wsba-hockey 1.0.6__py3-none-any.whl → 1.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. wsba_hockey/api/api/index.py +129 -0
  2. wsba_hockey/api/api/main.py +4 -0
  3. wsba_hockey/api/api/tools/__init__.py +0 -0
  4. wsba_hockey/api/api/tools/agg.py +374 -0
  5. wsba_hockey/api/api/tools/archive/old_scraping.py +1104 -0
  6. wsba_hockey/api/api/tools/plotting.py +144 -0
  7. wsba_hockey/api/api/tools/scraping.py +1000 -0
  8. wsba_hockey/api/api/tools/utils/__init__.py +1 -0
  9. wsba_hockey/api/api/tools/utils/config.py +14 -0
  10. wsba_hockey/api/api/tools/utils/save_pages.py +133 -0
  11. wsba_hockey/api/api/tools/utils/shared.py +450 -0
  12. wsba_hockey/api/api/tools/xg_model.py +455 -0
  13. wsba_hockey/api/api/wsba_main.py +1213 -0
  14. wsba_hockey/data_pipelines.py +71 -8
  15. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/game_stats/app.py +6 -5
  16. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/goalie/app.py +101 -0
  17. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/goalie/plot.py +71 -0
  18. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/goalie/rink_plot.py +245 -0
  19. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/heatmaps/app.py +1 -1
  20. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/heatmaps/plot.py +2 -0
  21. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/heatmaps/rink_plot.py +1 -1
  22. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/matchups/app.py +3 -3
  23. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/matchups/plot.py +2 -0
  24. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/matchups/rink_plot.py +1 -1
  25. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/pbp/app.py +44 -28
  26. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/pbp/plot.py +12 -3
  27. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/pbp/rink_plot.py +1 -1
  28. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/skater/app.py +1 -1
  29. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/skater/plot.py +5 -4
  30. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/skater/rink_plot.py +1 -1
  31. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/team_heatmaps/app.py +103 -0
  32. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/team_heatmaps/plot.py +95 -0
  33. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/team_heatmaps/rink_plot.py +245 -0
  34. wsba_hockey/flask/app.py +77 -0
  35. wsba_hockey/tools/plotting.py +3 -3
  36. wsba_hockey/tools/scraping.py +7 -3
  37. wsba_hockey/tools/xg_model.py +3 -3
  38. wsba_hockey/workspace.py +28 -12
  39. wsba_hockey/wsba_main.py +10 -17
  40. {wsba_hockey-1.0.6.dist-info → wsba_hockey-1.1.1.dist-info}/METADATA +1 -1
  41. {wsba_hockey-1.0.6.dist-info → wsba_hockey-1.1.1.dist-info}/RECORD +44 -24
  42. {wsba_hockey-1.0.6.dist-info → wsba_hockey-1.1.1.dist-info}/WHEEL +0 -0
  43. {wsba_hockey-1.0.6.dist-info → wsba_hockey-1.1.1.dist-info}/licenses/LICENSE +0 -0
  44. {wsba_hockey-1.0.6.dist-info → wsba_hockey-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,144 @@
1
+ import os
2
+ import matplotlib.pyplot as plt
3
+ import numpy as np
4
+ import pandas as pd
5
+ from hockey_rink import NHLRink
6
+ from hockey_rink import CircularImage
7
+ from scipy.interpolate import griddata
8
+ from scipy.ndimage import gaussian_filter
9
+ from tools.xg_model import *
10
+
11
+ ### PLOTTING FUNCTIONS ###
12
+ # Provided in this file are basic plotting functions for the WSBA Hockey Python package. #
13
+
14
+ ## GLOBAL VARIABLES ##
15
+
16
+ event_markers = {
17
+ 'faceoff':'X',
18
+ 'hit':'P',
19
+ 'blocked-shot':'v',
20
+ 'missed-shot':'o',
21
+ 'shot-on-goal':'D',
22
+ 'goal':'*',
23
+ 'giveaway':'1',
24
+ 'takeaway':'2',
25
+ }
26
+
27
+ dir = os.path.dirname(os.path.realpath(__file__))
28
+ info_path = os.path.join(dir,'teaminfo\\nhl_teaminfo.csv')
29
+ img_path = os.path.join(dir,'utils\\wsba.png')
30
+
31
+ def wsba_rink(display_range='offense',rotation = 0):
32
+ rink = NHLRink(center_logo={
33
+ "feature_class": CircularImage,
34
+ "image_path": img_path,
35
+ "length": 25, "width": 25,
36
+ "x": 0, "y": 0,
37
+ "radius": 14,
38
+ "zorder": 11,
39
+ }
40
+ )
41
+ rink.draw(
42
+ display_range=display_range,
43
+ rotation=rotation,
44
+ despine=True
45
+ )
46
+
47
+ def prep_plot_data(pbp,events,strengths,marker_dict=event_markers):
48
+ try: pbp['xG']
49
+ except:
50
+ pbp = wsba_xG(pbp)
51
+ pbp['xG'] = np.where(pbp['xG'].isna(),0,pbp['xG'])
52
+
53
+ pbp['WSBA'] = pbp['event_player_1_name']+pbp['season'].astype(str)+pbp['event_team_abbr']
54
+
55
