xinference 1.1.0__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +2 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +23 -1
- xinference/core/model.py +1 -6
- xinference/core/utils.py +10 -6
- xinference/model/audio/core.py +5 -0
- xinference/model/audio/cosyvoice.py +25 -3
- xinference/model/audio/f5tts.py +15 -10
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +35 -111
- xinference/model/audio/model_spec.json +19 -3
- xinference/model/audio/model_spec_modelscope.json +9 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +127 -4
- xinference/model/image/model_spec_modelscope.json +130 -4
- xinference/model/image/stable_diffusion/core.py +45 -13
- xinference/model/llm/llm_family.json +47 -0
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +49 -0
- xinference/model/llm/mlx/core.py +68 -13
- xinference/model/llm/transformers/core.py +1 -0
- xinference/model/llm/transformers/qwen2_vl.py +2 -0
- xinference/model/llm/utils.py +1 -0
- xinference/model/llm/vllm/core.py +11 -2
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +11 -28
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/METADATA +11 -6
- {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/RECORD +95 -74
- xinference/thirdparty/cosyvoice/bin/__init__.py +0 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/cosyvoice/flow/__init__.py +0 -0
- xinference/thirdparty/cosyvoice/hifigan/__init__.py +0 -0
- xinference/thirdparty/cosyvoice/llm/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +0 -943
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
- xinference/thirdparty/fish_speech/tools/webui.py +0 -548
- {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/LICENSE +0 -0
- {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/WHEEL +0 -0
- {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,129 @@
|
|
|
1
|
+
import io
|
|
2
|
+
import re
|
|
3
|
+
|
|
4
|
+
import librosa
|
|
5
|
+
import torch
|
|
6
|
+
import torchaudio
|
|
7
|
+
from cachetools import LRUCache, cached
|
|
8
|
+
|
|
9
|
+
CACHE_MAXSIZE = 10000
|
|
10
|
+
MICRO_BATCH_SIZE = 8
|
|
11
|
+
ASR_SAMPLE_RATE = 16000
|
|
12
|
+
HUGE_GAP_THRESHOLD = 4000
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@torch.no_grad()
|
|
16
|
+
@torch.autocast(device_type="cuda", dtype=torch.half)
|
|
17
|
+
def batch_encode(model, audios_list: list[bytes]):
|
|
18
|
+
audios: list[torch.Tensor] = [
|
|
19
|
+
(
|
|
20
|
+
torch.from_numpy(
|
|
21
|
+
librosa.load(io.BytesIO(audio), sr=model.spec_transform.sample_rate)[0]
|
|
22
|
+
)[None]
|
|
23
|
+
if isinstance(audio, bytes)
|
|
24
|
+
else audio
|
|
25
|
+
)
|
|
26
|
+
for audio in audios_list
|
|
27
|
+
]
|
|
28
|
+
|
|
29
|
+
lengths = torch.tensor([audio.shape[-1] for audio in audios], device=model.device)
|
|
30
|
+
max_length = lengths.max().item()
|
|
31
|
+
|
|
32
|
+
print(f"Encode max length: {max_length / model.spec_transform.sample_rate:.2f}s")
|
|
33
|
+
|
|
34
|
+
padded = torch.stack(
|
|
35
|
+
[
|
|
36
|
+
torch.nn.functional.pad(audio, (0, int(max_length - audio.shape[-1])))
|
|
37
|
+
for audio in audios
|
|
38
|
+
]
|
