
+
|
|
42
|
+
|
|
41
43
|
class ResBlock(torch.nn.Module):
|
|
42
44
|
"""Residual block module in HiFiGAN/BigVGAN."""
|
|
43
45
|
def __init__(
|
|
44
46
|
self,
|
|
45
47
|
channels: int = 512,
|
|
46
48
|
kernel_size: int = 3,
|
|
47
|
-
dilations:
|
|
49
|
+
dilations: List[int] = [1, 3, 5],
|
|
48
50
|
):
|
|
49
51
|
super(ResBlock, self).__init__()
|
|
50
52
|
self.convs1 = nn.ModuleList()
|
|
@@ -100,6 +102,7 @@ class ResBlock(torch.nn.Module):
|
|
|
100
102
|
remove_weight_norm(self.convs1[idx])
|
|
101
103
|
remove_weight_norm(self.convs2[idx])
|
|
102
104
|
|
|
105
|
+
|
|
103
106
|
class SineGen(torch.nn.Module):
|
|
104
107
|
""" Definition of sine generator
|
|
105
108
|
SineGen(samp_rate, harmonic_num = 0,
|
|
@@ -231,13 +234,13 @@ class HiFTGenerator(nn.Module):
|
|
|
231
234
|
nsf_alpha: float = 0.1,
|
|
232
235
|
nsf_sigma: float = 0.003,
|
|
233
236
|
nsf_voiced_threshold: float = 10,
|
|
234
|
-
upsample_rates:
|
|
235
|
-
upsample_kernel_sizes:
|
|
236
|
-
istft_params:
|
|
237
|
-
resblock_kernel_sizes:
|
|
238
|
-
resblock_dilation_sizes:
|
|
239
|
-
source_resblock_kernel_sizes:
|
|
240
|
-
source_resblock_dilation_sizes:
|
|
237
|
+
upsample_rates: List[int] = [8, 8],
|
|
238
|
+
upsample_kernel_sizes: List[int] = [16, 16],
|
|
239
|
+
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
|
240
|
+
resblock_kernel_sizes: List[int] = [3, 7, 11],
|
|
241
|
+
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
|
242
|
+
source_resblock_kernel_sizes: List[int] = [7, 11],
|
|
243
|
+
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
|
|
241
244
|
lrelu_slope: float = 0.1,
|
|
242
245
|
audio_limit: float = 0.99,
|
|
243
246
|
f0_predictor: torch.nn.Module = None,
|
|
@@ -286,8 +289,7 @@ class HiFTGenerator(nn.Module):
|
|
|
286
289
|
self.source_resblocks = nn.ModuleList()
|
|
287
290
|
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
|
288
291
|
downsample_cum_rates = np.cumprod(downsample_rates)
|
|
289
|
-
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
|
|
290
|
-
source_resblock_dilation_sizes)):
|
|
292
|
+
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
|
|
291
293
|
if u == 1:
|
|
292
294
|
self.source_downs.append(
|
|
293
295
|
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
|
@@ -304,7 +306,7 @@ class HiFTGenerator(nn.Module):
|
|
|
304
306
|
self.resblocks = nn.ModuleList()
|
|
305
307
|
for i in range(len(self.ups)):
|
|
306
308
|
ch = base_channels // (2**(i + 1))
|
|
307
|
-
for
|
|
309
|
+
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
|
308
310
|
self.resblocks.append(ResBlock(ch, k, d))
|
|
309
311
|
|
|
310
312
|
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
|
@@ -314,11 +316,19 @@ class HiFTGenerator(nn.Module):
|
|
|
314
316
|
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
|
315
317
|
self.f0_predictor = f0_predictor
|
|
316
318
|
|
|
317
|
-
def
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
319
|
+
def remove_weight_norm(self):
|
|
320
|
+
print('Removing weight norm...')
