xinference 1.1.0__py3-none-any.whl → 1.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (104) hide show
  1. xinference/_compat.py +2 -0
  2. xinference/_version.py +3 -3
  3. xinference/api/restful_api.py +23 -1
  4. xinference/core/model.py +1 -6
  5. xinference/core/utils.py +10 -6
  6. xinference/model/audio/core.py +5 -0
  7. xinference/model/audio/cosyvoice.py +25 -3
  8. xinference/model/audio/f5tts.py +15 -10
  9. xinference/model/audio/f5tts_mlx.py +260 -0
  10. xinference/model/audio/fish_speech.py +35 -111
  11. xinference/model/audio/model_spec.json +19 -3
  12. xinference/model/audio/model_spec_modelscope.json +9 -0
  13. xinference/model/audio/utils.py +32 -0
  14. xinference/model/image/core.py +69 -1
  15. xinference/model/image/model_spec.json +127 -4
  16. xinference/model/image/model_spec_modelscope.json +130 -4
  17. xinference/model/image/stable_diffusion/core.py +45 -13
  18. xinference/model/llm/llm_family.json +47 -0
  19. xinference/model/llm/llm_family.py +15 -36
  20. xinference/model/llm/llm_family_modelscope.json +49 -0
  21. xinference/model/llm/mlx/core.py +68 -13
  22. xinference/model/llm/transformers/core.py +1 -0
  23. xinference/model/llm/transformers/qwen2_vl.py +2 -0
  24. xinference/model/llm/utils.py +1 -0
  25. xinference/model/llm/vllm/core.py +11 -2
  26. xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
  27. xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
  28. xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
  29. xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
  30. xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
  31. xinference/thirdparty/cosyvoice/bin/train.py +42 -8
  32. xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
  33. xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
  34. xinference/thirdparty/cosyvoice/cli/model.py +330 -80
  35. xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
  36. xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
  37. xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
  38. xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
  39. xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
  40. xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
  41. xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
  42. xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
  43. xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
  44. xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
  45. xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
  46. xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
  47. xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
  48. xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
  49. xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
  50. xinference/thirdparty/cosyvoice/utils/common.py +28 -1
  51. xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
  52. xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
  53. xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
  54. xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
  55. xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
  56. xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
  57. xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
  58. xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
  59. xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
  60. xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
  61. xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
  62. xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
  63. xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
  64. xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
  65. xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
  66. xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
  67. xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
  68. xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
  69. xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
  70. xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
  71. xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
  72. xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
  73. xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
  74. xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
  75. xinference/thirdparty/fish_speech/tools/schema.py +11 -28
  76. xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
  77. xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
  78. xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
  79. xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
  80. xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
  81. xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
  82. xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
  83. xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
  84. xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
  85. xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
  86. xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
  87. xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
  88. xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
  89. xinference/thirdparty/matcha/utils/utils.py +2 -2
  90. {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/METADATA +11 -6
  91. {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/RECORD +95 -74
  92. xinference/thirdparty/cosyvoice/bin/__init__.py +0 -0
  93. xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
  94. xinference/thirdparty/cosyvoice/flow/__init__.py +0 -0
  95. xinference/thirdparty/cosyvoice/hifigan/__init__.py +0 -0
  96. xinference/thirdparty/cosyvoice/llm/__init__.py +0 -0
  97. xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
  98. xinference/thirdparty/fish_speech/tools/api.py +0 -943
  99. xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
  100. xinference/thirdparty/fish_speech/tools/webui.py +0 -548
  101. {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/LICENSE +0 -0
  102. {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/WHEEL +0 -0
  103. {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/entry_points.txt +0 -0
  104. {xinference-1.1.0.dist-info → xinference-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,119 @@
1
+ import time
2
+
3
+ from tools.schema import ServeMessage, ServeResponse, ServeStreamResponse
4
+ from tools.server.agent.generation_utils import (
5
+ initialize_decode_buffers,
6
+ process_response_tokens,
7
+ send_reset_buffer,
8
+ )
9
+ from tools.server.agent.pre_generation_utils import (
10
+ create_generation_request,
11
+ send_generation_request,
12
+ )
13
+
14
+
15
+ def generate_responses(
16
+ input_queue, tokenizer, config, request, prompt, im_end_id, device
17
+ ):
18
+ """
19
+ Main generation function that handles the conversation, encodes the request,
20
+ sends the generation request, and handles decoding/streaming.