|
39
|
+
).to(model.device)
|
|
40
|
+
|
|
41
|
+
features, feature_lengths = model.encode(padded, audio_lengths=lengths)
|
|
42
|
+
features, feature_lengths = features.cpu(), feature_lengths.cpu()
|
|
43
|
+
|
|
44
|
+
return [feature[..., :length] for feature, length in zip(features, feature_lengths)]
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
@cached(
|
|
48
|
+
cache=LRUCache(maxsize=CACHE_MAXSIZE),
|
|
49
|
+
key=lambda model, audios: (model.device, tuple(audios)),
|
|
50
|
+
)
|
|
51
|
+
def cached_vqgan_batch_encode(model, audios: list[bytes]):
|
|
52
|
+
return batch_encode(model, audios)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
@torch.no_grad()
|
|
56
|
+
@torch.autocast(device_type="cuda", dtype=torch.half)
|
|
57
|
+
def vqgan_decode(model, features):
|
|
58
|
+
lengths = torch.tensor(
|
|
59
|
+
[feature.shape[-1] for feature in features], device=model.device
|
|
60
|
+
)
|
|
61
|
+
max_length = lengths.max().item()
|
|
62
|
+
padded = torch.stack(
|
|
63
|
+
[
|
|
64
|
+
torch.nn.functional.pad(feature, (0, max_length - feature.shape[-1]))
|
|
65
|
+
for feature in features
|
|
66
|
+
]
|
|
67
|
+
).to(model.device)
|
|
68
|
+
|
|
69
|
+
# If bs too large, we do micro batch decode
|
|
70
|
+
audios, audio_lengths = [], []
|
|
71
|
+
for i in range(0, padded.shape[0], MICRO_BATCH_SIZE):
|
|
72
|
+
audio, audio_length = model.decode(
|
|
73
|
+
padded[i : i + MICRO_BATCH_SIZE],
|
|
74
|
+
feature_lengths=lengths[i : i + MICRO_BATCH_SIZE],
|
|
75
|
+
)
|
|
76
|
+
audios.append(audio)
|
|
77
|
+
audio_lengths.append(audio_length)
|
|
78
|
+
audios = torch.cat(audios, dim=0)
|
|
79
|
+
audio_lengths = torch.cat(audio_lengths, dim=0)
|
|
80
|
+
audios, audio_lengths = audios.cpu(), audio_lengths.cpu()
|
|
81
|
+
|
|
82
|
+
return [audio[..., :length].numpy() for audio, length in zip(audios, audio_lengths)]
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
@torch.no_grad()
|
|
86
|
+
def batch_asr(model, lock, audios, sr, language="auto"):
|
|
87
|
+
resampled_audios = []
|
|
88
|
+
for audio in audios:
|
|
89
|
+
audio = torchaudio.functional.resample(audio, sr, ASR_SAMPLE_RATE)
|
|
90
|
+
assert audio.ndim == 1
|
|
91
|
+
resampled_audios.append(audio)
|
|
92
|
+
|
|
93
|
+
with lock:
|
|
94
|
+
res = model.generate(
|
|
95
|
+
input=resampled_audios,
|
|
96
|
+
batch_size=len(resampled_audios),
|
|
97
|
+
language=language,
|
|
98
|
+
use_itn=True,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
results = []
|
|
102
|
+
for r, audio in zip(res, audios):
|
|
103
|
+
text = r["text"]
|
|
104
|
+
text = re.sub(r"<\|.*?\|>", "", text)
|
|
105
|
+
duration = len(audio) / sr * 1000
|
|
106
|
+
huge_gap = False
|
|
107
|
+
|
|
108
|
+
if "timestamp" in r and len(r["timestamp"]) > 2:
|
|
109
|
+
for timestamp_a, timestamp_b in zip(
|
|
110
|
+
r["timestamp"][:-1], r["timestamp"][1:]
|
|
111
|
+
):
|
|
112
|
+
# If there is a gap of more than 4 seconds, we consider it as a huge gap
|
|
113
|
+
if timestamp_b[0] - timestamp_a[1] > HUGE_GAP_THRESHOLD:
|
|
114
|
+
huge_gap = True
|
|
115
|
+
break
|
|
116