|
|
321
|
+
for l in self.ups:
|
|
322
|
+
remove_weight_norm(l)
|
|
323
|
+
for l in self.resblocks:
|
|
324
|
+
l.remove_weight_norm()
|
|
325
|
+
remove_weight_norm(self.conv_pre)
|
|
326
|
+
remove_weight_norm(self.conv_post)
|
|
327
|
+
self.m_source.remove_weight_norm()
|
|
328
|
+
for l in self.source_downs:
|
|
329
|
+
remove_weight_norm(l)
|
|
330
|
+
for l in self.source_resblocks:
|
|
331
|
+
l.remove_weight_norm()
|
|
322
332
|
|
|
323
333
|
def _stft(self, x):
|
|
324
334
|
spec = torch.stft(
|
|
@@ -332,17 +342,11 @@ class HiFTGenerator(nn.Module):
|
|
|
332
342
|
magnitude = torch.clip(magnitude, max=1e2)
|
|
333
343
|
real = magnitude * torch.cos(phase)
|
|
334
344
|
img = magnitude * torch.sin(phase)
|
|
335
|
-
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
|
|
345
|
+
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
|
|
346
|
+
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
|
336
347
|
return inverse_transform
|
|
337
348
|
|
|
338
|
-
def
|
|
339
|
-
f0 = self.f0_predictor(x)
|
|
340
|
-
s = self._f02source(f0)
|
|
341
|
-
|
|
342
|
-
# use cache_source to avoid glitch
|
|
343
|
-
if cache_source.shape[2] == 0:
|
|
344
|
-
s[:, :, :cache_source.shape[2]] = cache_source
|
|
345
|
-
|
|
349
|
+
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
|
346
350
|
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
|
347
351
|
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
|
348
352
|
|
|
@@ -374,22 +378,34 @@ class HiFTGenerator(nn.Module):
|
|
|
374
378
|
|
|
375
379
|
x = self._istft(magnitude, phase)
|
|
376
380
|
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
|
377
|
-
return x
|
|
381
|
+
return x
|
|
378
382
|
|
|
379
|
-
def
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
383
|
+
def forward(
|
|
384
|
+
self,
|
|
385
|
+
batch: dict,
|
|
386
|
+
device: torch.device,
|
|
387
|
+
) -> Dict[str, Optional[torch.Tensor]]:
|
|
388
|
+
speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
|
|
389
|
+
# mel->f0
|
|
390
|
+
f0 = self.f0_predictor(speech_feat)
|
|
391
|
+
# f0->source
|
|
392
|
+
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
|
393
|
+
s, _, _ = self.m_source(s)
|
|
394
|
+
s = s.transpose(1, 2)
|
|
395
|
+
# mel+source->speech
|
|
396
|
+
generated_speech = self.decode(x=speech_feat, s=s)
|
|
397
|
+
return generated_speech, f0
|
|
392
398
|
|
|
393
399
|
@torch.inference_mode()
|
|
394
|
-
def inference(self,
|
|
395
|
-
|
|
400
|
+
def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
|
401
|
+
# mel->f0
|
|
402
|
+
f0 = self.f0_predictor(speech_feat)
|
|
403
|
+
# f0->source
|
|
404
|
+
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
|
405
|
+
s, _, _ = self.m_source(s)
|
|
406
|
+
s = s.transpose(1, 2)
|
|
407
|
+
# use cache_source to avoid glitch
|
|
408
|
+
if cache_source.shape[2] != 0:
|
|
409
|
+
s[:, :, :cache_source.shape[2]] = cache_source
|
|
410
|
+
generated_speech = self.decode(x=speech_feat, s=s)
|
|
411
|
+
return generated_speech, s
|
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
from typing import Dict, Optional
|
|
2
|
+
import torch
|
|
3
|
+
import torch.nn as nn
|
|
4
|
+
import torch.nn.functional as F
|
|
5
|
+
from matcha.hifigan.models import feature_loss, generator_loss, discriminator_loss
|
|
6
|
+
from cosyvoice.utils.losses import tpr_loss, mel_loss
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class HiFiGan(nn.Module):
|
|
10
|
+
def __init__(self, generator, discriminator, mel_spec_transform,
|
|
11
|
+
