wsba-hockey 1.0.6__py3-none-any.whl → 1.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. wsba_hockey/api/api/index.py +129 -0
  2. wsba_hockey/api/api/main.py +4 -0
  3. wsba_hockey/api/api/tools/__init__.py +0 -0
  4. wsba_hockey/api/api/tools/agg.py +374 -0
  5. wsba_hockey/api/api/tools/archive/old_scraping.py +1104 -0
  6. wsba_hockey/api/api/tools/plotting.py +144 -0
  7. wsba_hockey/api/api/tools/scraping.py +1000 -0
  8. wsba_hockey/api/api/tools/utils/__init__.py +1 -0
  9. wsba_hockey/api/api/tools/utils/config.py +14 -0
  10. wsba_hockey/api/api/tools/utils/save_pages.py +133 -0
  11. wsba_hockey/api/api/tools/utils/shared.py +450 -0
  12. wsba_hockey/api/api/tools/xg_model.py +455 -0
  13. wsba_hockey/api/api/wsba_main.py +1213 -0
  14. wsba_hockey/data_pipelines.py +71 -8
  15. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/game_stats/app.py +6 -5
  16. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/goalie/app.py +101 -0
  17. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/goalie/plot.py +71 -0
  18. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/goalie/rink_plot.py +245 -0
  19. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/heatmaps/app.py +1 -1
  20. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/heatmaps/plot.py +2 -0
  21. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/heatmaps/rink_plot.py +1 -1
  22. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/matchups/app.py +3 -3
  23. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/matchups/plot.py +2 -0
  24. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/matchups/rink_plot.py +1 -1
  25. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/pbp/app.py +44 -28
  26. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/pbp/plot.py +12 -3
  27. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/pbp/rink_plot.py +1 -1
  28. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/skater/app.py +1 -1
  29. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/skater/plot.py +5 -4
  30. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/skater/rink_plot.py +1 -1
  31. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/team_heatmaps/app.py +103 -0
  32. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/team_heatmaps/plot.py +95 -0
  33. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/team_heatmaps/rink_plot.py +245 -0
  34. wsba_hockey/flask/app.py +77 -0
  35. wsba_hockey/tools/plotting.py +3 -3
  36. wsba_hockey/tools/scraping.py +7 -3
  37. wsba_hockey/tools/xg_model.py +3 -3
  38. wsba_hockey/workspace.py +28 -12
  39. wsba_hockey/wsba_main.py +10 -17
  40. {wsba_hockey-1.0.6.dist-info → wsba_hockey-1.1.1.dist-info}/METADATA +1 -1
  41. {wsba_hockey-1.0.6.dist-info → wsba_hockey-1.1.1.dist-info}/RECORD +44 -24
  42. {wsba_hockey-1.0.6.dist-info → wsba_hockey-1.1.1.dist-info}/WHEEL +0 -0
  43. {wsba_hockey-1.0.6.dist-info → wsba_hockey-1.1.1.dist-info}/licenses/LICENSE +0 -0
  44. {wsba_hockey-1.0.6.dist-info → wsba_hockey-1.1.1.dist-info}/top_level.txt +0 -0
@@ -109,7 +109,7 @@ def server(input, output, session):
109
109
  query = reactive.Value(None)
110
110
 
111
111
  def schedule():
112
- schedule = pd.read_csv('https://f005.backblazeb2.com/file/weakside-breakout/info/schedule.csv')
112
+ schedule = pd.read_csv('https://weakside-breakout.s3.us-east-2.amazonaws.com/info/schedule.csv')
113
113
 
114
114
  return schedule.loc[schedule['gameState'].isin(['OFF','FINAL'])]
115
115
 
@@ -126,7 +126,8 @@ def server(input, output, session):
126
126
  'event_type':['missed-shot,shot-on-goal,goal'],
127
127
  'strength_state':['all'],
128
128
  'filters':['false'],
129
- 'table':['false']
129
+ 'table':['false'],
130
+ 'title':['true']
130
131
  }
131
132
 
