workbench 0.8.202__py3-none-any.whl → 0.8.220__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of workbench might be problematic. Click here for more details.
- workbench/algorithms/dataframe/compound_dataset_overlap.py +321 -0
- workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
- workbench/algorithms/dataframe/fingerprint_proximity.py +421 -85
- workbench/algorithms/dataframe/projection_2d.py +44 -21
- workbench/algorithms/dataframe/proximity.py +78 -150
- workbench/algorithms/graph/light/proximity_graph.py +5 -5
- workbench/algorithms/models/cleanlab_model.py +382 -0
- workbench/algorithms/models/noise_model.py +388 -0
- workbench/algorithms/sql/outliers.py +3 -3
- workbench/api/__init__.py +3 -0
- workbench/api/df_store.py +17 -108
- workbench/api/endpoint.py +13 -11
- workbench/api/feature_set.py +111 -8
- workbench/api/meta_model.py +289 -0
- workbench/api/model.py +45 -12
- workbench/api/parameter_store.py +3 -52
- workbench/cached/cached_model.py +4 -4
- workbench/core/artifacts/artifact.py +5 -5
- workbench/core/artifacts/df_store_core.py +114 -0
- workbench/core/artifacts/endpoint_core.py +228 -237
- workbench/core/artifacts/feature_set_core.py +185 -230
- workbench/core/artifacts/model_core.py +34 -26
- workbench/core/artifacts/parameter_store_core.py +98 -0
- workbench/core/pipelines/pipeline_executor.py +1 -1
- workbench/core/transforms/features_to_model/features_to_model.py +22 -10
- workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +41 -10
- workbench/core/transforms/pandas_transforms/pandas_to_features.py +11 -2
- workbench/model_script_utils/model_script_utils.py +339 -0
- workbench/model_script_utils/pytorch_utils.py +405 -0
- workbench/model_script_utils/uq_harness.py +278 -0
- workbench/model_scripts/chemprop/chemprop.template +428 -631
- workbench/model_scripts/chemprop/generated_model_script.py +432 -635
- workbench/model_scripts/chemprop/model_script_utils.py +339 -0
- workbench/model_scripts/chemprop/requirements.txt +2 -10
- workbench/model_scripts/custom_models/chem_info/fingerprints.py +87 -46
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +6 -6
- workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
- workbench/model_scripts/meta_model/generated_model_script.py +209 -0
- workbench/model_scripts/meta_model/meta_model.template +209 -0
- workbench/model_scripts/pytorch_model/generated_model_script.py +374 -613
- workbench/model_scripts/pytorch_model/model_script_utils.py +339 -0
- workbench/model_scripts/pytorch_model/pytorch.template +370 -609
- workbench/model_scripts/pytorch_model/pytorch_utils.py +405 -0
- workbench/model_scripts/pytorch_model/requirements.txt +1 -1
- workbench/model_scripts/pytorch_model/uq_harness.py +278 -0
- workbench/model_scripts/script_generation.py +6 -5
- workbench/model_scripts/uq_models/generated_model_script.py +65 -422
- workbench/model_scripts/xgb_model/generated_model_script.py +372 -395
- workbench/model_scripts/xgb_model/model_script_utils.py +339 -0
- workbench/model_scripts/xgb_model/uq_harness.py +278 -0
- workbench/model_scripts/xgb_model/xgb_model.template +366 -396
- workbench/repl/workbench_shell.py +0 -5
- workbench/resources/open_source_api.key +1 -1
- workbench/scripts/endpoint_test.py +2 -2
- workbench/scripts/meta_model_sim.py +35 -0
- workbench/scripts/training_test.py +85 -0
- workbench/utils/chem_utils/fingerprints.py +87 -46
- workbench/utils/chem_utils/projections.py +16 -6
- workbench/utils/chemprop_utils.py +36 -655
- workbench/utils/meta_model_simulator.py +499 -0
- workbench/utils/metrics_utils.py +256 -0
- workbench/utils/model_utils.py +192 -54