multi_mel_spectral_recon_loss_weight=45, feat_match_loss_weight=2.0,
|
|
12
|
+
tpr_loss_weight=1.0, tpr_loss_tau=0.04):
|
|
13
|
+
super(HiFiGan, self).__init__()
|
|
14
|
+
self.generator = generator
|
|
15
|
+
self.discriminator = discriminator
|
|
16
|
+
self.mel_spec_transform = mel_spec_transform
|
|
17
|
+
self.multi_mel_spectral_recon_loss_weight = multi_mel_spectral_recon_loss_weight
|
|
18
|
+
self.feat_match_loss_weight = feat_match_loss_weight
|
|
19
|
+
self.tpr_loss_weight = tpr_loss_weight
|
|
20
|
+
self.tpr_loss_tau = tpr_loss_tau
|
|
21
|
+
|
|
22
|
+
def forward(
|
|
23
|
+
self,
|
|
24
|
+
batch: dict,
|
|
25
|
+
device: torch.device,
|
|
26
|
+
) -> Dict[str, Optional[torch.Tensor]]:
|
|
27
|
+
if batch['turn'] == 'generator':
|
|
28
|
+
return self.forward_generator(batch, device)
|
|
29
|
+
else:
|
|
30
|
+
return self.forward_discriminator(batch, device)
|
|
31
|
+
|
|
32
|
+
def forward_generator(self, batch, device):
|
|
33
|
+
real_speech = batch['speech'].to(device)
|
|
34
|
+
pitch_feat = batch['pitch_feat'].to(device)
|
|
35
|
+
# 1. calculate generator outputs
|
|
36
|
+
generated_speech, generated_f0 = self.generator(batch, device)
|
|
37
|
+
# 2. calculate discriminator outputs
|
|
38
|
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
|
39
|
+
# 3. calculate generator losses, feature loss, mel loss, tpr losses [Optional]
|
|
40
|
+
loss_gen, _ = generator_loss(y_d_gs)
|
|
41
|
+
loss_fm = feature_loss(fmap_rs, fmap_gs)
|
|
42
|
+
loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
|
|
43
|
+
if self.tpr_loss_weight != 0:
|
|
44
|
+
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
|
45
|
+
else:
|
|
46
|
+
loss_tpr = torch.zeros(1).to(device)
|
|
47
|
+
loss_f0 = F.l1_loss(generated_f0, pitch_feat)
|
|
48
|
+
loss = loss_gen + self.feat_match_loss_weight * loss_fm + \
|
|
49
|
+
self.multi_mel_spectral_recon_loss_weight * loss_mel + \
|
|
50
|
+
self.tpr_loss_weight * loss_tpr + loss_f0
|
|
51
|
+
return {'loss': loss, 'loss_gen': loss_gen, 'loss_fm': loss_fm, 'loss_mel': loss_mel, 'loss_tpr': loss_tpr, 'loss_f0': loss_f0}
|
|
52
|
+
|
|
53
|
+
def forward_discriminator(self, batch, device):
|
|
54
|
+
real_speech = batch['speech'].to(device)
|
|
55
|
+
# 1. calculate generator outputs
|
|
56
|
+
with torch.no_grad():
|
|
57
|
+
generated_speech, generated_f0 = self.generator(batch, device)
|
|
58
|
+
# 2. calculate discriminator outputs
|
|
59
|
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
|
60
|
+
# 3. calculate discriminator losses, tpr losses [Optional]
|
|
61
|
+
loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
|
|
62
|
+
if self.tpr_loss_weight != 0:
|
|
63
|
+
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
|
64
|
+
else:
|
|
65
|
+
loss_tpr = torch.zeros(1).to(device)
|
|
66
|
+
loss = loss_disc + self.tpr_loss_weight * loss_tpr
|
|
67
|
+
return {'loss': loss, 'loss_disc': loss_disc, 'loss_tpr': loss_tpr}
|
|
@@ -15,6 +15,7 @@ from typing import Dict, Optional, Callable, List, Generator
|
|
|
15
15
|
import torch
|
|
16
16
|
from torch import nn
|
|
17
17
|
import torch.nn.functional as F
|
|
18
|
+
from transformers import Qwen2ForCausalLM
|
|
18
19
|
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
|
19
20
|
from cosyvoice.utils.common import IGNORE_ID
|
|
20
21
|
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
|
@@ -80,7 +81,8 @@ class TransformerLM(torch.nn.Module):
|
|
|
80
81
|
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
|
81
82
|
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
|
82
83
|
