workbench 0.8.202__py3-none-any.whl → 0.8.220__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of workbench might be problematic. Click here for more details.

Files changed (84) hide show
  1. workbench/algorithms/dataframe/compound_dataset_overlap.py +321 -0
  2. workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
  3. workbench/algorithms/dataframe/fingerprint_proximity.py +421 -85
  4. workbench/algorithms/dataframe/projection_2d.py +44 -21
  5. workbench/algorithms/dataframe/proximity.py +78 -150
  6. workbench/algorithms/graph/light/proximity_graph.py +5 -5
  7. workbench/algorithms/models/cleanlab_model.py +382 -0
  8. workbench/algorithms/models/noise_model.py +388 -0
  9. workbench/algorithms/sql/outliers.py +3 -3
  10. workbench/api/__init__.py +3 -0
  11. workbench/api/df_store.py +17 -108
  12. workbench/api/endpoint.py +13 -11
  13. workbench/api/feature_set.py +111 -8
  14. workbench/api/meta_model.py +289 -0
  15. workbench/api/model.py +45 -12
  16. workbench/api/parameter_store.py +3 -52
  17. workbench/cached/cached_model.py +4 -4
  18. workbench/core/artifacts/artifact.py +5 -5
  19. workbench/core/artifacts/df_store_core.py +114 -0
  20. workbench/core/artifacts/endpoint_core.py +228 -237
  21. workbench/core/artifacts/feature_set_core.py +185 -230
  22. workbench/core/artifacts/model_core.py +34 -26
  23. workbench/core/artifacts/parameter_store_core.py +98 -0
  24. workbench/core/pipelines/pipeline_executor.py +1 -1
  25. workbench/core/transforms/features_to_model/features_to_model.py +22 -10
  26. workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +41 -10
  27. workbench/core/transforms/pandas_transforms/pandas_to_features.py +11 -2
  28. workbench/model_script_utils/model_script_utils.py +339 -0
  29. workbench/model_script_utils/pytorch_utils.py +405 -0
  30. workbench/model_script_utils/uq_harness.py +278 -0
  31. workbench/model_scripts/chemprop/chemprop.template +428 -631
  32. workbench/model_scripts/chemprop/generated_model_script.py +432 -635
  33. workbench/model_scripts/chemprop/model_script_utils.py +339 -0
  34. workbench/model_scripts/chemprop/requirements.txt +2 -10
  35. workbench/model_scripts/custom_models/chem_info/fingerprints.py +87 -46
  36. workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
  37. workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +6 -6
  38. workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
  39. workbench/model_scripts/meta_model/generated_model_script.py +209 -0
  40. workbench/model_scripts/meta_model/meta_model.template +209 -0
  41. workbench/model_scripts/pytorch_model/generated_model_script.py +374 -613
  42. workbench/model_scripts/pytorch_model/model_script_utils.py +339 -0
  43. workbench/model_scripts/pytorch_model/pytorch.template +370 -609
  44. workbench/model_scripts/pytorch_model/pytorch_utils.py +405 -0
  45. workbench/model_scripts/pytorch_model/requirements.txt +1 -1
  46. workbench/model_scripts/pytorch_model/uq_harness.py +278 -0
  47. workbench/model_scripts/script_generation.py +6 -5
  48. workbench/model_scripts/uq_models/generated_model_script.py +65 -422
  49. workbench/model_scripts/xgb_model/generated_model_script.py +372 -395
  50. workbench/model_scripts/xgb_model/model_script_utils.py +339 -0
  51. workbench/model_scripts/xgb_model/uq_harness.py +278 -0
  52. workbench/model_scripts/xgb_model/xgb_model.template +366 -396
  53. workbench/repl/workbench_shell.py +0 -5
  54. workbench/resources/open_source_api.key +1 -1
  55. workbench/scripts/endpoint_test.py +2 -2
  56. workbench/scripts/meta_model_sim.py +35 -0
  57. workbench/scripts/training_test.py +85 -0
  58. workbench/utils/chem_utils/fingerprints.py +87 -46
  59. workbench/utils/chem_utils/projections.py +16 -6
  60. workbench/utils/chemprop_utils.py +36 -655
  61. workbench/utils/meta_model_simulator.py +499 -0
  62. workbench/utils/metrics_utils.py +256 -0
  63. workbench/utils/model_utils.py +192 -54
  64. workbench/utils/pytorch_utils.py +33 -472
  65. workbench/utils/shap_utils.py +1 -55
  66. workbench/utils/xgboost_local_crossfold.py +267 -0
  67. workbench/utils/xgboost_model_utils.py +49 -356
  68. workbench/web_interface/components/model_plot.py +7 -1
  69. workbench/web_interface/components/plugins/model_details.py +30 -68
  70. workbench/web_interface/components/plugins/scatter_plot.py +4 -8
  71. {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/METADATA +6 -5
  72. {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/RECORD +76 -60
  73. {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/entry_points.txt +2 -0
  74. workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
  75. workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -296
  76. workbench/model_scripts/custom_models/meta_endpoints/example.py +0 -53
  77. workbench/model_scripts/custom_models/proximity/proximity.py +0 -410
  78. workbench/model_scripts/custom_models/uq_models/meta_uq.template +0 -377
  79. workbench/model_scripts/custom_models/uq_models/proximity.py +0 -410
  80. workbench/model_scripts/uq_models/mapie.template +0 -605
  81. workbench/model_scripts/uq_models/requirements.txt +0 -1
  82. {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/WHEEL +0 -0
  83. {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/licenses/LICENSE +0 -0
  84. {workbench-0.8.202.dist-info → workbench-0.8.220.dist-info}/top_level.txt +0 -0
@@ -1,468 +1,445 @@
1
- # Imports for XGB Model
2
- import xgboost as xgb
3
- import awswrangler as wr
4
- import numpy as np
5
-
6
- # Model Performance Scores
7
- from sklearn.metrics import (
8
- mean_absolute_error,
9
- r2_score,
10
- root_mean_squared_error,
11
- precision_recall_fscore_support,
12
- confusion_matrix,
13
- )
1
+ # XGBoost Model Template for Workbench
2
+ #
3
+ # This template handles both classification and regression models with:
4
+ # - K-fold cross-validation ensemble training (or single train/val split)
5
+ # - Out-of-fold predictions for validation metrics
6
+ # - Uncertainty quantification for regression models
7
+ # - Sample weights support
8
+ # - Categorical feature handling
9
+ # - Compressed feature decompression
10
+ #
11
+ # NOTE: Imports are structured to minimize serverless endpoint startup time.
12
+ # Heavy imports (sklearn, awswrangler) are deferred to training time.
14
13
 