|
+
|
|
117
|
+
# Doesn't make sense to have a huge gap at the end
|
|
118
|
+
if duration - r["timestamp"][-1][1] > HUGE_GAP_THRESHOLD:
|
|
119
|
+
huge_gap = True
|
|
120
|
+
|
|
121
|
+
results.append(
|
|
122
|
+
{
|
|
123
|
+
"text": text,
|
|
124
|
+
"duration": duration,
|
|
125
|
+
"huge_gap": huge_gap,
|
|
126
|
+
}
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
return results
|
|
@@ -0,0 +1,246 @@
|
|
|
1
|
+
import io
|
|
2
|
+
import os
|
|
3
|
+
import time
|
|
4
|
+
from http import HTTPStatus
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import ormsgpack
|
|
8
|
+
import soundfile as sf
|
|
9
|
+
import torch
|
|
10
|
+
from kui.asgi import HTTPException, HttpView, JSONResponse, StreamResponse, request
|
|
11
|
+
from loguru import logger
|
|
12
|
+
|
|
13
|
+
from tools.schema import (
|
|
14
|
+
ServeASRRequest,
|
|
15
|
+
ServeASRResponse,
|
|
16
|
+
ServeChatRequest,
|
|
17
|
+
ServeTTSRequest,
|
|
18
|
+
ServeVQGANDecodeRequest,
|
|
19
|
+
ServeVQGANDecodeResponse,
|
|
20
|
+
ServeVQGANEncodeRequest,
|
|
21
|
+
ServeVQGANEncodeResponse,
|
|
22
|
+
)
|
|
23
|
+
from tools.server.agent import get_response_generator
|
|
24
|
+
from tools.server.api_utils import (
|
|
25
|
+
buffer_to_async_generator,
|
|
26
|
+
get_content_type,
|
|
27
|
+
inference_async,
|
|
28
|
+
)
|
|
29
|
+
from tools.server.inference import inference_wrapper as inference
|
|
30
|
+
from tools.server.model_manager import ModelManager
|
|
31
|
+
from tools.server.model_utils import batch_asr, cached_vqgan_batch_encode, vqgan_decode
|
|
32
|
+
|
|
33
|
+
MAX_NUM_SAMPLES = int(os.getenv("NUM_SAMPLES", 1))
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class HealthView(HttpView):
|
|
37
|
+
"""
|
|
38
|
+
Return the health status of the server.
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
@classmethod
|
|
42
|
+
async def post(cls):
|
|
43
|
+
return JSONResponse({"status": "ok"})
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class VQGANEncodeView(HttpView):
|
|
47
|
+
"""
|
|
48
|
+
Encode the audio into symbolic tokens.
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
@classmethod
|
|
52
|
+
async def post(cls):
|
|
53
|
+
# Decode the request
|
|
54
|
+
payload = await request.data()
|
|
55
|
+
req = ServeVQGANEncodeRequest(**payload)
|
|
56
|
+
|
|
57
|
+
# Get the model from the app
|
|
58
|
+
model_manager: ModelManager = request.app.state.model_manager
|
|
59
|
+
decoder_model = model_manager.decoder_model
|
|
60
|
+
|
|
61
|
+
# Encode the audio
|
|
62
|
+
start_time = time.time()
|
|
63
|
+
tokens = cached_vqgan_batch_encode(decoder_model, req.audios)
|
|
64
|
+
logger.info(
|
|
65
|
+
f"[EXEC] VQGAN encode time: {(time.time() - start_time) * 1000:.2f}ms"
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
# Return the response
|
|
69
|
+
return ormsgpack.packb(
|
|
70
|
+
ServeVQGANEncodeResponse(tokens=[i.tolist() for i in tokens]),
|
|
71
|
+
option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
class VQGANDecodeView(HttpView):
|
|
76
|
+
"""
|
|
77
|
+
Decode the symbolic tokens into audio.