132
133
  for key in defaults.keys():
@@ -223,7 +224,7 @@ def server(input, output, session):
223
224
  front_year = int(query['game_id'][0][0:4])
224
225
  season = f'{front_year}{front_year+1}'
225
226
  #Load appropriate dataframe
226
- df = pd.read_parquet(f'https://f005.backblazeb2.com/file/weakside-breakout/pbp/{season}.parquet')
227
+ df = pd.read_parquet(f'https://weakside-breakout.s3.us-east-2.amazonaws.com/pbp/{season}.parquet')
227
228
 
228
229
  #Prepare dataframe for plotting based on URL parameters
229
230
  game_data = df.loc[df['game_id'].astype(str).isin(query['game_id'])].replace({np.nan: None})
@@ -255,7 +256,7 @@ def server(input, output, session):
255
256
  color='Team',
256
257
  color_discrete_map=colors,
257
258
  hover_name='Description',
258
- hover_data=['Event Num.', 'Period', 'Time (in seconds)',
259
+ hover_data=['Event Num.', 'Period', 'Time (in Period)',
259
260
  'Strength',
260
261
  'Away Score', 'Home Score', 'x', 'y',
261
262
  'Event Distance from Attacking Net',
@@ -265,28 +266,44 @@ def server(input, output, session):
265
266
  for trace in plot.data:
266
267
  rink.add_trace(trace)
267
268
 
268
- return rink.update_layout(
269
- title=dict(
270
- text=game_title,
271
- x=0.5, y=0.94,
272
- xanchor='center',
273
- yanchor='top',
274
- font=dict(color='white')
275
- ),
276
-
277
- legend=dict(
278
- orientation='h',
279
- x=0.49,
280
- y=-0.04,
281
- xanchor='center',
282
- yanchor='bottom',
283
- font=dict(color='white')
284
- ),
269
+ if active_params()['title'][0]=='false':
270
+ return rink.update_layout(
271
+ legend=dict(
272
+ orientation='h',
273
+ x=0.49,
274
+ y=-0.04,
275
+ xanchor='center',
276
+ yanchor='bottom',
277
+ font=dict(color='white')
278
+ ),
285
279
 
286
- hoverlabel=dict(
287
- font_size=10
280
+ hoverlabel=dict(
281
+ font_size=10
282
+ )
283
+ )
284
+ else:
285
+ return rink.update_layout(
286
+ title=dict(
287
+ text=game_title,
288
+ x=0.5, y=0.94,
289
+ xanchor='center',
290
+ yanchor='top',
291
+ font=dict(color='white')
292
+ ),
293
+
294
+ legend=dict(
295
+ orientation='h',
296
+ x=0.49,
297
+ y=-0.04,
298
+ xanchor='center',
299
+ yanchor='bottom',
300
+ font=dict(color='white')
301
+ ),
302
+
303
+ hoverlabel=dict(
304
+ font_size=10
305
+ )
288
306
  )
289
- )
290
307
 
291
308
  @output
292
309
  @render.ui
@@ -322,10 +339,9 @@ def server(input, output, session):
322
339
  if input.metric_select()=='Timelines':
323
340
  return None
324
341
  else:
325
- df = game_df.get().copy()[['event_num','period','seconds_elapsed','strength_state','event_type','Description','event_team_abbr','event_player_1_name','shot_type','zone_code','x','y','away_score','home_score','xG']].rename(columns={
342
+ df = game_df.get().copy()[['event_num','period','Time (in Period)','strength_state','event_type','Description','event_team_abbr','event_player_1_name','shot_type','zone_code','x','y','away_score','home_score','xG']].rename(columns={
326
343
  'event_num':'#',
327
344
  'period':'Period',
328
- 'seconds_elapsed':'Seconds',
329
345
  'strength_state':'Strength State',
330
346
  'event_type':'Event',
331
347
  'event_team_abbr':'Team',
@@ -352,7 +368,7 @@ def server(input, output, session):
352
368
  data = wsba_plt.timelines(game_df.get().copy())
353
369
  colors = wsba_plt.colors(data)
354
370
  timelines = px.line(data,
355
- x='Time (in seconds)',
371
+ x='Time (in Period)',
356
372
  y=input.timeline_select(),
357
373
  color='Team',
358
374
  color_discrete_map=colors,
@@ -368,7 +384,7 @@ def server(input, output, session):
368
384
  paper_bgcolor="rgba(0,0,0,0)",
369
385
  plot_bgcolor="rgba(0,0,0,0)",
370
386
  font_color='white',
371
- xaxis=dict(title=dict(text='Time (in seconds)'),showgrid=False),
387
+ xaxis=dict(title=dict(text='Time (in Period)'),showgrid=False),
372
388
  yaxis=dict(title=dict(text=input.timeline_select()),showgrid=False),
373
389
 