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
|
83
|
-
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
|
84
|
+
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
|
85
|
+
for i in range(len(text_token))]
|
|
84
86
|
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
|
85
87
|
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
|
86
88
|
return lm_input, lm_input_len
|
|
@@ -104,7 +106,8 @@ class TransformerLM(torch.nn.Module):
|
|
|
104
106
|
embedding = batch['embedding'].to(device)
|
|
105
107
|
|
|
106
108
|
# 1. prepare llm_target
|
|
107
|
-
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
|
109
|
+
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
|
110
|
+
[self.speech_token_size]) for i in range(text_token.size(0))]
|
|
108
111
|
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
|
109
112
|
|
|
110
113
|
# 1. encode text_token
|
|
@@ -124,7 +127,8 @@ class TransformerLM(torch.nn.Module):
|
|
|
124
127
|
speech_token = self.speech_embedding(speech_token)
|
|
125
128
|
|
|
126
129
|
# 5. unpad and pad
|
|
127
|
-
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
|
130
|
+
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
|
131
|
+
task_id_emb, speech_token, speech_token_len)
|
|
128
132
|
|
|
129
133
|
# 6. run lm forward
|
|
130
134
|
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
|
@@ -194,14 +198,143 @@ class TransformerLM(torch.nn.Module):
|
|
|
194
198
|
offset = 0
|
|
195
199
|
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
|
196
200
|
for i in range(max_len):
|
|
197
|
-
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=
|
|
198
|
-
|
|
201
|
+
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
|
|
202
|
+
att_cache=att_cache, cnn_cache=cnn_cache,
|
|
203
|
+
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
|
204
|
+
device=lm_input.device)).to(torch.bool))
|
|
199
205
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
|
206
|
+
# force continue decode first token
|
|
207
|
+
if i == 0:
|
|
208
|
+
logp[:, self.speech_token_size] = -float('inf')
|
|
200
209
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
|
201
210
|
if top_ids == self.speech_token_size:
|
|
202
211
|
break
|
|
203
212
|
# in stream mode, yield token one by one
|
|
204
|
-
yield
|
|
213
|
+
yield top_ids
|
|
205
214
|
out_tokens.append(top_ids)
|
|
206
215
|
offset += lm_input.size(1)
|
|
207
216
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
class Qwen2Encoder(torch.nn.Module):
|
|
220
|
+
def __init__(self, pretrain_path):
|
|
221
|
+
super().__init__()
|
|
222
|
+
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
|
223
|
+
|
|
224
|
+
def forward_one_step(self, xs, masks, cache=None):
|
|
225
|
+
input_masks = masks[:, -1, :]
|
|
226
|
+
outs = self.model(
|
|
227
|
+
inputs_embeds=xs,
|
|
228
|
+
attention_mask=input_masks,
|
|
229
|
+
output_hidden_states=True,
|
|
230
|
+
return_dict=True,
|
|
231
|
+
use_cache=True,
|
|
232
|
+
past_key_values=cache,
|
|
233
|
+
)
|
|
234
|
+
xs = outs.hidden_states[-1]
|
|
235
|
+
new_cache = outs.past_key_values
|
|
236
|
+
return xs, new_cache
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
class Qwen2LM(torch.nn.Module):
|
|
240
|
+
def __init__(
|
|
241
|
+
self,
|
|
242
|
+
llm_input_size: int,
|
|
243
|
+
llm_output_size: int,
|
|
244
|
+
speech_token_size: int,
|
|
245
|
+
llm: torch.nn.Module,
|
|
246
|
+
sampling: Callable,
|
|
247
|
+
length_normalized_loss: bool = True,
|
|
248
|
+
lsm_weight: float = 0.0,
|
|
249
|
+
):
|
|
250
|
+
super().__init__()
|
|
251
|
+