- workbench/utils/pytorch_utils.py +33 -472
- workbench/utils/shap_utils.py +1 -55
- workbench/utils/xgboost_local_crossfold.py +267 -0
- workbench/utils/xgboost_model_utils.py +49 -356
- workbench/web_interface/components/model_plot.py +7 -1
- workbench/web_interface/components/plugins/model_details.py +30 -68
- workbench/web_interface/components/plugins/scatter_plot.py +4 -8
- {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/METADATA +6 -5
- {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/RECORD +76 -60
- {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/entry_points.txt +2 -0
- workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
- workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -296
- workbench/model_scripts/custom_models/meta_endpoints/example.py +0 -53
- workbench/model_scripts/custom_models/proximity/proximity.py +0 -410
- workbench/model_scripts/custom_models/uq_models/meta_uq.template +0 -377
- workbench/model_scripts/custom_models/uq_models/proximity.py +0 -410
- workbench/model_scripts/uq_models/mapie.template +0 -605
- workbench/model_scripts/uq_models/requirements.txt +0 -1
- {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/WHEEL +0 -0
- {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/licenses/LICENSE +0 -0
- {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/top_level.txt +0 -0
|
@@ -302,11 +302,6 @@ class WorkbenchShell:
|
|
|
302
302
|
self.commands["PandasToView"] = importlib.import_module("workbench.core.views.pandas_to_view").PandasToView
|
|
303
303
|
self.commands["Pipeline"] = importlib.import_module("workbench.api.pipeline").Pipeline
|
|
304
304
|
|
|
305
|
-
# Algorithms
|
|
306
|
-
self.commands["FSP"] = importlib.import_module(
|
|
307
|
-
"workbench.algorithms.dataframe.feature_space_proximity"
|
|
308
|
-
).FeatureSpaceProximity
|
|
309
|
-
|
|
310
305
|
# These are 'nice to have' imports
|
|
311
306
|
self.commands["pd"] = importlib.import_module("pandas")
|
|
312
307
|
self.commands["wr"] = importlib.import_module("awswrangler")
|
|
@@ -1 +1 @@
|
|
|
1
|
-
|
|
1
|
+
eyJsaWNlbnNlX2lkIjogIk9wZW5fU291cmNlX0xpY2Vuc2UiLCAiY29tcGFueSI6ICIiLCAiYXdzX2FjY291bnRfaWQiOiAiIiwgInRpZXIiOiAiRW50ZXJwcmlzZSBQcm8iLCAiZmVhdHVyZXMiOiBbInBsdWdpbnMiLCAicGFnZXMiLCAidGhlbWVzIiwgInBpcGVsaW5lcyIsICJicmFuZGluZyJdLCAiZXhwaXJlcyI6ICIyMDI2LTEyLTA1In1IsmpkuybFALADkRj_RfmkQ0LAIsQeXRE7Uoc3DL1UrDr-rSnwu-PDqsKBUkX6jPRFZV3DLxNjBapxPeEIFhfvxvjzz_sc6CwtxNpZ3bPmxSPs2W-j3xZS4-XyEqIilcwSkWh-NU1u27gCuuivn5eiUmIYJGAp0wdVkeE6_Z9dlg==
|
|
@@ -5,7 +5,7 @@ Usage:
|
|
|
5
5
|
python model_script_harness.py <local_script.py> <model_name>
|
|
6
6
|
|
|
7
7
|
Example:
|
|
8
|
-
python model_script_harness.py pytorch.py aqsol-pytorch
|
|
8
|
+
python model_script_harness.py pytorch.py aqsol-reg-pytorch
|
|
9
9
|
|
|
10
10
|
This allows you to test LOCAL changes to a model script against deployed model artifacts.
|
|
11
11
|
Evaluation data is automatically pulled from the FeatureSet (training = FALSE rows).
|
|
@@ -72,7 +72,7 @@ def main():
|
|
|
72
72
|
print("Usage: python model_script_harness.py <local_script.py> <model_name>")
|
|
73
73
|
print("\nArguments:")
|
|
74
74
|
print(" local_script.py - Path to your LOCAL model script to test")
|
|
75
|
-
print(" model_name - Workbench model name (e.g., aqsol-pytorch
|
|
75
|
+
print(" model_name - Workbench model name (e.g., aqsol-reg-pytorch)")
|
|
76
76
|
print("\nOptional: testing/env.json with additional environment variables")
|
|
77
77
|
sys.exit(1)
|
|
78
78
|
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
"""MetaModelSimulator: Simulate and analyze ensemble model performance.