374
390
  legend=dict(
@@ -23,7 +23,7 @@ def colors(df):
23
23
  away_abbr = list(df['away_team_abbr'])[0]
24
24
  home_abbr = list(df['home_team_abbr'])[0]
25
25
  season = list(df['season'])[0]
26
- team_data = pd.read_csv('https://f005.backblazeb2.com/file/weakside-breakout/info/nhl_teaminfo.csv')
26
+ team_data = pd.read_csv('https://weakside-breakout.s3.us-east-2.amazonaws.com/info/nhl_teaminfo.csv')
27
27
 
28
28
  team_info ={
29
29
  away_abbr: list(team_data.loc[team_data['WSBA']==f'{away_abbr}{season}','Primary Color'])[0],
@@ -32,13 +32,21 @@ def colors(df):
32
32
 
33
33
  return team_info
34
34
 
35
+ def convert_time(seconds,period):
36
+ period_seconds = seconds - ((period-1)*1200)
37
+ minutes = int(period_seconds/60)
38
+ seconds = int(((period_seconds/60)-minutes)*60)
39
+
40
+ return f'{minutes}:{seconds:02}'
41
+
35
42
  def prep(df,events,strengths):
36
43
  df = df.loc[(df['event_type'].isin(events))]
37
-
44
+
45
+ df['strength_state'] = np.where(df['strength_state'].isin(['5v5','5v4','4v5']),df['strength_state'],'Other')
38
46
  if 'all' not in strengths:
39
47
  df = df.loc[((df['strength_state'].isin(strengths)))]
40
48
 
41
- df['xG'] = df['xG'].fillna(0)
49
+ df = df.fillna(0)
42
50
  df['size'] = np.where(df['xG']<=0,40,df['xG']*400)
43
51
 
44
52
  df['marker'] = df['event_type'].replace(event_markers)
@@ -48,6 +56,7 @@ def prep(df,events,strengths):
48
56
  df['Event Num.'] = df['event_num']
49
57
  df['Period'] = df['period']
50
58
  df['Time (in seconds)'] = df['seconds_elapsed']
59
+ df['Time (in Period)'] = df.apply(lambda x: convert_time(x['Time (in seconds)'],x['Period']), axis=1)
51
60
  df['Strength'] = df['strength_state']
52
61
  df['Away Score'] = df['away_score']
53
62
  df['Home Score'] = df['home_score']
@@ -222,7 +222,7 @@ def rink(setting = "full", vertical = False):
222
222
  )
223
223
 
224
224
  # Add logo
225
- logo = Image.open(rs.get('https://f005.backblazeb2.com/file/weakside-breakout/utils/wsba.png',stream=True).raw)
225
+ logo = Image.open(rs.get('https://weakside-breakout.s3.us-east-2.amazonaws.com/utils/wsba.png',stream=True).raw)
226
226
 
227
227
  fig.add_layout_image(
228
228
  dict(
@@ -46,7 +46,7 @@ def server(input, output, session):
46
46
  #Determine which season to load based on the input
47
47
  season = query['season'][0]
48
48
  #Load appropriate dataframe
49
- df = pd.read_parquet(f'https://f005.backblazeb2.com/file/weakside-breakout/pbp/{season}.parquet')
49
+ df = pd.read_parquet(f'https://weakside-breakout.s3.us-east-2.amazonaws.com/pbp/{season}.parquet')
50
50
 