15
- # Classification Encoder
16
- from sklearn.preprocessing import LabelEncoder
17
-
18
- # Scikit Learn Imports
19
- from sklearn.model_selection import train_test_split
20
-
21
- from io import StringIO
22
14
  import json
23
- import argparse
24
- import joblib
25
15
  import os
26
- import pandas as pd
27
- from typing import List, Tuple
28
-
29
- # Template Parameters
30
- TEMPLATE_PARAMS = {
31
- "model_type": "regressor",
32
- "target": "class_number_of_rings",
33
- "features": ['length', 'diameter', 'height', 'whole_weight', 'shucked_weight', 'viscera_weight', 'shell_weight', 'sex'],
34
- "compressed_features": [],
35
- "model_metrics_s3_path": "s3://sandbox-sageworks-artifacts/models/abalone-regression/training",
36
- "train_all_data": False,
37
- "hyperparameters": {},
38
- }
39
-
40
-
41
- # Function to check if dataframe is empty
42
- def check_dataframe(df: pd.DataFrame, df_name: str) -> None:
43
- """
44
- Check if the provided dataframe is empty and raise an exception if it is.
45
-
46
- Args:
47
- df (pd.DataFrame): DataFrame to check
48
- df_name (str): Name of the DataFrame
49
- """
50
- if df.empty:
51
- msg = f"*** The training data {df_name} has 0 rows! ***STOPPING***"
52
- print(msg)
53
- raise ValueError(msg)
54
16
 
17
+ import joblib
18
+ import numpy as np
19
+ import pandas as pd
20
+ import xgboost as xgb
55
21
 
56
- def expand_proba_column(df: pd.DataFrame, class_labels: List[str]) -> pd.DataFrame:
57
- """
58
- Expands a column in a DataFrame containing a list of probabilities into separate columns.
22
+ from model_script_utils import (
23
+ convert_categorical_types,
24
+ decompress_features,
25
+ expand_proba_column,
26
+ input_fn,
27
+ match_features_case_insensitive,
28
+ output_fn,
29
+ )
30
+ from uq_harness import (
31
+ compute_confidence,
32
+ load_uq_models,
33
+ predict_intervals,
34
+ )
59
35
 