21
+ It returns a response generator (ServeResponse or ServeStreamResponse).
22
+ """
23
+ stats = {}
24
+ start = time.time()
25
+ stats["start_time"] = start
26
+ stats["tokens_count"] = 0
27
+
28
+ # Prepare and send the generation request
29
+ req = create_generation_request(prompt, request, im_end_id, device)
30
+ response_queue = send_generation_request(input_queue, req)
31
+ decode_buffer, parts, finished = initialize_decode_buffers(request.num_samples)
32
+
33
+ while True:
34
+ response = response_queue.get()
35
+
36
+ # Handle abnormal finish or error
37
+ if response in ["stop", "error"]:
38
+ finish_reason = response
39
+ break
40
+
41
+ # Process the response tokens
42
+ is_first_token = stats["tokens_count"] == 0
43
+ responses = process_response_tokens(
44
+ response,
45
+ tokenizer,
46
+ config,
47
+ request,
48
+ decode_buffer,
49
+ parts,
50
+ finished,
51
+ im_end_id,
52
+ stats,
53
+ start,
54
+ is_first_token,
55
+ )
56
+
57
+ # Yield the responses if streaming
58
+ if request.streaming and responses:
59
+ for r in responses:
60
+ yield r
61
+
62
+ stats["tokens_count"] += 1
63
+
64
+ # Check if all samples are finished
65
+ if all(finished):
66
+ finish_reason = "stop"
67
+ break
68
+
69
+ # Finalize the response
70
+ final_responses = finalize_response(
71
+ request, finished, decode_buffer, tokenizer, parts, stats, finish_reason
72
+ )
73
+ for fr in final_responses:
74
+ yield fr
75
+
76
+
77
+ def finalize_response(
78
+ request, finished, decode_buffer, tokenizer, parts, stats, finish_reason
79
+ ):
80
+ """
81
+ Finalize the response by sending the remaining text buffers.
82
+ """
83
+ responses = []
84
+
85
+ # Send the remaining text buffers
86
+ for sample_id in range(request.num_samples):
87
+ responses.extend(
88
+ send_reset_buffer(sample_id, decode_buffer, tokenizer, parts, request)
89
+ )
90
+
91
+ # Calculate the final stats
92
+ stats["total_time"] = (time.time() - stats["start_time"]) * 1000
93
+ stats["total_tokens"] = stats["tokens_count"]
94
+
95
+ # If streaming, send the final chunks for each sample
96
+ if request.streaming:
97
+ for sample_id in range(request.num_samples):
98
+ if finished[sample_id]:
99
+ continue
100
+ responses.append(
101
+ ServeStreamResponse(
102
+ finish_reason=finish_reason, stats=stats, sample_id=sample_id
103
+ )
104
+ )
105
+ else:
106
+ # If not streaming, send the full messages for each sample
107
+ full_messages = [
108
+ ServeMessage(role="assistant", parts=parts[i])
109
+ for i in range(request.num_samples)
110
+ ]
111
+ responses.append(
112
+ ServeResponse(
113
+ messages=full_messages,
114
+ finish_reason=finish_reason,
115
+ stats=stats,
116
+ )
117
+ )
118
+
119
+ return responses
@@ -0,0 +1,122 @@
1
+ import time
2
+
3
+ from tools.schema import (
4
+ ServeStreamDelta,
5
+ ServeStreamResponse,
6
+ ServeTextPart,
7
+ ServeVQPart,
8
+ )
9
+
10
+
11
+ def initialize_decode_buffers(num_samples):
12
+ """Initialise the decode buffers for each sample."""
13
+ decode_buffer = [[] for _ in range(num_samples)]
14
+ parts = [[] for _ in range(num_samples)]
15
+ finished = [False for _ in range(num_samples)]
16
+ return decode_buffer, parts, finished
17
+
18
+
19
+ def send_reset_buffer(sample_id, decode_buffer, tokenizer, parts, request):
20
+ """Send the remaining text buffer for a sample."""