51
51
  #Prepare dataframe for plotting based on URL parameters
52
52
  df = df.loc[(df['event_player_1_id'].astype(str).str.replace('.0','').isin(query['skater']))&(df['season'].astype(str).isin(query['season']))&(df['event_team_abbr'].astype(str).isin(query['team']))&(df['season_type'].astype(str).isin(query['season_type']))].replace({np.nan: None})
@@ -20,9 +20,9 @@ def wsba_rink(setting='full', vertical=False):
20
20
  return rink_plot.rink(setting=setting, vertical=vertical)
21
21
 
22
22
  def colors(df):
23
- team = list(df['away_team_abbr'])[0]
23
+ team = list(df['event_team_abbr'])[0]
24
24
  season = list(df['season'])[0]
25
- team_data = pd.read_csv('https://f005.backblazeb2.com/file/weakside-breakout/info/nhl_teaminfo.csv')
25
+ team_data = pd.read_csv('https://weakside-breakout.s3.us-east-2.amazonaws.com/info/nhl_teaminfo.csv')
26
26
 
27
27
  team_info ={
28
28
  team: list(team_data.loc[team_data['WSBA']==f'{team}{season}','Primary Color'])[0],
@@ -37,7 +37,7 @@ def prep(df,events,strengths):
37
37
  if strengths != 'all':
38
38
  df = df.loc[((df['strength_state'].isin(strengths)))]
39
39
 
40
- df['xG'] = df['xG'].fillna(0)
40
+ df = df.fillna(0)
41
41
  df['size'] = np.where(df['xG']<=0,40,df['xG']*400)
42
42
 
43
43
  df['marker'] = df['event_type'].replace(event_markers)
@@ -50,9 +50,10 @@ def prep(df,events,strengths):
50
50
  df['Strength'] = df['strength_state']
51
51
  df['Away Score'] = df['away_score']
52
52
  df['Home Score'] = df['home_score']
53
- df['x'] = np.where(df['x_adj']<0,-df['y_adj'],df['y_adj'])
53
+ df['x'] = np.where(df['x_adj']<0,df['y_adj'],-df['y_adj'])
54
54
  df['y'] = abs(df['x_adj'])
55
55
  df['Event Distance from Attacking Net'] = df['event_distance']
56
56
  df['Event Angle to Attacking Net'] = df['event_angle']
57
57
  df['xG'] = df['xG']*100
58
+
58
59
  return df
@@ -222,7 +222,7 @@ def rink(setting = "full", vertical = False):
222
222
  )
223
223
 
224
224
  # Add logo
225
- logo = Image.open(rs.get('https://f005.backblazeb2.com/file/weakside-breakout/utils/wsba.png',stream=True).raw)
225
+ logo = Image.open(rs.get('https://weakside-breakout.s3.us-east-2.amazonaws.com/utils/wsba.png',stream=True).raw)
226
226
 