60
- Args:
61
- df (pd.DataFrame): DataFrame containing a "pred_proba" column
62
- class_labels (List[str]): List of class labels
36
+ # =============================================================================
37
+ # Default Hyperparameters
38
+ # =============================================================================
39
+ DEFAULT_HYPERPARAMETERS = {
40
+ # Training parameters
41
+ "n_folds": 5, # Number of CV folds (1 = single train/val split)
42
+ # Core tree parameters
43
+ "n_estimators": 300,
44
+ "max_depth": 7,
45
+ "learning_rate": 0.05,
46
+ # Sampling parameters (less aggressive - ensemble provides regularization)
47
+ "subsample": 0.8,
48
+ "colsample_bytree": 0.8,
49
+ # Regularization (lighter - ensemble averaging reduces overfitting)
50
+ "min_child_weight": 3,
51
+ "gamma": 0.1,
52
+ "reg_alpha": 0.1,
53
+ "reg_lambda": 1.0,
54
+ # Random seed
55
+ "seed": 42,
56
+ }
63
57
 
64
- Returns:
65
- pd.DataFrame: DataFrame with the "pred_proba" expanded into separate columns
66
- """
58
+ # Workbench-specific parameters (not passed to XGBoost)
59
+ WORKBENCH_PARAMS = {"n_folds"}
67
60
 
68
- # Sanity check
69
- proba_column = "pred_proba"
70
- if proba_column not in df.columns:
71
- raise ValueError('DataFrame does not contain a "pred_proba" column')
61
+ # Regression-only parameters (filtered out for classifiers)
62
+ REGRESSION_ONLY_PARAMS = {"objective"}
72
63
 