21
+ if len(decode_buffer[sample_id]) == 0:
22
+ return []
23
+
24
+ decoded = tokenizer.decode(decode_buffer[sample_id])
25
+ part = ServeTextPart(text=decoded)
26
+
27
+ responses = []
28
+ if request.streaming:
29
+ responses.append(ServeStreamResponse(delta=ServeStreamDelta(part=part)))
30
+ else:
31
+ parts[sample_id].append(part)
32
+
33
+ decode_buffer[sample_id] = []
34
+ return responses
35
+
36
+
37
+ def handle_semantic_tokens(tokens, config, sample_id, parts, request):
38
+ """Handle the semantic tokens returned by the model."""
39
+ responses = []
40
+ _tokens = tokens[1:].clone()
41
+
42
+ if not config.share_codebook_embeddings:
43
+ for i in range(len(_tokens)):
44
+ _tokens[i] -= config.codebook_size * i
45
+
46
+ # If streaming, send the VQ parts directly
47
+ if request.streaming:
48
+ responses.append(
49
+ ServeStreamResponse(
50
+ sample_id=sample_id,
51
+ delta=ServeStreamDelta(part=ServeVQPart(codes=_tokens.tolist())),
52
+ )
53
+ )
54
+ else:
55
+ # If not streaming, accumulate the VQ parts
56
+ if not parts[sample_id] or not isinstance(parts[sample_id][-1], ServeVQPart):
57
+ parts[sample_id].append(ServeVQPart(codes=_tokens.tolist()))
58
+ else:
59
+ # Accumulate the codes
60
+ for codebook_id, value in enumerate(_tokens):
61
+ parts[sample_id][-1].codes[codebook_id].append(value.item())
62
+
63
+ return responses
64
+
65
+
66
+ def process_response_tokens(
67
+ response,
68
+ tokenizer,
69
+ config,
70
+ request,
71
+ decode_buffer,
72
+ parts,
73
+ finished,
74
+ im_end_id,
75
+ stats,
76
+ start,
77
+ is_first_token,
78
+ ):
79
+ """Process the response tokens returned by the model."""
80
+ responses = []
81
+ for sample_id, tokens in enumerate(response):
82
+ if finished[sample_id]:
83
+ continue
84
+
85
+ # End of the conversation
86
+ if tokens[0] == im_end_id:
87
+ finished[sample_id] = True
88
+ # Send the remaining text buffer
89
+ responses.extend(
90
+ send_reset_buffer(sample_id, decode_buffer, tokenizer, parts, request)
91
+ )
92
+ if request.streaming:
93
+ responses.append(
94
+ ServeStreamResponse(
95
+ sample_id=sample_id,
96
+ finish_reason="stop",
97
+ stats=stats,
98
+ )
99
+ )
100
+ continue
101
+
102
+ # Check if the token is semantic
103
+ is_semantic = (
104
+ tokenizer.semantic_begin_id <= tokens[0] <= tokenizer.semantic_end_id
105
+ )
106
+
107
+ if is_semantic:
108
+ # Before the semantic tokens, send the remaining text buffer
109
+ responses.extend(
110
+ send_reset_buffer(sample_id, decode_buffer, tokenizer, parts, request)
111
+ )
112
+ responses.extend(
113
+ handle_semantic_tokens(tokens, config, sample_id, parts, request)
114
+ )
115
+ else:
116
+ # Accumulate the text tokens (not implemented?)
117
+ decode_buffer[sample_id].append(tokens[0, 0])
118
+
119
+ if is_first_token:
120
+ stats["time_to_first_token"] = (time.time() - start) * 1000
121
+
122
+ return responses
@@ -0,0 +1,72 @@
1
+ import queue
2
+
3
+ from fish_speech.conversation import Conversation, Message
4
+ from fish_speech.tokenizer import IM_END_TOKEN
5
+ from tools.llama.generate import GenerateRequest
6
+
7
+
8
+ def prepare_messages(request, tokenizer, config):
9
+ """
10
+ Reorganise the provided list of messages into a conversation.