|
|
78
|
+
"""
|
|
79
|
+
|
|
80
|
+
@classmethod
|
|
81
|
+
async def post(cls):
|
|
82
|
+
# Decode the request
|
|
83
|
+
payload = await request.data()
|
|
84
|
+
req = ServeVQGANDecodeRequest(**payload)
|
|
85
|
+
|
|
86
|
+
# Get the model from the app
|
|
87
|
+
model_manager: ModelManager = request.app.state.model_manager
|
|
88
|
+
decoder_model = model_manager.decoder_model
|
|
89
|
+
|
|
90
|
+
# Decode the audio
|
|
91
|
+
tokens = [torch.tensor(token, dtype=torch.int) for token in req.tokens]
|
|
92
|
+
start_time = time.time()
|
|
93
|
+
audios = vqgan_decode(decoder_model, tokens)
|
|
94
|
+
logger.info(
|
|
95
|
+
f"[EXEC] VQGAN decode time: {(time.time() - start_time) * 1000:.2f}ms"
|
|
96
|
+
)
|
|
97
|
+
audios = [audio.astype(np.float16).tobytes() for audio in audios]
|
|
98
|
+
|
|
99
|
+
# Return the response
|
|
100
|
+
return ormsgpack.packb(
|
|
101
|
+
ServeVQGANDecodeResponse(audios=audios),
|
|
102
|
+
option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
class ASRView(HttpView):
|
|
107
|
+
"""
|
|
108
|
+
Perform automatic speech recognition on the audio.
|
|
109
|
+
"""
|
|
110
|
+
|
|
111
|
+
@classmethod
|
|
112
|
+
async def post(cls):
|
|
113
|
+
# Decode the request
|
|
114
|
+
payload = await request.data()
|
|
115
|
+
req = ServeASRRequest(**payload)
|
|
116
|
+
|
|
117
|
+
# Get the model from the app
|
|
118
|
+
model_manager: ModelManager = request.app.state.model_manager
|
|
119
|
+
asr_model = model_manager.asr_model
|
|
120
|
+
lock = request.app.state.lock
|
|
121
|
+
|
|
122
|
+
# Perform ASR
|
|
123
|
+
start_time = time.time()
|
|
124
|
+
audios = [np.frombuffer(audio, dtype=np.float16) for audio in req.audios]
|
|
125
|
+
audios = [torch.from_numpy(audio).float() for audio in audios]
|
|
126
|
+
|
|
127
|
+
if any(audios.shape[-1] >= 30 * req.sample_rate for audios in audios):
|
|
128
|
+
raise HTTPException(status_code=400, content="Audio length is too long")
|
|
129
|
+
|
|
130
|
+
transcriptions = batch_asr(
|
|
131
|
+
asr_model, lock, audios=audios, sr=req.sample_rate, language=req.language
|
|
132
|
+
)
|
|
133
|
+
logger.info(f"[EXEC] ASR time: {(time.time() - start_time) * 1000:.2f}ms")
|
|
134
|
+
|
|
135
|
+
# Return the response
|
|
136
|
+
return ormsgpack.packb(
|
|
137
|
+
ServeASRResponse(transcriptions=transcriptions),
|
|
138
|
+
option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
class TTSView(HttpView):
|
|
143
|
+
"""
|
|
144
|
+
Perform text-to-speech on the input text.