73
- # Construct new column names with '_proba' suffix
74
- proba_splits = [f"{label}_proba" for label in class_labels]
64
+ # Template parameters (filled in by Workbench)
65
+ TEMPLATE_PARAMS = {
66
+ "model_type": "uq_regressor",
67
+ "target": "udm_asy_res_efflux_ratio",
68
+ "features": ['chi2v', 'fr_sulfone', 'chi1v', 'bcut2d_logplow', 'fr_piperzine', 'kappa3', 'smr_vsa1', 'slogp_vsa5', 'fr_ketone_topliss', 'fr_sulfonamd', 'fr_imine', 'fr_benzene', 'fr_ester', 'chi2n', 'labuteasa', 'peoe_vsa2', 'smr_vsa6', 'bcut2d_chglo', 'fr_sh', 'peoe_vsa1', 'fr_allylic_oxid', 'chi4n', 'fr_ar_oh', 'fr_nh0', 'fr_term_acetylene', 'slogp_vsa7', 'slogp_vsa4', 'estate_vsa1', 'vsa_estate4', 'numbridgeheadatoms', 'numheterocycles', 'fr_ketone', 'fr_morpholine', 'fr_guanido', 'estate_vsa2', 'numheteroatoms', 'fr_nitro_arom_nonortho', 'fr_piperdine', 'nocount', 'numspiroatoms', 'fr_aniline', 'fr_thiophene', 'slogp_vsa10', 'fr_amide', 'slogp_vsa2', 'fr_epoxide', 'vsa_estate7', 'fr_ar_coo', 'fr_imidazole', 'fr_nitrile', 'fr_oxazole', 'numsaturatedrings', 'fr_pyridine', 'fr_hoccn', 'fr_ndealkylation1', 'numaliphaticheterocycles', 'fr_phenol', 'maxpartialcharge', 'vsa_estate5', 'peoe_vsa13', 'minpartialcharge', 'qed', 'fr_al_oh', 'slogp_vsa11', 'chi0n', 'fr_bicyclic', 'peoe_vsa12', 'fpdensitymorgan1', 'fr_oxime', 'molwt', 'fr_dihydropyridine', 'smr_vsa5', 'peoe_vsa5', 'fr_nitro', 'hallkieralpha', 'heavyatommolwt', 'fr_alkyl_halide', 'peoe_vsa8', 'fr_nhpyrrole', 'fr_isocyan', 'bcut2d_chghi', 'fr_lactam', 'peoe_vsa11', 'smr_vsa9', 'tpsa', 'chi4v', 'slogp_vsa1', 'phi', 'bcut2d_logphi', 'avgipc', 'estate_vsa11', 'fr_coo', 'bcut2d_mwhi', 'numunspecifiedatomstereocenters', 'vsa_estate10', 'estate_vsa8', 'numvalenceelectrons', 'fr_nh2', 'fr_lactone', 'vsa_estate1', 'estate_vsa4', 'numatomstereocenters', 'vsa_estate8', 'fr_para_hydroxylation', 'peoe_vsa3', 'fr_thiazole', 'peoe_vsa10', 'fr_ndealkylation2', 'slogp_vsa12', 'peoe_vsa9', 'maxestateindex', 'fr_quatn', 'smr_vsa7', 'minestateindex', 'numaromaticheterocycles', 'numrotatablebonds', 'fr_ar_nh', 'fr_ether', 'exactmolwt', 'fr_phenol_noorthohbond', 'slogp_vsa3', 'fr_ar_n', 'sps', 'fr_c_o_nocoo', 'bertzct', 'peoe_vsa7', 'slogp_vsa8', 'numradicalelectrons', 'molmr', 'fr_tetrazole', 'numsaturatedcarbocycles', 'bcut2d_mrhi', 'kappa1', 'numamidebonds', 'fpdensitymorgan2', 'smr_vsa8', 'chi1n', 'estate_vsa6', 'fr_barbitur', 'fr_diazo', 'kappa2', 'chi0', 'bcut2d_mrlow', 'balabanj', 'peoe_vsa4', 'numhacceptors', 'fr_sulfide', 'chi3n', 'smr_vsa2', 'fr_al_oh_notert', 'fr_benzodiazepine', 'fr_phos_ester', 'fr_aldehyde', 'fr_coo2', 'estate_vsa5', 'fr_prisulfonamd', 'numaromaticcarbocycles', 'fr_unbrch_alkane', 'fr_urea', 'fr_nitroso', 'smr_vsa10', 'fr_c_s', 'smr_vsa3', 'fr_methoxy', 'maxabspartialcharge', 'slogp_vsa9', 'heavyatomcount', 'fr_azide', 'chi3v', 'smr_vsa4', 'mollogp', 'chi0v', 'fr_aryl_methyl', 'fr_nh1', 'fpdensitymorgan3', 'fr_furan', 'fr_hdrzine', 'fr_arn', 'numaromaticrings', 'vsa_estate3', 'fr_azo', 'fr_halogen', 'estate_vsa9', 'fr_hdrzone', 'numhdonors', 'fr_alkyl_carbamate', 'fr_isothiocyan', 'minabspartialcharge', 'fr_al_coo', 'ringcount', 'chi1', 'estate_vsa7', 'fr_nitro_arom', 'vsa_estate9', 'minabsestateindex', 'maxabsestateindex', 'vsa_estate6', 'estate_vsa10', 'estate_vsa3', 'fr_n_o', 'fr_amidine', 'fr_thiocyan', 'fr_phos_acid', 'fr_c_o', 'fr_imide', 'numaliphaticrings', 'peoe_vsa6', 'vsa_estate2', 'nhohcount', 'numsaturatedheterocycles', 'slogp_vsa6', 'peoe_vsa14', 'fractioncsp3', 'bcut2d_mwlow', 'numaliphaticcarbocycles', 'fr_priamide', 'nacid', 'nbase', 'naromatom', 'narombond', 'sz', 'sm', 'sv', 'sse', 'spe', 'sare', 'sp', 'si', 'mz', 'mm', 'mv', 'mse', 'mpe', 'mare', 'mp', 'mi', 'xch_3d', 'xch_4d', 'xch_5d', 'xch_6d', 'xch_7d', 'xch_3dv', 'xch_4dv', 'xch_5dv', 'xch_6dv', 'xch_7dv', 'xc_3d', 'xc_4d', 'xc_5d', 'xc_6d', 'xc_3dv', 'xc_4dv', 'xc_5dv', 'xc_6dv', 'xpc_4d', 'xpc_5d', 'xpc_6d', 'xpc_4dv', 'xpc_5dv', 'xpc_6dv', 'xp_0d', 'xp_1d', 'xp_2d', 'xp_3d', 'xp_4d', 'xp_5d', 'xp_6d', 'xp_7d', 'axp_0d', 'axp_1d', 'axp_2d', 'axp_3d', 'axp_4d', 'axp_5d', 'axp_6d', 'axp_7d', 'xp_0dv', 'xp_1dv', 'xp_2dv', 'xp_3dv', 'xp_4dv', 'xp_5dv', 'xp_6dv', 'xp_7dv', 'axp_0dv', 'axp_1dv', 'axp_2dv', 'axp_3dv', 'axp_4dv', 'axp_5dv', 'axp_6dv', 'axp_7dv', 'c1sp1', 'c2sp1', 'c1sp2', 'c2sp2', 'c3sp2', 'c1sp3', 'c2sp3', 'c3sp3', 'c4sp3', 'hybratio', 'fcsp3', 'num_stereocenters', 'num_unspecified_stereocenters', 'num_defined_stereocenters', 'num_r_centers', 'num_s_centers', 'num_stereobonds', 'num_e_bonds', 'num_z_bonds', 'stereo_complexity', 'frac_defined_stereo'],
69
+ "id_column": "udm_mol_bat_id",
70
+ "compressed_features": ['fingerprint'],
71
+ "model_metrics_s3_path": "s3://ideaya-sageworks-bucket/models/caco2-er-reg-temporal/training",
72
+ "hyperparameters": {'n_folds': 1},
73
+ }
75
74
 