227
227
  fig.add_layout_image(
228
228
  dict(
@@ -0,0 +1,103 @@
1
+ import pandas as pd
2
+ import plot as wsba_plt
3
+ import numpy as np
4
+ from urllib.parse import *
5
+ from shiny import *
6
+ from shinywidgets import output_widget, render_widget
7
+
8
+ app_ui = ui.page_fluid(
9
+ ui.tags.style(
10
+ "body {background:#09090b"
11
+ "}"
12
+ ),
13
+ output_widget("plot_skater"),
14
+ )
15
+
16
+ def server(input, output, session):
17
+ @output()
18
+ @render_widget
19
+ def plot_skater():
20
+ #Retreive query parameters
21
+ search = session.input[".clientdata_url_search"]()
22
+ query = parse_qs(urlparse(search).query)
23
+
24
+ print(query)
25
+ #If no input data is provided automatically provide a select skater and plot all 5v5 fenwick shots
26
+ defaults = {
27
+ 'team':['BOS'],
28
+ 'season':['20222023'],
29
+ 'strength_state':['5v5'],
30
+ 'season_type':['2']
31
+ }
32
+
33
+ for key in defaults.keys():
34
+ if key not in query.keys():
35
+ query.update({key:defaults[key]})
36
+
37
+ #Iterate through query and parse params with multiple selections
38
+ for param in query.keys():
39
+ q_string = query[param][0]
40
+ query[param] = q_string.split(',')
41
+
42
+ print(query)
43
+ #Determine which season to load based on the input
44
+ season = query['season'][0]
45
+ #Load appropriate dataframe
46
+ df = pd.read_parquet(f'https://weakside-breakout.s3.us-east-2.amazonaws.com/pbp/{season}.parquet')
47
+
48
+ #Prepare dataframe for plotting based on URL parameters
49
+ df = df.loc[(df['season'].astype(str).isin(query['season']))&(df['season_type'].astype(str).isin(query['season_type']))].replace({np.nan: None})
50
+ #Return empty rink if no data exists else continue
51
+ if df.empty:
52
+ return wsba_plt.wsba_rink()
53
+ else:
54
+ rink = wsba_plt.wsba_rink()
55
+
56
+ try:
57
+ for_plot = wsba_plt.heatmap(df,team=query['team'][0],events=['missed-shot','shot-on-goal','goal'],strengths=query['strength_state'],onice='for')
58
+ against_plot = wsba_plt.heatmap(df,team=query['team'][0],events=['missed-shot','shot-on-goal','goal'],strengths=query['strength_state'],onice='against')
59
+
60
+ for trace in for_plot.data:
61
+ rink.add_trace(trace)
62
+
63
+ for trace in against_plot.data:
64
+ rink.add_trace(trace)
65
+
66
+ season = int(season[0:4])
67
+ team = query['team'][0]
68
+ strengths = 'All Situations' if len(query['strength_state']) == 4 else query['strength_state']
69
+ span = 'Regular Season' if query['season_type'][0]=='2' else 'Playoffs'
70
+
71
+ return rink.update_layout(
72
+ title=dict(
73
+ text=f'{team} On-Ice xG at {strengths}; {season}-{season+1}, {span}',
74
+ x=0.5, y=0.96,
75
+ xanchor='center',
76
+ yanchor='top',
77
+ font=dict(color='white')
78
+ ),
79
+ ).add_annotation(
80
+ text='Lower xG',
81
+ xref="paper",
82
+ yref="paper",
83
+ xanchor='right',
84
+ yanchor='top',
85
+ font=dict(color='white'),
86
+ x=0.3,
87
+ y=0.04,
88
+ showarrow=False
89
+ ).add_annotation(
90
+ text='Higher xG',
91
+ xref="paper",
92
+ yref="paper",
93
+ xanchor='right',
94
+ yanchor='top',
95
+ font=dict(color='white'),
96
+ x=0.76,
97
+ y=0.04,
98
+ showarrow=False
99
+ )
100
+ except:
101
+ return wsba_plt.wsba_rink()
102
+
103
+ app = App(app_ui, server)
@@ -0,0 +1,95 @@
1
+ import pandas as pd
2
+ import numpy as np
3
+ import plotly.graph_objects as go
4
+ import matplotlib.pyplot as plt
5
+ import rink_plot
6
+ from scipy.interpolate import griddata
7
+ from scipy.ndimage import gaussian_filter
8
+
9
+ def wsba_rink(setting='full', vertical=False):
10
+ return rink_plot.rink(setting=setting, vertical=vertical)
11
+
12
+ def heatmap(df,team,events,strengths,onice):