11
+ Encode the conversation for inference.
12
+ """
13
+ # Convert the messages to ConversationMessage objects
14
+ messages = [msg.to_conversation_message() for msg in request.messages]
15
+
16
+ if len(messages) < 1:
17
+ raise ValueError("At least one message is required")
18
+
19
+ # Check the last message to determine the next step
20
+ last_role = messages[-1].role
21
+ match last_role:
22
+ case "user":
23
+ # The last message is from the user, ask the assistant to respond with a new message
24
+ messages.append(
25
+ Message(role="assistant", parts=[], add_im_end=False, modality="voice")
26
+ )
27
+ case "raw":
28
+ # The last message is raw text, ask the assistant to complete it
29
+ messages[-1].add_im_start = False
30
+ messages[-1].add_im_end = False
31
+ messages[-1].modality = "voice"
32
+ case "assistant":
33
+ # The last message is from the assistant, ask the assistant to continue
34
+ messages[-1].add_im_end = False
35
+ case _:
36
+ # We expect it to be assistant if not user or raw
37
+ raise ValueError("The last message must be from the assistant, user or raw")
38
+
39
+ # Create a conversation object and encode it for inference
40
+ conv = Conversation(messages=messages)
41
+ prompt = conv.encode_for_inference(
42
+ tokenizer=tokenizer, num_codebooks=config.num_codebooks
43
+ )
44
+ im_end_id = tokenizer.get_token_id(IM_END_TOKEN)
45
+
46
+ return prompt, im_end_id
47
+
48
+
49
+ def create_generation_request(prompt, request, im_end_id, device):
50
+ """
51
+ Convert the request into a dictionary that can be sent to the model for generation.
52
+ """
53
+ req = {
54
+ "prompt": prompt.to(device),
55
+ "max_new_tokens": request.max_new_tokens,
56
+ "im_end_id": im_end_id,
57
+ "temperature": request.temperature,
58
+ "top_p": request.top_p,
59
+ "repetition_penalty": request.repetition_penalty,
60
+ "num_samples": request.num_samples,
61
+ "early_stop_threshold": request.early_stop_threshold,
62
+ }
63
+ return req
64
+
65
+
66
+ def send_generation_request(input_queue, req):
67
+ """
68
+ Send the generation request to the model and return a queue to get the response.
69
+ """
70
+ response_queue = queue.Queue()
71
+ input_queue.put(GenerateRequest(req, response_queue))
72
+ return response_queue
@@ -0,0 +1,75 @@
1
+ from argparse import ArgumentParser
2
+ from http import HTTPStatus
3
+ from typing import Annotated, Any
4
+
5
+ import ormsgpack
6
+ from baize.datastructures import ContentType
7
+ from kui.asgi import HTTPException, HttpRequest
8
+
9
+ from tools.inference_engine import TTSInferenceEngine
10
+ from tools.schema import ServeTTSRequest
11
+ from tools.server.inference import inference_wrapper as inference
12
+
13
+
14
+ def parse_args():
15
+ parser = ArgumentParser()
16
+ parser.add_argument("--mode", type=str, choices=["agent", "tts"], default="tts")
17
+ parser.add_argument("--load-asr-model", action="store_true")
18
+ parser.add_argument(
19
+ "--llama-checkpoint-path",
20
+ type=str,
21
+ default="checkpoints/fish-speech-1.5",
22
+ )
23
+ parser.add_argument(
24
+ "--decoder-checkpoint-path",
25
+ type=str,
26
+ default="checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
27
+ )
28
+ parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
29
+ parser.add_argument("--device", type=str, default="cuda")
30
+ parser.add_argument("--half", action="store_true")
31
+ parser.add_argument("--compile", action="store_true")
32
+ parser.add_argument("--max-text-length", type=int, default=0)
33
+ parser.add_argument("--listen", type=str, default="127.0.0.1:8080")
34
+ parser.add_argument("--workers", type=int, default=1)
35
+
36
+ return parser.parse_args()
37
+
38
+
39
+ class MsgPackRequest(HttpRequest):
40
+ async def data(
41
+ self,
42
+ ) -> Annotated[
43
+ Any, ContentType("application/msgpack"), ContentType("application/json")
44
+ ]:
45