76
- # Expand the proba_column into separate columns for each probability
77
- proba_df = pd.DataFrame(df[proba_column].tolist(), columns=proba_splits)
78
75
 
79
- # Drop any proba columns and reset the index in prep for the concat
80
- df = df.drop(columns=[proba_column] + proba_splits, errors="ignore")
81
- df = df.reset_index(drop=True)
76
+ # =============================================================================
77
+ # Model Loading (for SageMaker inference)
78
+ # =============================================================================
79
+ def model_fn(model_dir: str) -> dict:
80
+ """Load XGBoost ensemble from the specified directory."""
81
+ # Load ensemble metadata
82
+ metadata_path = os.path.join(model_dir, "ensemble_metadata.json")
83
+ if os.path.exists(metadata_path):
84
+ with open(metadata_path) as f:
85
+ metadata = json.load(f)
86
+ n_ensemble = metadata["n_ensemble"]
87
+ else:
88
+ n_ensemble = 1 # Legacy single model
82
89
 
83
- # Concatenate the new columns with the original DataFrame
84
- df = pd.concat([df, proba_df], axis=1)
85
- print(df)
86
- return df
90
+ # Load ensemble models
91
+ ensemble_models = []
92
+ for i in range(n_ensemble):
93
+ model_path = os.path.join(model_dir, f"xgb_model_{i}.joblib")
94
+ if not os.path.exists(model_path):
95
+ model_path = os.path.join(model_dir, "xgb_model.joblib") # Legacy fallback
96
+ ensemble_models.append(joblib.load(model_path))
87
97
 
98
+ print(f"Loaded {len(ensemble_models)} model(s)")
88
99
 
89
- def match_features_case_insensitive(df: pd.DataFrame, model_features: list) -> pd.DataFrame:
90
- """
91
- Matches and renames DataFrame columns to match model feature names (case-insensitive).
92
- Prioritizes exact matches, then case-insensitive matches.
93
-
94
- Raises ValueError if any model features cannot be matched.
95
- """
96
- df_columns_lower = {col.lower(): col for col in df.columns}
97
- rename_dict = {}
98
- missing = []
99
- for feature in model_features:
100
- if feature in df.columns:
101
- continue # Exact match
102
- elif feature.lower() in df_columns_lower:
103
- rename_dict[df_columns_lower[feature.lower()]] = feature
104
- else:
105
- missing.append(feature)
100
+ # Load label encoder (classifier only)
101
+ label_encoder = None
102
+ encoder_path = os.path.join(model_dir, "label_encoder.joblib")
103
+ if os.path.exists(encoder_path):
104
+ label_encoder = joblib.load(encoder_path)
105
+
106
+ # Load category mappings
107
+ category_mappings = {}
108
+ category_path = os.path.join(model_dir, "category_mappings.json")
109
+ if os.path.exists(category_path):
110
+ with open(category_path) as f:
111
+ category_mappings = json.load(f)
112
+
113
+ # Load UQ models (regression only)
114
+ uq_models, uq_metadata = None, None
115
+ uq_path = os.path.join(model_dir, "uq_metadata.json")
116
+ if os.path.exists(uq_path):
117
+ uq_models, uq_metadata = load_uq_models(model_dir)
118
+
119
+ return {
120
+ "ensemble_models": ensemble_models,
121
+ "n_ensemble": n_ensemble,
122
+ "label_encoder": label_encoder,
123
+ "category_mappings": category_mappings,
124
+ "uq_models": uq_models,
125
+ "uq_metadata": uq_metadata,
126
+ }
127
+
128
+
129
+ # =============================================================================
130
+ # Inference (for SageMaker inference)
131
+ # =============================================================================
132
+ def predict_fn(df: pd.DataFrame, model_dict: dict) -> pd.DataFrame:
133
+ """Make predictions with XGBoost ensemble."""
134
+ model_dir = os.environ.get("SM_MODEL_DIR", "/opt/ml/model")
135
+ with open(os.path.join(model_dir, "feature_columns.json")) as f:
136
+ features = json.load(f)
137
+ print(f"Model Features: {features}")
106
138
 