|
|
145
|
+
"""
|
|
146
|
+
|
|
147
|
+
@classmethod
|
|
148
|
+
async def post(cls):
|
|
149
|
+
# Decode the request
|
|
150
|
+
payload = await request.data()
|
|
151
|
+
req = ServeTTSRequest(**payload)
|
|
152
|
+
|
|
153
|
+
# Get the model from the app
|
|
154
|
+
app_state = request.app.state
|
|
155
|
+
model_manager: ModelManager = app_state.model_manager
|
|
156
|
+
engine = model_manager.tts_inference_engine
|
|
157
|
+
sample_rate = engine.decoder_model.spec_transform.sample_rate
|
|
158
|
+
|
|
159
|
+
# Check if the text is too long
|
|
160
|
+
if app_state.max_text_length > 0 and len(req.text) > app_state.max_text_length:
|
|
161
|
+
raise HTTPException(
|
|
162
|
+
HTTPStatus.BAD_REQUEST,
|
|
163
|
+
content=f"Text is too long, max length is {app_state.max_text_length}",
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
# Check if streaming is enabled
|
|
167
|
+
if req.streaming and req.format != "wav":
|
|
168
|
+
raise HTTPException(
|
|
169
|
+
HTTPStatus.BAD_REQUEST,
|
|
170
|
+
content="Streaming only supports WAV format",
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
# Perform TTS
|
|
174
|
+
if req.streaming:
|
|
175
|
+
return StreamResponse(
|
|
176
|
+
iterable=inference_async(req, engine),
|
|
177
|
+
headers={
|
|
178
|
+
"Content-Disposition": f"attachment; filename=audio.{req.format}",
|
|
179
|
+
},
|
|
180
|
+
content_type=get_content_type(req.format),
|
|
181
|
+
)
|
|
182
|
+
else:
|
|
183
|
+
fake_audios = next(inference(req, engine))
|
|
184
|
+
buffer = io.BytesIO()
|
|
185
|
+
sf.write(
|
|
186
|
+
buffer,
|
|
187
|
+
fake_audios,
|
|
188
|
+
sample_rate,
|
|
189
|
+
format=req.format,
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
return StreamResponse(
|
|
193
|
+
iterable=buffer_to_async_generator(buffer.getvalue()),
|
|
194
|
+
headers={
|
|
195
|
+
"Content-Disposition": f"attachment; filename=audio.{req.format}",
|
|
196
|
+
},
|
|
197
|
+
content_type=get_content_type(req.format),
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
class ChatView(HttpView):
|
|
202
|
+
"""
|
|
203
|
+
Perform chatbot inference on the input text.
|
|
204
|
+
"""
|
|
205
|
+
|
|
206
|
+
@classmethod
|
|
207
|
+
async def post(cls):
|
|
208
|
+
# Decode the request
|
|
209
|
+
payload = await request.data()
|
|
210
|
+
req = ServeChatRequest(**payload)
|
|
211
|
+
|
|
212
|
+
# Check that the number of samples requested is correct
|
|
213
|
+
if req.num_samples < 1 or req.num_samples > MAX_NUM_SAMPLES:
|
|
214
|
+
raise HTTPException(
|
|
215
|
+
HTTPStatus.BAD_REQUEST,
|
|
216
|
+
content=f"Number of samples must be between 1 and {MAX_NUM_SAMPLES}",
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
# Get the type of content provided
|
|
220
|
+
content_type = request.headers.get("Content-Type", "application/json")
|
|
221
|
+
json_mode = "application/json" in content_type
|
|
222
|
+
|
|
223
|
+
# Get the models from the app
|
|
224
|
+
model_manager: ModelManager = request.app.state.model_manager
|
|
225
|
+
llama_queue = model_manager.llama_queue
|
|
226
|
+
tokenizer = model_manager.tokenizer
|
|
227
|
+
config = model_manager.config
|
|
228
|
+
|
|
229
|
+
device = request.app.state.device
|
|
230
|
+
|
|
231
|
+
# Get the response generators
|
|
232
|
+
response_generator = get_response_generator(
|
|
233
|
+
llama_queue, tokenizer, config, req, device, json_mode
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
# Return the response in the correct format
|