|
|
2
|
+
|
|
3
|
+
This class helps evaluate whether a meta model (ensemble) would outperform
|
|
4
|
+
individual child models by analyzing endpoint inference predictions.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
import argparse
|
|
8
|
+
from workbench.utils.meta_model_simulator import MetaModelSimulator
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def main():
|
|
12
|
+
parser = argparse.ArgumentParser(
|
|
13
|
+
description="Simulate and analyze ensemble model performance using MetaModelSimulator."
|
|
14
|
+
)
|
|
15
|
+
parser.add_argument(
|
|
16
|
+
"models",
|
|
17
|
+
nargs="+",
|
|
18
|
+
help="List of model endpoint names to include in the ensemble simulation.",
|
|
19
|
+
)
|
|
20
|
+
parser.add_argument(
|
|
21
|
+
"--id-column",
|
|
22
|
+
default="molecule_name",
|
|
23
|
+
help="Name of the ID column (default: molecule_name)",
|
|
24
|
+
)
|
|
25
|
+
args = parser.parse_args()
|
|
26
|
+
models = args.models
|
|
27
|
+
id_column = args.id_column
|
|
28
|
+
|
|
29
|
+
# Create MetaModelSimulator instance and generate report
|
|
30
|
+
sim = MetaModelSimulator(models, id_column=id_column)
|
|
31
|
+
sim.report()
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
if __name__ == "__main__":
|
|
35
|
+
main()
|
|
@@ -0,0 +1,85 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Local test harness for SageMaker training scripts.
|
|
3
|
+
|
|
4
|
+
Usage:
|
|
5
|
+
python training_test.py <model_script.py> <featureset_name>
|
|
6
|
+
|
|
7
|
+
Example:
|
|
8
|
+
python training_test.py ../model_scripts/pytorch_model/generated_model_script.py caco2-class-features
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
import os
|
|
12
|
+
import shutil
|
|
13
|
+
import subprocess
|
|
14
|
+
import sys
|
|
15
|
+
import tempfile
|
|
16
|
+
|
|
17
|
+
import pandas as pd
|
|
18
|
+
|
|
19
|
+
from workbench.api import FeatureSet
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def get_training_data(featureset_name: str) -> pd.DataFrame:
|
|
23
|
+
"""Get training data from the FeatureSet."""
|
|
24
|
+
fs = FeatureSet(featureset_name)
|
|
25
|
+
return fs.pull_dataframe()
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def main():
|
|
29
|
+
if len(sys.argv) < 3:
|
|
30
|
+
print("Usage: python training_test.py <model_script.py> <featureset_name>")
|
|
31
|
+
sys.exit(1)
|
|
32
|
+
|
|
33
|
+
script_path = sys.argv[1]
|
|
34
|
+
featureset_name = sys.argv[2]
|
|
35
|
+
|
|
36
|
+
if not os.path.exists(script_path):
|
|
37
|
+
print(f"Error: Script not found: {script_path}")
|
|
38
|
+
sys.exit(1)
|
|
39
|
+
|
|
40
|
+
# Create temp directories
|
|
41
|
+
model_dir = tempfile.mkdtemp(prefix="training_model_")
|
|
42
|
+
train_dir = tempfile.mkdtemp(prefix="training_data_")
|
|
43
|
+
output_dir = tempfile.mkdtemp(prefix="training_output_")
|
|
44
|
+
|
|
45
|
+
print(f"Model dir: {model_dir}")
|
|
46
|
+
print(f"Train dir: {train_dir}")
|
|
47
|
+
|
|
48
|
+
try:
|
|
49
|
+
# Get training data and save to CSV
|
|
50
|
+
print(f"Loading FeatureSet: {featureset_name}")
|
|
51
|
+
df = get_training_data(featureset_name)
|
|
52
|
+
print(f"Data shape: {df.shape}")
|
|
53
|
+
|
|
54
|
+
train_file = os.path.join(train_dir, "training_data.csv")
|
|
55
|
+
df.to_csv(train_file, index=False)
|
|
56
|
+
|
|
57
|
+
# Set up environment
|
|
58
|
+
env = os.environ.copy()
|
|
59
|
+
env["SM_MODEL_DIR"] = model_dir
|
|
60
|
+
env["SM_CHANNEL_TRAIN"] = train_dir
|
|
61
|
+
env["SM_OUTPUT_DATA_DIR"] = output_dir
|
|
62
|
+
|
|
63
|
+
print("\n" + "=" * 60)
|
|
64
|
+
print("Starting training...")