107
- if missing:
108
- raise ValueError(f"Features not found: {missing}")
139
+ # Extract model components
140
+ ensemble_models = model_dict["ensemble_models"]
141
+ label_encoder = model_dict.get("label_encoder")
142
+ category_mappings = model_dict.get("category_mappings", {})
143
+ uq_models = model_dict.get("uq_models")
144
+ uq_metadata = model_dict.get("uq_metadata")
145
+ compressed_features = TEMPLATE_PARAMS["compressed_features"]
109
146
 
110
- # Rename the DataFrame columns to match the model features
111
- return df.rename(columns=rename_dict)
147
+ # Prepare features
148
+ matched_df = match_features_case_insensitive(df, features)
149
+ matched_df, _ = convert_categorical_types(matched_df, features, category_mappings)
112
150
 
151
+ if compressed_features:
152
+ print("Decompressing features for prediction...")
153
+ matched_df, features = decompress_features(matched_df, features, compressed_features)
113
154
 
114
- def convert_categorical_types(df: pd.DataFrame, features: list, category_mappings={}) -> tuple:
115
- """
116
- Converts appropriate columns to categorical type with consistent mappings.
155
+ X = matched_df[features]
117
156
 
118
- Args:
119
- df (pd.DataFrame): The DataFrame to process.
120
- features (list): List of feature names to consider for conversion.
121
- category_mappings (dict, optional): Existing category mappings. If empty dict, we're in
122
- training mode. If populated, we're in inference mode.
157
+ # Collect ensemble predictions
158
+ all_preds = [m.predict(X) for m in ensemble_models]
159
+ ensemble_preds = np.stack(all_preds, axis=0)
123
160
 
124
- Returns:
125
- tuple: (processed DataFrame, category mappings dictionary)
126
- """
127
- # Training mode
128
- if category_mappings == {}:
129
- for col in df.select_dtypes(include=["object", "string"]):
130
- if col in features and df[col].nunique() < 20:
131
- print(f"Training mode: Converting {col} to category")
132
- df[col] = df[col].astype("category")
133
- category_mappings[col] = df[col].cat.categories.tolist() # Store category mappings
161
+ if label_encoder is not None:
162
+ # Classification: average probabilities, then argmax
163
+ all_probs = [m.predict_proba(X) for m in ensemble_models]
164
+ avg_probs = np.mean(np.stack(all_probs, axis=0), axis=0)
165
+ class_preds = np.argmax(avg_probs, axis=1)
134
166
 