+ pbp['x_plot'] = np.where(pbp['x']<0,-pbp['y_adj'],pbp['y_adj'])
56
+ pbp['y_plot'] = abs(pbp['x_adj'])
57
+
58
+ pbp['home_on_ice'] = pbp['home_on_1'].astype(str) + ";" + pbp['home_on_2'].astype(str) + ";" + pbp['home_on_3'].astype(str) + ";" + pbp['home_on_4'].astype(str) + ";" + pbp['home_on_5'].astype(str) + ";" + pbp['home_on_6'].astype(str)
59
+ pbp['away_on_ice'] = pbp['away_on_1'].astype(str) + ";" + pbp['away_on_2'].astype(str) + ";" + pbp['away_on_3'].astype(str) + ";" + pbp['away_on_4'].astype(str) + ";" + pbp['away_on_5'].astype(str) + ";" + pbp['away_on_6'].astype(str)
60
+
61
+ pbp['onice_for'] = np.where(pbp['home_team_abbr']==pbp['event_team_abbr'],pbp['home_on_ice'],pbp['away_on_ice'])
62
+ pbp['onice_against'] = np.where(pbp['away_team_abbr']==pbp['event_team_abbr'],pbp['home_on_ice'],pbp['away_on_ice'])
63
+
64
+ pbp['size'] = np.where(pbp['xG']<=0,40,pbp['xG']*400)
65
+ pbp['marker'] = pbp['event_type'].replace(marker_dict)
66
+
67
+ pbp = pbp.loc[(pbp['event_type'].isin(events))]
68
+
69
+ if strengths != 'all':
70
+ pbp = pbp.loc[(pbp['strength_state'].isin(strengths))]
71
+
72
+ return pbp
73
+
74
+ def league_shots(pbp,events,strengths):
75
+ pbp = prep_plot_data(pbp,events,strengths)
76
+
77
+ print(pbp[['event_player_1_name','xG','x_plot','y_plot']].head(10))
78
+
79
+ [x,y] = np.round(np.meshgrid(np.linspace(-42.5,42.5,85),np.linspace(0,100,100)))
80
+ xgoals = griddata((pbp[f'x_plot'],pbp[f'y_plot']),pbp['xG'],(x,y),method='cubic',fill_value=0)
81
+ xgoals_smooth = gaussian_filter(xgoals,sigma = 3)
82
+
83
+ return xgoals_smooth
84
+
85
+ def plot_skater_shots(pbp, player, season, team, strengths, title = None, marker_dict=event_markers, onice='for', legend=False):
86
+ shots = ['missed-shot','shot-on-goal','goal']
87
+ pbp = prep_plot_data(pbp,shots,strengths,marker_dict)
88
+ pbp = pbp.loc[(pbp['season'].astype(str)==season)&((pbp['away_team_abbr']==team)|(pbp['home_team_abbr']==team))]
89
+
90
+ team_data = pd.read_csv(info_path)
91
+ team_color = list(team_data.loc[team_data['WSBA']==f'{team}{season}','Primary Color'])[0]
92
+ team_color_2nd = list(team_data.loc[team_data['WSBA']==f'{team}{season}','Secondary Color'])[0]
93
+
94
+ if onice in ['for','against']:
95
+ skater = pbp.loc[(pbp[f'onice_{onice}'].str.contains(player.upper()))]
96
+ skater['color'] = np.where(skater['event_player_1_name']==player.upper(),team_color,team_color_2nd)
97
+
98
+ else:
99
+ skater = pbp.loc[pbp['event_player_1_name']==player.upper()]
100
+ skater['color'] = team_color
101
+
102
+ fig, ax = plt.subplots()
103
+ wsba_rink(rotation=90)
104
+
105
+ for event in shots:
106
+ plays = skater.loc[skater['event_type']==event]
107
+ ax.scatter(plays['x_plot'],plays['y_plot'],plays['size'],plays['color'],marker=event_markers[event],label=event,zorder=5)
108
+
109
+ ax.set_title(title) if title else ''
110
+ ax.legend().set_visible(legend)
111
+ ax.legend().set_zorder(1000)
112
+
113
+ return fig
114
+
115
+ def plot_game_events(pbp,game_id,events,strengths,marker_dict=event_markers,team_colors={'away':'secondary','home':'primary'},legend=False):
116
+ pbp = prep_plot_data(pbp,events,strengths,marker_dict)
117
+ pbp = pbp.loc[pbp['game_id'].astype(str)==str(game_id)]
118
+
119
+ away_abbr = list(pbp['away_team_abbr'])[0]
120
+ home_abbr = list(pbp['home_team_abbr'])[0]
121
+ date = list(pbp['game_date'])[0]
122
+ season = list(pbp['season'])[0]
123
+
124
+ team_data = pd.read_csv(info_path)
125
+ team_info ={
126
+ 'away_color':'#000000' if list(team_data.loc[team_data['WSBA']==f'{away_abbr}{season}','Secondary Color'])[0]=='#FFFFFF' else list(team_data.loc[team_data['WSBA']==f'{away_abbr}{season}',f'{team_colors['away'].capitalize()} Color'])[0],
127
+ 'home_color': list(team_data.loc[team_data['WSBA']==f'{home_abbr}{season}',f'{team_colors['home'].capitalize()} Color'])[0],
128
+ 'away_logo': f'tools/logos/png/{away_abbr}{season}.png',
129
+ 'home_logo': f'tools/logos/png/{home_abbr}{season}.png',
130
+ }
131
+
132
+ pbp['color'] = np.where(pbp['event_team_abbr']==away_abbr,team_info['away_color'],team_info['home_color'])
133
+
134
+ fig, ax = plt.subplots()
135
+ wsba_rink(display_range='full')
136
+
137
+ for event in events:
138
+ plays = pbp.loc[pbp['event_type']==event]
139
+ ax.scatter(plays['x_adj'],plays['y_adj'],plays['size'],plays['color'],marker=event_markers[event],edgecolors='white',label=event,zorder=5)
140
+
141
+ ax.set_title(f'{away_abbr} @ {home_abbr} - {date}')
142
+ ax.legend(bbox_to_anchor =(0.5,-0.35), loc='lower center',ncol=1).set_visible(legend)
143
+
144
+ return fig