13
+ df['event_team_abbr_2'] = np.where(df['home_team_abbr']==df['event_team_abbr'],df['away_team_abbr'],df['home_team_abbr'])
14
+ df['strength_state_2'] = df['strength_state'].str[::-1]
15
+
16
+ df = df.fillna(0)
17
+ df = df.loc[(df['event_type'].isin(events))&(df['x_adj'].notna())&(df['y_adj'].notna())]
18
+ if onice == 'for':
19
+ df['x'] = abs(df['x_adj'])
20
+ df['y'] = np.where(df['x_adj']<0,-df['y_adj'],df['y_adj'])
21
+ df['event_distance'] = abs(df['event_distance'].fillna(0))
22
+ df = df.loc[(df['event_distance']<=89)&(df['x']<=89)&(df['empty_net']==0)]
23
+
24
+ x_min = 0
25
+ x_max = 100
26
+ else:
27
+ df['x'] = -abs(df['x_adj'])
28
+ df['y'] = np.where(df['x_adj']>0,-df['y_adj'],df['y_adj'])
29
+ df['event_distance'] = -abs(df['event_distance'])
30
+ df = df.loc[(df['event_distance']>-89)&(df['x']>-89)&(df['empty_net']==0)]
31
+
32
+ x_min = -100
33
+ x_max = 0
34
+
35
+ df['home_on_ice'] = df['home_on_1_id'].astype(str) + ";" + df['home_on_2_id'].astype(str) + ";" + df['home_on_3_id'].astype(str) + ";" + df['home_on_4_id'].astype(str) + ";" + df['home_on_5_id'].astype(str) + ";" + df['home_on_6_id'].astype(str)
36
+ df['away_on_ice'] = df['away_on_1_id'].astype(str) + ";" + df['away_on_2_id'].astype(str) + ";" + df['away_on_3_id'].astype(str) + ";" + df['away_on_4_id'].astype(str) + ";" + df['away_on_5_id'].astype(str) + ";" + df['away_on_6_id'].astype(str)
37
+
38
+ df['onice_for'] = np.where(df['home_team_abbr']==df['event_team_abbr'],df['home_on_ice'],df['away_on_ice'])
39
+ df['onice_against'] = np.where(df['away_team_abbr']==df['event_team_abbr'],df['home_on_ice'],df['away_on_ice'])
40
+
41
+ df['strength_state'] = np.where(df['strength_state'].isin(['5v5','5v4','4v5']),df['strength_state'],'Other')
42
+ df['strength_state_2'] = np.where(df['strength_state_2'].isin(['5v5','5v4','4v5']),df['strength_state_2'],'Other')
43
+
44
+ if strengths != 'all':
45
+ if onice == 'against':
46
+ df = df.loc[((df['strength_state_2'].isin(strengths)))]
47
+ else:
48
+ df = df.loc[((df['strength_state'].isin(strengths)))]
49
+
50
+ [x,y] = np.round(np.meshgrid(np.linspace(x_min,x_max,(x_max-x_min)),np.linspace(-42.5,42.5,85)))
51
+ xgoals = griddata((df['x'],df['y']),df['xG'],(x,y),method='cubic',fill_value=0)
52
+ xgoals = np.where(xgoals < 0,0,xgoals)
53
+ xgoals_smooth = gaussian_filter(xgoals,sigma=3)
54
+
55
+ if onice == 'for':
56
+ player_shots = df.loc[(df['event_team_abbr']==team)]
57
+ else:
58
+ player_shots = df.loc[(df['event_team_abbr_2']==team)]
59
+ [x,y] = np.round(np.meshgrid(np.linspace(x_min,x_max,(x_max-x_min)),np.linspace(-42.5,42.5,85)))
60
+ xgoals_player = griddata((player_shots['x'],player_shots['y']),player_shots['xG'],(x,y),method='cubic',fill_value=0)
61
+ xgoals_player = np.where(xgoals_player < 0,0,xgoals_player)
62
+
63
+ difference = (gaussian_filter(xgoals_player,sigma = 3)) - xgoals_smooth
64
+ data_min= difference.min()
65
+ data_max= difference.max()
66
+
67
+ if abs(data_min) > data_max:
68
+ data_max = data_min * -1
69
+ elif data_max > abs(data_min):
70
+ data_min = data_max * -1
71
+
72
+ fig = go.Figure(
73
+ data = go.Contour( x=np.linspace(x_min,x_max,(x_max-x_min)),
74
+ y=np.linspace(-42.5,42.5,85),
75
+ z=difference,
76
+ colorscale=[[0.0,'red'],[0.5,'#09090b'],[1.0,'blue']],
77
+ connectgaps=True,
78
+ contours=dict(
79
+ type='levels',
80
+ start = data_min,
81
+ end = data_max,
82
+ size=(data_max-data_min)/11
83
+ ),
84
+ colorbar=dict(
85
+ len = 0.7,
86
+ orientation='h',
87
+ showticklabels=False,
88
+ thickness=15,
89
+ yref='paper',
90
+ yanchor='top',
91
+ y=0
92
+ ))
93
+ )
94
+
95
+ return fig