self.llm_input_size = llm_input_size
|
|
252
|
+
self.llm_output_size = llm_output_size
|
|
253
|
+
self.speech_token_size = speech_token_size
|
|
254
|
+
|
|
255
|
+
# 2. build speech token language model related modules
|
|
256
|
+
self.sos_eos = 0
|
|
257
|
+
self.task_id = 1
|
|
258
|
+
self.fill_token = 2
|
|
259
|
+
|
|
260
|
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
|
261
|
+
self.llm = llm
|
|
262
|
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
|
|
263
|
+
self.criterion_ce = LabelSmoothingLoss(
|
|
264
|
+
size=speech_token_size + 3,
|
|
265
|
+
padding_idx=IGNORE_ID,
|
|
266
|
+
smoothing=lsm_weight,
|
|
267
|
+
normalize_length=length_normalized_loss,
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
# 3. [Optional] build speech token related modules
|
|
271
|
+
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
|
|
272
|
+
|
|
273
|
+
# 4. sampling method
|
|
274
|
+
self.sampling = sampling
|
|
275
|
+
|
|
276
|
+
def sampling_ids(
|
|
277
|
+
self,
|
|
278
|
+
weighted_scores: torch.Tensor,
|
|
279
|
+
decoded_tokens: List,
|
|
280
|
+
sampling: int,
|
|
281
|
+
ignore_eos: bool = True,
|
|
282
|
+
):
|
|
283
|
+
while True:
|
|
284
|
+
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
|
285
|
+
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
|
286
|
+
break
|
|
287
|
+
return top_ids
|
|
288
|
+
|
|
289
|
+
@torch.inference_mode()
|
|
290
|
+
def inference(
|
|
291
|
+
self,
|
|
292
|
+
text: torch.Tensor,
|
|
293
|
+
text_len: torch.Tensor,
|
|
294
|
+
prompt_text: torch.Tensor,
|
|
295
|
+
prompt_text_len: torch.Tensor,
|
|
296
|
+
prompt_speech_token: torch.Tensor,
|
|
297
|
+
prompt_speech_token_len: torch.Tensor,
|
|
298
|
+
embedding: torch.Tensor,
|
|
299
|
+
sampling: int = 25,
|
|
300
|
+
max_token_text_ratio: float = 20,
|
|
301
|
+
min_token_text_ratio: float = 2,
|
|
302
|
+
) -> Generator[torch.Tensor, None, None]:
|
|
303
|
+
device = text.device
|
|
304
|
+
text = torch.concat([prompt_text, text], dim=1)
|
|
305
|
+
text_len += prompt_text_len
|
|
306
|
+
text = self.llm.model.model.embed_tokens(text)
|
|
307
|
+
|
|
308
|
+
# 2. encode embedding
|
|
309
|
+
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
|
310
|
+
|
|
311
|
+
# 3. concat llm_input
|
|
312
|
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
|
313
|
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
|
314
|
+
if prompt_speech_token_len != 0:
|
|
315
|
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
|
316
|
+
else:
|
|
317
|
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
|
318
|
+
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
|
319
|
+
|
|
320
|
+
# 4. cal min/max_length
|
|
321
|
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
|
322
|
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
|
323
|
+
|
|
324
|
+
# 5. step by step decode
|
|
325
|
+
out_tokens = []
|
|
326
|
+
cache = None
|
|
327
|
+
for i in range(max_len):
|
|
328
|
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
|
329
|
+
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
|
330
|
+
cache=cache)
|
|
331
|
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
|
332
|
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
|
333
|
+
if top_ids == self.speech_token_size:
|
|
334
|
+
break
|
|
335
|
+
if top_ids > self.speech_token_size:
|
|
336
|
+
continue
|
|
337
|
+
# in stream mode, yield token one by one
|
|
338
|
+
yield top_ids
|
|
339
|
+
out_tokens.append(top_ids)
|
|
340
|
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|