|
237
|
+
if req.streaming is False:
|
|
238
|
+
result = response_generator()
|
|
239
|
+
if json_mode:
|
|
240
|
+
return JSONResponse(result.model_dump())
|
|
241
|
+
else:
|
|
242
|
+
return ormsgpack.packb(result, option=ormsgpack.OPT_SERIALIZE_PYDANTIC)
|
|
243
|
+
|
|
244
|
+
return StreamResponse(
|
|
245
|
+
iterable=response_generator(), content_type="text/event-stream"
|
|
246
|
+
)
|
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
from typing import Callable
|
|
2
|
+
|
|
3
|
+
import gradio as gr
|
|
4
|
+
|
|
5
|
+
from fish_speech.i18n import i18n
|
|
6
|
+
from tools.inference_engine.utils import normalize_text
|
|
7
|
+
from tools.webui.variables import HEADER_MD, TEXTBOX_PLACEHOLDER
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def build_app(inference_fct: Callable, theme: str = "light") -> gr.Blocks:
|
|
11
|
+
with gr.Blocks(theme=gr.themes.Base()) as app:
|
|
12
|
+
gr.Markdown(HEADER_MD)
|
|
13
|
+
|
|
14
|
+
# Use light theme by default
|
|
15
|
+
app.load(
|
|
16
|
+
None,
|
|
17
|
+
None,
|
|
18
|
+
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
|
|
19
|
+
% theme,
|
|
20
|
+
)
|
|
21
|
+
|
|
22
|
+
# Inference
|
|
23
|
+
with gr.Row():
|
|
24
|
+
with gr.Column(scale=3):
|
|
25
|
+
text = gr.Textbox(
|
|
26
|
+
label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10
|
|
27
|
+
)
|
|
28
|
+
refined_text = gr.Textbox(
|
|
29
|
+
label=i18n("Realtime Transform Text"),
|
|
30
|
+
placeholder=i18n(
|
|
31
|
+
"Normalization Result Preview (Currently Only Chinese)"
|
|
32
|
+
),
|
|
33
|
+
lines=5,
|
|
34
|
+
interactive=False,
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
with gr.Row():
|
|
38
|
+
normalize = gr.Checkbox(
|
|
39
|
+
label=i18n("Text Normalization"),
|
|
40
|
+
value=False,
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
with gr.Row():
|
|
44
|
+
with gr.Column():
|
|
45
|
+
with gr.Tab(label=i18n("Advanced Config")):
|
|
46
|
+
with gr.Row():
|
|
47
|
+
chunk_length = gr.Slider(
|
|
48
|
+
label=i18n("Iterative Prompt Length, 0 means off"),
|
|
49
|
+
minimum=0,
|
|
50
|
+
maximum=300,
|
|
51
|
+
value=200,
|
|
52
|
+
step=8,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
max_new_tokens = gr.Slider(
|
|
56
|
+
label=i18n(
|
|
57
|
+
"Maximum tokens per batch, 0 means no limit"
|
|
58
|
+
),
|
|
59
|
+
minimum=0,
|
|
60
|
+
maximum=2048,
|
|
61
|
+
value=0,
|
|
62
|
+
step=8,
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
with gr.Row():
|
|
66
|
+
top_p = gr.Slider(
|
|
67
|
+
label="Top-P",
|
|
68
|
+
minimum=0.6,
|
|
69
|
+
maximum=0.9,
|
|
70
|
+
value=0.7,
|
|
71
|
+
step=0.01,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
repetition_penalty = gr.Slider(
|
|
75
|
+
label=i18n("Repetition Penalty"),
|
|
76
|
+
minimum=1,
|
|
77
|
+
maximum=1.5,
|
|
78
|
+
value=1.2,
|
|
79
|
+
step=0.01,
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
with gr.Row():
|
|
83
|
+
temperature = gr.Slider(
|
|
84
|
+
label="Temperature",
|
|
85
|
+
minimum=0.6,
|
|
86
|
+
maximum=0.9,
|
|
87
|
+
value=0.7,
|
|
88
|
+
step=0.01,
|
|
89
|
+
)
|
|
90
|
+
seed = gr.Number(
|
|
91
|
+
label="Seed",
|
|
92
|
+
info="0 means randomized inference, otherwise deterministic",
|
|
93
|
+
value=0,
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
with gr.Tab(label=i18n("Reference Audio")):
|
|
97
|
+
with gr.Row():
|
|
98
|
+
gr.Markdown(
|
|
99
|
+
i18n(
|
|
100
|
+
"5 to 10 seconds of reference audio, useful for specifying speaker."