|
|
65
|
+
print("=" * 60 + "\n")
|
|
66
|
+
|
|
67
|
+
# Run the script
|
|
68
|
+
cmd = [sys.executable, script_path, "--model-dir", model_dir, "--train", train_dir]
|
|
69
|
+
result = subprocess.run(cmd, env=env)
|
|
70
|
+
|
|
71
|
+
print("\n" + "=" * 60)
|
|
72
|
+
if result.returncode == 0:
|
|
73
|
+
print("Training completed successfully!")
|
|
74
|
+
else:
|
|
75
|
+
print(f"Training failed with return code: {result.returncode}")
|
|
76
|
+
print("=" * 60)
|
|
77
|
+
|
|
78
|
+
finally:
|
|
79
|
+
shutil.rmtree(model_dir, ignore_errors=True)
|
|
80
|
+
shutil.rmtree(train_dir, ignore_errors=True)
|
|
81
|
+
shutil.rmtree(output_dir, ignore_errors=True)
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
if __name__ == "__main__":
|
|
85
|
+
main()
|
|
@@ -1,31 +1,48 @@
|
|
|
1
|
-
"""Molecular fingerprint computation utilities
|
|
1
|
+
"""Molecular fingerprint computation utilities for ADMET modeling.
|
|
2
|
+
|
|
3
|
+
This module provides Morgan count fingerprints, the standard for ADMET prediction.
|
|
4
|
+
Count fingerprints outperform binary fingerprints for molecular property prediction.
|
|
5
|
+
|
|
6
|
+
References:
|
|
7
|
+
- Count vs Binary: https://pubs.acs.org/doi/10.1021/acs.est.3c02198
|
|
8
|
+
- ECFP/Morgan: https://pubs.acs.org/doi/10.1021/ci100050t
|
|
9
|
+
"""
|
|
2
10
|
|
|
3
11
|
import logging
|
|
4
|
-
import pandas as pd
|
|
5
12
|
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
from rdkit
|
|
13
|
+
import numpy as np
|
|
14
|
+
import pandas as pd
|
|
15
|
+
from rdkit import Chem, RDLogger
|
|
16
|
+
from rdkit.Chem import AllChem
|
|
9
17
|
from rdkit.Chem.MolStandardize import rdMolStandardize
|
|
10
18
|
|
|
19
|
+
# Suppress RDKit warnings (e.g., "not removing hydrogen atom without neighbors")
|
|
20
|
+
# Keep errors enabled so we see actual problems
|
|
21
|
+
RDLogger.DisableLog("rdApp.warning")
|
|
22
|
+
|
|
11
23
|
# Set up the logger
|
|
12
24
|
log = logging.getLogger("workbench")
|
|
13
25
|
|
|
14
26
|
|
|
15
|
-
def compute_morgan_fingerprints(df: pd.DataFrame, radius=2, n_bits=2048
|
|
16
|
-
"""Compute
|
|
27
|
+
def compute_morgan_fingerprints(df: pd.DataFrame, radius: int = 2, n_bits: int = 2048) -> pd.DataFrame:
|
|
28
|
+
"""Compute Morgan count fingerprints for ADMET modeling.
|
|
29
|
+
|
|
30
|
+
Generates true count fingerprints where each bit position contains the
|
|
31
|
+
number of times that substructure appears in the molecule (clamped to 0-255).
|
|
32
|
+
This is the recommended approach for ADMET prediction per 2025 research.
|
|
17
33
|
|
|
18
34
|
Args:
|
|
19
|
-
df
|
|
20
|
-
radius
|
|
21
|
-
n_bits
|
|
22
|
-
counts (bool): Count simulation for the fingerprint.
|
|
35
|
+
df: Input DataFrame containing SMILES strings.