135
- # Inference mode
167
+ df["prediction"] = label_encoder.inverse_transform(class_preds)
168
+ df["pred_proba"] = [p.tolist() for p in avg_probs]
169
+ df = expand_proba_column(df, label_encoder.classes_)
136
170
  else:
137
- for col, categories in category_mappings.items():
138
- if col in df.columns:
139
- print(f"Inference mode: Applying categorical mapping for {col}")
140
- df[col] = pd.Categorical(df[col], categories=categories) # Apply consistent categorical mapping
141
-
142
- return df, category_mappings
143
-
144
-
145
- def decompress_features(
146
- df: pd.DataFrame, features: List[str], compressed_features: List[str]
147
- ) -> Tuple[pd.DataFrame, List[str]]:
148
- """Prepare features for the model by decompressing bitstring features
149
-
150
- Args:
151
- df (pd.DataFrame): The features DataFrame
152
- features (List[str]): Full list of feature names
153
- compressed_features (List[str]): List of feature names to decompress (bitstrings)
154
-
155
- Returns:
156
- pd.DataFrame: DataFrame with the decompressed features
157
- List[str]: Updated list of feature names after decompression
158
-
159
- Raises:
160
- ValueError: If any missing values are found in the specified features
161
- """
162
-
163
- # Check for any missing values in the required features
164
- missing_counts = df[features].isna().sum()
165
- if missing_counts.any():
166
- missing_features = missing_counts[missing_counts > 0]
167
- print(
168
- f"WARNING: Found missing values in features: {missing_features.to_dict()}. "
169
- "WARNING: You might want to remove/replace all NaN values before processing."
170
- )
171
-
172
- # Decompress the specified compressed features
173
- decompressed_features = features.copy()
174
- for feature in compressed_features:
175
- if (feature not in df.columns) or (feature not in features):
176
- print(f"Feature '{feature}' not in the features list, skipping decompression.")
177
- continue
178
-
179
- # Remove the feature from the list of features to avoid duplication
180
- decompressed_features.remove(feature)
181
-
182
- # Handle all compressed features as bitstrings
183
- bit_matrix = np.array([list(bitstring) for bitstring in df[feature]], dtype=np.uint8)
184
- prefix = feature[:3]
185
-
186
- # Create all new columns at once - avoids fragmentation
187
- new_col_names = [f"{prefix}_{i}" for i in range(bit_matrix.shape[1])]
188
- new_df = pd.DataFrame(bit_matrix, columns=new_col_names, index=df.index)
189
-
190
- # Add to features list
191
- decompressed_features.extend(new_col_names)
171
+ # Regression: average predictions
172
+ df["prediction"] = np.mean(ensemble_preds, axis=0)
173
+ df["prediction_std"] = np.std(ensemble_preds, axis=0)
192
174
 
193
- # Drop original column and concatenate new ones
194
- df = df.drop(columns=[feature])
195
- df = pd.concat([df, new_df], axis=1)
175
+ # Add UQ intervals if available
176
+ if uq_models and uq_metadata:
177
+ df = predict_intervals(df, X, uq_models, uq_metadata)
178
+ df = compute_confidence(df, uq_metadata["median_interval_width"], "q_10", "q_90")
196
179
 
197
- return df, decompressed_features
180
+ print(f"Inference complete: {len(df)} predictions, {len(ensemble_models)} ensemble members")
181
+ return df
198
182
 
199
183
 
184
+ # =============================================================================
185
+ # Training
186
+ # =============================================================================
200
187
  if __name__ == "__main__":
201
- """The main function is for training the XGBoost model"""
188
+ # -------------------------------------------------------------------------
189
+ # Training-only imports (deferred to reduce serverless startup time)
190
+ # -------------------------------------------------------------------------
191
+ import argparse
192
+
193
+ import awswrangler as wr
194
+ from sklearn.model_selection import KFold, StratifiedKFold, train_test_split
195
+ from sklearn.preprocessing import LabelEncoder
196
+
197
+ from model_script_utils import (
198
+ check_dataframe,
199
+ compute_classification_metrics,
200
+ compute_regression_metrics,
201
+ print_classification_metrics,
202
+ print_confusion_matrix,
203
+ print_regression_metrics,
204
+ )
205
+ from uq_harness import (
206
+ save_uq_models,
207
+ train_uq_models,
208
+ )
209
+
210
+ # -------------------------------------------------------------------------
211
+ # Setup: Parse arguments and load data
212
+ # -------------------------------------------------------------------------
213
+ parser = argparse.ArgumentParser()
214
+ parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
215
+ parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
216
+ parser.add_argument("--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data"))
217
+ args = parser.parse_args()
202
218
 