|
|
101
|
+
)
|
|
102
|
+
)
|
|
103
|
+
with gr.Row():
|
|
104
|
+
reference_id = gr.Textbox(
|
|
105
|
+
label=i18n("Reference ID"),
|
|
106
|
+
placeholder="Leave empty to use uploaded references",
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
with gr.Row():
|
|
110
|
+
use_memory_cache = gr.Radio(
|
|
111
|
+
label=i18n("Use Memory Cache"),
|
|
112
|
+
choices=["on", "off"],
|
|
113
|
+
value="on",
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
with gr.Row():
|
|
117
|
+
reference_audio = gr.Audio(
|
|
118
|
+
label=i18n("Reference Audio"),
|
|
119
|
+
type="filepath",
|
|
120
|
+
)
|
|
121
|
+
with gr.Row():
|
|
122
|
+
reference_text = gr.Textbox(
|
|
123
|
+
label=i18n("Reference Text"),
|
|
124
|
+
lines=1,
|
|
125
|
+
placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
|
|
126
|
+
value="",
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
with gr.Column(scale=3):
|
|
130
|
+
with gr.Row():
|
|
131
|
+
error = gr.HTML(
|
|
132
|
+
label=i18n("Error Message"),
|
|
133
|
+
visible=True,
|
|
134
|
+
)
|
|
135
|
+
with gr.Row():
|
|
136
|
+
audio = gr.Audio(
|
|
137
|
+
label=i18n("Generated Audio"),
|
|
138
|
+
type="numpy",
|
|
139
|
+
interactive=False,
|
|
140
|
+
visible=True,
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
with gr.Row():
|
|
144
|
+
with gr.Column(scale=3):
|
|
145
|
+
generate = gr.Button(
|
|
146
|
+
value="\U0001F3A7 " + i18n("Generate"),
|
|
147
|
+
variant="primary",
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
text.input(fn=normalize_text, inputs=[text, normalize], outputs=[refined_text])
|
|
151
|
+
|
|
152
|
+
# Submit
|
|
153
|
+
generate.click(
|
|
154
|
+
inference_fct,
|
|
155
|
+
[
|
|
156
|
+
refined_text,
|
|
157
|
+
normalize,
|
|
158
|
+
reference_id,
|
|
159
|
+
reference_audio,
|
|
160
|
+
reference_text,
|
|
161
|
+
max_new_tokens,
|
|
162
|
+
chunk_length,
|
|
163
|
+
top_p,
|
|
164
|
+
repetition_penalty,
|
|
165
|
+
temperature,
|
|
166
|
+
seed,
|
|
167
|
+
use_memory_cache,
|
|
168
|
+
],
|
|
169
|
+
[audio, error],
|
|
170
|
+
concurrency_limit=1,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
return app
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
import html
|
|
2
|
+
from functools import partial
|
|
3
|
+
from typing import Any, Callable
|
|
4
|
+
|
|
5
|
+
from fish_speech.i18n import i18n
|
|
6
|
+
from tools.schema import ServeReferenceAudio, ServeTTSRequest
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def inference_wrapper(
|
|
10
|
+
text,
|
|
11
|
+
normalize,
|
|
12
|
+
reference_id,
|
|
13
|
+
reference_audio,
|
|
14
|
+
reference_text,
|
|
15
|
+
max_new_tokens,
|
|
16
|
+
chunk_length,
|
|
17
|
+
top_p,
|
|
18
|
+
repetition_penalty,
|
|
19
|
+
temperature,
|
|
20
|
+
seed,
|
|
21
|
+
use_memory_cache,
|
|
22
|
+
engine,
|
|
23
|
+
):
|
|
24
|
+
"""
|
|
25
|
+
Wrapper for the inference function.
|
|
26
|
+
Used in the Gradio interface.