|
|
36
|
+
radius: Radius for the Morgan fingerprint (default 2 = ECFP4 equivalent).
|
|
37
|
+
n_bits: Number of bits for the fingerprint (default 2048).
|
|
23
38
|
|
|
24
39
|
Returns:
|
|
25
|
-
pd.DataFrame:
|
|
40
|
+
pd.DataFrame: Input DataFrame with 'fingerprint' column added.
|
|
41
|
+
Values are comma-separated uint8 counts.
|
|
26
42
|
|
|
27
43
|
Note:
|
|
28
|
-
|
|
44
|
+
Count fingerprints outperform binary for ADMET prediction.
|
|
45
|
+
See: https://pubs.acs.org/doi/10.1021/acs.est.3c02198
|
|
29
46
|
"""
|
|
30
47
|
delete_mol_column = False
|
|
31
48
|
|
|
@@ -39,7 +56,7 @@ def compute_morgan_fingerprints(df: pd.DataFrame, radius=2, n_bits=2048, counts=
|
|
|
39
56
|
log.warning("Detected serialized molecules in 'molecule' column. Removing...")
|
|
40
57
|
del df["molecule"]
|
|
41
58
|
|
|
42
|
-
# Convert SMILES to RDKit molecule objects
|
|
59
|
+
# Convert SMILES to RDKit molecule objects
|
|
43
60
|
if "molecule" not in df.columns:
|
|
44
61
|
log.info("Converting SMILES to RDKit Molecules...")
|
|
45
62
|
delete_mol_column = True
|
|
@@ -47,23 +64,32 @@ def compute_morgan_fingerprints(df: pd.DataFrame, radius=2, n_bits=2048, counts=
|
|
|
47
64
|
# Make sure our molecules are not None
|
|
48
65
|
failed_smiles = df[df["molecule"].isnull()][smiles_column].tolist()
|
|
49
66
|
if failed_smiles:
|
|
50
|
-
log.
|
|
51
|
-
df = df.dropna(subset=["molecule"])
|
|
67
|
+
log.warning(f"Failed to convert {len(failed_smiles)} SMILES to molecules ({failed_smiles})")
|
|
68
|
+
df = df.dropna(subset=["molecule"]).copy()
|
|
52
69
|
|
|
53
70
|
# If we have fragments in our compounds, get the largest fragment before computing fingerprints
|
|
54
71
|
largest_frags = df["molecule"].apply(
|
|
55
72
|
lambda mol: rdMolStandardize.LargestFragmentChooser().choose(mol) if mol else None
|
|
56
73
|
)
|
|
57
74
|
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
75
|
+
def mol_to_count_string(mol):
|
|
76
|
+
"""Convert molecule to comma-separated count fingerprint string."""
|
|
77
|
+
if mol is None:
|
|
78
|
+
return pd.NA
|
|
62
79
|
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
80
|
+
# Get hashed Morgan fingerprint with counts
|
|
81
|
+
fp = AllChem.GetHashedMorganFingerprint(mol, radius, nBits=n_bits)
|
|
82
|
+
|
|
83
|
+
# Initialize array and populate with counts (clamped to uint8 range)
|
|
84
|
+
counts = np.zeros(n_bits, dtype=np.uint8)
|
|
85
|
+
for idx, count in fp.GetNonzeroElements().items():
|
|
86
|
+
counts[idx] = min(count, 255)
|
|
87
|
+
|
|
88
|
+
# Return as comma-separated string
|
|
89
|
+
return ",".join(map(str, counts))
|
|
90
|
+
|
|
91
|
+
# Compute Morgan count fingerprints
|
|
92
|
+
fingerprints = largest_frags.apply(mol_to_count_string)
|
|
67
93
|
|
|
68
94
|
# Add the fingerprints to the DataFrame
|
|
69
95
|
df["fingerprint"] = fingerprints
|
|
@@ -71,59 +97,62 @@ def compute_morgan_fingerprints(df: pd.DataFrame, radius=2, n_bits=2048, counts=
|
|
|
71
97
|
# Drop the intermediate 'molecule' column if it was added
|
|
72
98
|
if delete_mol_column:
|
|
73
99
|
del df["molecule"]
|
|
100
|
+
|
|
74
101
|
return df
|
|
75
102
|
|
|
76
103
|
|
|
77
104
|
if __name__ == "__main__":
|
|
78
|
-
print("Running
|
|
79
|
-
print("Note: This requires molecular_screening module to be available")
|
|
105
|
+
print("Running Morgan count fingerprint tests...")