+ if self.content_type == "application/msgpack":
46
+ return ormsgpack.unpackb(await self.body)
47
+
48
+ elif self.content_type == "application/json":
49
+ return await self.json
50
+
51
+ raise HTTPException(
52
+ HTTPStatus.UNSUPPORTED_MEDIA_TYPE,
53
+ headers={"Accept": "application/msgpack, application/json"},
54
+ )
55
+
56
+
57
+ async def inference_async(req: ServeTTSRequest, engine: TTSInferenceEngine):
58
+ for chunk in inference(req, engine):
59
+ if isinstance(chunk, bytes):
60
+ yield chunk
61
+
62
+
63
+ async def buffer_to_async_generator(buffer):
64
+ yield buffer
65
+
66
+
67
+ def get_content_type(audio_format):
68
+ if audio_format == "wav":
69
+ return "audio/wav"
70
+ elif audio_format == "flac":
71
+ return "audio/flac"
72
+ elif audio_format == "mp3":
73
+ return "audio/mpeg"
74
+ else:
75
+ return "application/octet-stream"
@@ -0,0 +1,27 @@
1
+ import traceback
2
+ from http import HTTPStatus
3
+
4
+ from kui.asgi import HTTPException, JSONResponse
5
+
6
+
7
+ class ExceptionHandler:
8
+
9
+ async def http_exception_handler(self, exc: HTTPException):
10
+ return JSONResponse(
11
+ dict(
12
+ statusCode=exc.status_code,
13
+ message=exc.content,
14
+ error=HTTPStatus(exc.status_code).phrase,
15
+ ),
16
+ exc.status_code,
17
+ exc.headers,
18
+ )
19
+
20
+ async def other_exception_handler(self, exc: Exception):
21
+ traceback.print_exc()
22
+
23
+ status = HTTPStatus.INTERNAL_SERVER_ERROR
24
+ return JSONResponse(
25
+ dict(statusCode=status, message=str(exc), error=status.phrase),
26
+ status,
27
+ )
@@ -0,0 +1,45 @@
1
+ from http import HTTPStatus
2
+
3
+ import numpy as np
4
+ from kui.asgi import HTTPException
5
+
6
+ from tools.inference_engine import TTSInferenceEngine
7
+ from tools.schema import ServeTTSRequest
8
+
9
+ AMPLITUDE = 32768 # Needs an explaination
10
+
11
+
12
+ def inference_wrapper(req: ServeTTSRequest, engine: TTSInferenceEngine):
13
+ """
14
+ Wrapper for the inference function.
15
+ Used in the API server.
16
+ """
17
+ count = 0
18
+ for result in engine.inference(req):
19
+ match result.code:
20
+ case "header":
21
+ if isinstance(result.audio, tuple):
22
+ yield result.audio[1]
23
+
24
+ case "error":
25
+ raise HTTPException(
26
+ HTTPStatus.INTERNAL_SERVER_ERROR,
27
+ content=str(result.error),
28
+ )
29
+
30
+ case "segment":
31
+ count += 1
32
+ if isinstance(result.audio, tuple):
33
+ yield (result.audio[1] * AMPLITUDE).astype(np.int16).tobytes()
34
+
35
+ case "final":
36
+ count += 1
37
+ if isinstance(result.audio, tuple):
38
+ yield result.audio[1]
39
+ return None # Stop the generator
40
+
41
+ if count == 0:
42
+ raise HTTPException(
43
+ HTTPStatus.INTERNAL_SERVER_ERROR,
44
+ content="No audio generated, please check the input text.",
45
+ )
@@ -0,0 +1,122 @@
1
+ import torch
2
+ from funasr import AutoModel
3
+ from loguru import logger
4
+
5
+ from tools.inference_engine import TTSInferenceEngine
6
+ from tools.llama.generate import (
7
+ launch_thread_safe_queue,
8
+ launch_thread_safe_queue_agent,
9
+ )
10
+ from tools.schema import ServeTTSRequest
11
+ from tools.server.inference import inference_wrapper as inference
12
+ from tools.vqgan.inference import load_model as load_decoder_model
13
+
14
+ ASR_MODEL_NAME = "iic/SenseVoiceSmall"
15
+
16
+
17
+ class ModelManager:
18
+ def __init__(
19
+ self,
20
+ mode: str,
21
+ device: str,
22
+ half: bool,
23
+ compile: bool,
24
+ asr_enabled: bool,
25
+ llama_checkpoint_path: str,
26
+ decoder_checkpoint_path: str,
27
+ decoder_config_name: str,
28
+ ) -> None:
29
+
30
+ self.mode = mode
31
+ self.device = device
32
+ self.half = half
33
+ self.compile = compile
34
+
35
+ self.precision = torch.half if half else torch.bfloat16
36
+
37
+ # Check if MPS or CUDA is available
38
+ if torch.backends.mps.is_available():
39
+ self.device = "mps"
40
+ logger.info("mps is available, running on mps.")