|
|
27
|
+
"""
|
|
28
|
+
|
|
29
|
+
if reference_audio:
|
|
30
|
+
references = get_reference_audio(reference_audio, reference_text)
|
|
31
|
+
else:
|
|
32
|
+
references = []
|
|
33
|
+
|
|
34
|
+
req = ServeTTSRequest(
|
|
35
|
+
text=text,
|
|
36
|
+
normalize=normalize,
|
|
37
|
+
reference_id=reference_id if reference_id else None,
|
|
38
|
+
references=references,
|
|
39
|
+
max_new_tokens=max_new_tokens,
|
|
40
|
+
chunk_length=chunk_length,
|
|
41
|
+
top_p=top_p,
|
|
42
|
+
repetition_penalty=repetition_penalty,
|
|
43
|
+
temperature=temperature,
|
|
44
|
+
seed=int(seed) if seed else None,
|
|
45
|
+
use_memory_cache=use_memory_cache,
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
for result in engine.inference(req):
|
|
49
|
+
match result.code:
|
|
50
|
+
case "final":
|
|
51
|
+
return result.audio, None
|
|
52
|
+
case "error":
|
|
53
|
+
return None, build_html_error_message(i18n(result.error))
|
|
54
|
+
case _:
|
|
55
|
+
pass
|
|
56
|
+
|
|
57
|
+
return None, i18n("No audio generated")
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def get_reference_audio(reference_audio: str, reference_text: str) -> list:
|
|
61
|
+
"""
|
|
62
|
+
Get the reference audio bytes.
|
|
63
|
+
"""
|
|
64
|
+
|
|
65
|
+
with open(reference_audio, "rb") as audio_file:
|
|
66
|
+
audio_bytes = audio_file.read()
|
|
67
|
+
|
|
68
|
+
return [ServeReferenceAudio(audio=audio_bytes, text=reference_text)]
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def build_html_error_message(error: Any) -> str:
|
|
72
|
+
|
|
73
|
+
error = error if isinstance(error, Exception) else Exception("Unknown error")
|
|
74
|
+
|
|
75
|
+
return f"""
|
|
76
|
+
<div style="color: red;
|
|
77
|
+
font-weight: bold;">
|
|
78
|
+
{html.escape(str(error))}
|
|
79
|
+
</div>
|
|
80
|
+
"""
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
def get_inference_wrapper(engine) -> Callable:
|
|
84
|
+
"""
|
|
85
|
+
Get the inference function with the immutable arguments.
|
|
86
|
+
"""
|
|
87
|
+
|
|
88
|
+
return partial(
|
|
89
|
+
inference_wrapper,
|
|
90
|
+
engine=engine,
|
|
91
|
+
)
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
from fish_speech.i18n import i18n
|
|
2
|
+
|
|
3
|
+
HEADER_MD = f"""# Fish Speech
|
|
4
|
+
|
|
5
|
+
{i18n("A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).")}
|
|
6
|
+
|
|
7
|
+
{i18n("You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1.5).")}
|
|
8
|
+
|
|
9
|
+
{i18n("Related code and weights are released under CC BY-NC-SA 4.0 License.")}
|
|
10
|
+
|
|
11
|
+
{i18n("We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.")}
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
TEXTBOX_PLACEHOLDER = i18n("Put your text here.")
|
|
@@ -7,10 +7,10 @@ from pathlib import Path
|
|
|
7
7
|
from typing import Any, Callable, Dict, Tuple
|
|
8
8
|
|
|
9
9
|
import gdown
|
|
10
|
-
import matplotlib.pyplot as plt
|
|
10
|
+
# import matplotlib.pyplot as plt
|
|
11
11
|
import numpy as np
|
|
12
12
|
import torch
|
|
13
|
-
import wget
|
|
13
|
+
# import wget
|
|
14
14
|
from omegaconf import DictConfig
|
|
15
15
|
|
|
16
16
|
from matcha.utils import pylogger, rich_utils
|