|
|
80
106
|
|
|
81
107
|
# Test molecules
|
|
82
108
|
test_molecules = {
|
|
83
109
|
"aspirin": "CC(=O)OC1=CC=CC=C1C(=O)O",
|
|
84
110
|
"caffeine": "CN1C=NC2=C1C(=O)N(C(=O)N2C)C",
|
|
85
111
|
"glucose": "C([C@@H]1[C@H]([C@@H]([C@H](C(O1)O)O)O)O)O", # With stereochemistry
|
|
86
|
-
"sodium_acetate": "CC(=O)[O-].[Na+]", # Salt
|
|
112
|
+
"sodium_acetate": "CC(=O)[O-].[Na+]", # Salt (largest fragment used)
|
|
87
113
|
"benzene": "c1ccccc1",
|
|
88
114
|
"butene_e": "C/C=C/C", # E-butene
|
|
89
115
|
"butene_z": "C/C=C\\C", # Z-butene
|
|
90
116
|
}
|
|
91
117
|
|
|
92
|
-
# Test 1: Morgan Fingerprints
|
|
93
|
-
print("\n1. Testing Morgan fingerprint generation...")
|
|
118
|
+
# Test 1: Morgan Count Fingerprints (default parameters)
|
|
119
|
+
print("\n1. Testing Morgan fingerprint generation (radius=2, n_bits=2048)...")
|
|
94
120
|
|
|
95
121
|
test_df = pd.DataFrame({"SMILES": list(test_molecules.values()), "name": list(test_molecules.keys())})
|
|
96
|
-
|
|
97
|
-
fp_df = compute_morgan_fingerprints(test_df.copy(), radius=2, n_bits=512, counts=False)
|
|
122
|
+
fp_df = compute_morgan_fingerprints(test_df.copy())
|
|
98
123
|
|
|
99
124
|
print(" Fingerprint generation results:")
|
|
100
125
|
for _, row in fp_df.iterrows():
|
|
101
126
|
fp = row.get("fingerprint", "N/A")
|
|
102
|
-
|
|
103
|
-
|
|
127
|
+
if pd.notna(fp):
|
|
128
|
+
counts = [int(x) for x in fp.split(",")]
|
|
129
|
+
non_zero = sum(1 for c in counts if c > 0)
|
|
130
|
+
max_count = max(counts)
|
|
131
|
+
print(f" {row['name']:15} → {len(counts)} features, {non_zero} non-zero, max={max_count}")
|
|
132
|
+
else:
|
|
133
|
+
print(f" {row['name']:15} → N/A")
|
|
104
134
|
|
|
105
|
-
# Test 2: Different
|
|
106
|
-
print("\n2. Testing different
|
|
135
|
+
# Test 2: Different parameters
|
|
136
|
+
print("\n2. Testing with different parameters (radius=3, n_bits=1024)...")
|
|
107
137
|
|
|
108
|
-
|
|
109
|
-
fp_counts_df = compute_morgan_fingerprints(test_df.copy(), radius=3, n_bits=256, counts=True)
|
|
138
|
+
fp_df_custom = compute_morgan_fingerprints(test_df.copy(), radius=3, n_bits=1024)
|
|
110
139
|
|
|
111
|
-
|
|
112
|
-
for _, row in fp_counts_df.iterrows():
|
|
140
|
+
for _, row in fp_df_custom.iterrows():
|
|
113
141
|
fp = row.get("fingerprint", "N/A")
|
|
114
|
-
|
|
115
|
-
|
|
142
|
+
if pd.notna(fp):
|
|
143
|
+
counts = [int(x) for x in fp.split(",")]
|
|
144
|
+
non_zero = sum(1 for c in counts if c > 0)
|
|
145
|
+
print(f" {row['name']:15} → {len(counts)} features, {non_zero} non-zero")
|
|
146
|
+
else:
|
|
147
|
+
print(f" {row['name']:15} → N/A")
|
|
116
148
|
|
|
117
149
|
# Test 3: Edge cases
|
|
118
150
|
print("\n3. Testing edge cases...")