41
+ elif not torch.cuda.is_available():
42
+ self.device = "cpu"
43
+ logger.info("CUDA is not available, running on CPU.")
44
+
45
+ # Load the ASR model if enabled
46
+ if asr_enabled:
47
+ self.load_asr_model(self.device)
48
+
49
+ # Load the TTS models
50
+ self.load_llama_model(
51
+ llama_checkpoint_path, self.device, self.precision, self.compile, self.mode
52
+ )
53
+ self.load_decoder_model(
54
+ decoder_config_name, decoder_checkpoint_path, self.device
55
+ )
56
+ self.tts_inference_engine = TTSInferenceEngine(
57
+ llama_queue=self.llama_queue,
58
+ decoder_model=self.decoder_model,
59
+ precision=self.precision,
60
+ compile=self.compile,
61
+ )
62
+
63
+ # Warm up the models
64
+ if self.mode == "tts":
65
+ self.warm_up(self.tts_inference_engine)
66
+
67
+ def load_asr_model(self, device, hub="ms") -> None:
68
+ self.asr_model = AutoModel(
69
+ model=ASR_MODEL_NAME,
70
+ device=device,
71
+ disable_pbar=True,
72
+ hub=hub,
73
+ )
74
+ logger.info("ASR model loaded.")
75
+
76
+ def load_llama_model(
77
+ self, checkpoint_path, device, precision, compile, mode
78
+ ) -> None:
79
+
80
+ if mode == "tts":
81
+ self.llama_queue = launch_thread_safe_queue(
82
+ checkpoint_path=checkpoint_path,
83
+ device=device,
84
+ precision=precision,
85
+ compile=compile,
86
+ )
87
+ elif mode == "agent":
88
+ self.llama_queue, self.tokenizer, self.config = (
89
+ launch_thread_safe_queue_agent(
90
+ checkpoint_path=checkpoint_path,
91
+ device=device,
92
+ precision=precision,
93
+ compile=compile,
94
+ )
95
+ )
96
+ else:
97
+ raise ValueError(f"Invalid mode: {mode}")
98
+
99
+ logger.info("LLAMA model loaded.")
100
+
101
+ def load_decoder_model(self, config_name, checkpoint_path, device) -> None:
102
+ self.decoder_model = load_decoder_model(
103
+ config_name=config_name,
104
+ checkpoint_path=checkpoint_path,
105
+ device=device,
106
+ )
107
+ logger.info("Decoder model loaded.")
108
+
109
+ def warm_up(self, tts_inference_engine) -> None:
110
+ request = ServeTTSRequest(
111
+ text="Hello world.",
112
+ references=[],
113
+ reference_id=None,
114
+ max_new_tokens=1024,
115
+ chunk_length=200,
116
+ top_p=0.7,
117
+ repetition_penalty=1.2,
118
+ temperature=0.7,
119
+ format="wav",
120
+ )
121
+ list(inference(request, tts_inference_engine))
122
+ logger.info("Models warmed up.")