|
|
119
151
|
|
|
120
152
|
# Invalid SMILES
|
|
121
153
|
invalid_df = pd.DataFrame({"SMILES": ["INVALID", ""]})
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
print(f" ✓ Invalid SMILES handled: {len(fp_invalid)} valid molecules")
|
|
125
|
-
except Exception as e:
|
|
126
|
-
print(f" ✓ Invalid SMILES properly raised error: {type(e).__name__}")
|
|
154
|
+
fp_invalid = compute_morgan_fingerprints(invalid_df.copy())
|
|
155
|
+
print(f" ✓ Invalid SMILES handled: {len(fp_invalid)} rows returned")
|
|
127
156
|
|
|
128
157
|
# Test with pre-existing molecule column
|
|
129
158
|
mol_df = test_df.copy()
|
|
@@ -131,4 +160,16 @@ if __name__ == "__main__":
|
|
|
131
160
|
fp_with_mol = compute_morgan_fingerprints(mol_df)
|
|
132
161
|
print(f" ✓ Pre-existing molecule column handled: {len(fp_with_mol)} fingerprints generated")
|
|
133
162
|
|
|
163
|
+
# Test 4: Verify count values are reasonable
|
|
164
|
+
print("\n4. Verifying count distribution...")
|
|
165
|
+
all_counts = []
|
|
166
|
+
for _, row in fp_df.iterrows():
|
|
167
|
+
fp = row.get("fingerprint", "N/A")
|
|
168
|
+
if pd.notna(fp):
|
|
169
|
+
counts = [int(x) for x in fp.split(",")]
|
|
170
|
+
all_counts.extend([c for c in counts if c > 0])
|
|
171
|
+
|
|
172
|
+
if all_counts:
|
|
173
|
+
print(f" Non-zero counts: min={min(all_counts)}, max={max(all_counts)}, mean={np.mean(all_counts):.2f}")
|
|
174
|
+
|
|
134
175
|
print("\n✅ All fingerprint tests completed!")
|
|
@@ -17,18 +17,28 @@ log = logging.getLogger("workbench")
|
|
|
17
17
|
|
|
18
18
|
def fingerprints_to_matrix(fingerprints, dtype=np.uint8):
|
|
19
19
|
"""
|
|
20
|
-
Convert
|
|
20
|
+
Convert fingerprints to numpy matrix.
|
|
21
|
+
|
|
22
|
+
Supports two formats (auto-detected):
|
|
23
|
+
- Bitstrings: "10110010..." → matrix of 0s and 1s
|
|
24
|
+
- Count vectors: "0,3,0,1,5,..." → matrix of counts (or binary if dtype=np.bool_)
|
|
21
25
|
|
|
22
26
|
Args:
|
|
23
|
-
fingerprints: pandas Series or list of
|
|
24
|
-
dtype: numpy data type (uint8 is default
|
|
27
|
+
fingerprints: pandas Series or list of fingerprints
|
|
28
|
+
dtype: numpy data type (uint8 is default; np.bool_ for Jaccard computations)
|
|
25
29
|
|
|
26
30
|
Returns:
|
|
27
31
|
dense numpy array of shape (n_molecules, n_bits)
|
|
28
32
|
"""
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
33
|
+
# Auto-detect format based on first fingerprint
|
|
34
|
+
sample = str(fingerprints.iloc[0] if hasattr(fingerprints, "iloc") else fingerprints[0])
|
|
35
|
+
if "," in sample:
|
|
36
|
+
# Count vector format: comma-separated integers
|
|
37
|
+
matrix = np.array([list(map(int, fp.split(","))) for fp in fingerprints], dtype=dtype)
|
|
38
|
+
else:
|
|
39
|
+
# Bitstring format: each character is a bit
|
|
40
|
+
matrix = np.array([list(fp) for fp in fingerprints], dtype=dtype)
|
|
41
|
+
return matrix
|
|
32
42
|
|
|
33
43
|
|
|
34
44
|
def project_fingerprints(df: pd.DataFrame, projection: str = "UMAP") -> pd.DataFrame:
|