203
- # Harness Template Parameters
219
+ # Extract template parameters
204
220
  target = TEMPLATE_PARAMS["target"]
205
221
  features = TEMPLATE_PARAMS["features"]
206
222
  orig_features = features.copy()
223
+ id_column = TEMPLATE_PARAMS["id_column"]
207
224
  compressed_features = TEMPLATE_PARAMS["compressed_features"]
208
225
  model_type = TEMPLATE_PARAMS["model_type"]
209
226
  model_metrics_s3_path = TEMPLATE_PARAMS["model_metrics_s3_path"]
210
- train_all_data = TEMPLATE_PARAMS["train_all_data"]
211
- hyperparameters = TEMPLATE_PARAMS["hyperparameters"]
212
- validation_split = 0.2
213
-
214
- # Script arguments for input/output directories
215
- parser = argparse.ArgumentParser()
216
- parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
217
- parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
218
- parser.add_argument(
219
- "--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data")
220
- )
221
- args = parser.parse_args()
227
+ hyperparameters = {**DEFAULT_HYPERPARAMETERS, **(TEMPLATE_PARAMS["hyperparameters"] or {})}
222
228
 
223
- # Read the training data into DataFrames
224
- training_files = [os.path.join(args.train, file) for file in os.listdir(args.train) if file.endswith(".csv")]
229
+ # Load training data
230
+ training_files = [os.path.join(args.train, f) for f in os.listdir(args.train) if f.endswith(".csv")]
225
231
  print(f"Training Files: {training_files}")
226
-
227
- # Combine files and read them all into a single pandas dataframe
228
- all_df = pd.concat([pd.read_csv(file, engine="python") for file in training_files])
229
-
230
- # Check if the dataframe is empty
232
+ all_df = pd.concat([pd.read_csv(f, engine="python") for f in training_files])
231
233
  check_dataframe(all_df, "training_df")
232
234
 
233
- # Features/Target output
234
235
  print(f"Target: {target}")
235
- print(f"Features: {str(features)}")
236
+ print(f"Features: {features}")
237
+ print(f"Hyperparameters: {hyperparameters}")
236
238
 
237
- # Convert any features that might be categorical to 'category' type
239
+ # -------------------------------------------------------------------------
240
+ # Preprocessing: Categorical features and decompression
241
+ # -------------------------------------------------------------------------
238
242
  all_df, category_mappings = convert_categorical_types(all_df, features)
239
243
 
240
- # If we have compressed features, decompress them
241
244
  if compressed_features:
242
- print(f"Decompressing features {compressed_features}...")
245
+ print(f"Decompressing features: {compressed_features}")
243
246
  all_df, features = decompress_features(all_df, features, compressed_features)
244
247
 
245
- # Do we want to train on all the data?
246
- if train_all_data:
247
- print("Training on ALL of the data")
248
- df_train = all_df.copy()
249
- df_val = all_df.copy()
250
-
251
- # Does the dataframe have a training column?
252
- elif "training" in all_df.columns:
253
- print("Found training column, splitting data based on training column")
254
- df_train = all_df[all_df["training"]]
255
- df_val = all_df[~all_df["training"]]
256
- else:
257
- # Just do a random training Split
258
- print("WARNING: No training column found, splitting data with random state=42")
259
- df_train, df_val = train_test_split(all_df, test_size=validation_split, random_state=42)
260
- print(f"FIT/TRAIN: {df_train.shape}")
261
- print(f"VALIDATION: {df_val.shape}")
262
-
263
- # Use any hyperparameters to set up both the trainer and model configurations
264
- print(f"Hyperparameters: {hyperparameters}")
265
-
266
- # Now spin up our XGB Model
248
+ # -------------------------------------------------------------------------
249
+ # Classification setup
250
+ # -------------------------------------------------------------------------
251
+ label_encoder = None
267
252
  if model_type == "classifier":
268
- xgb_model = xgb.XGBClassifier(enable_categorical=True, **hyperparameters)
269
-
270
- # Encode the target column
271
253
  label_encoder = LabelEncoder()
272
- df_train[target] = label_encoder.fit_transform(df_train[target])
273
- df_val[target] = label_encoder.transform(df_val[target])
274
-
275
- else:
276
- xgb_model = xgb.XGBRegressor(enable_categorical=True, **hyperparameters)
277
- label_encoder = None # We don't need this for regression
278
-
279
- # Grab our Features, Target and Train the Model
280
- y_train = df_train[target]
281
- X_train = df_train[features]
282
- xgb_model.fit(X_train, y_train)
283
-
284
- # Make Predictions on the Validation Set
285
- print(f"Making Predictions on Validation Set...")
286
- y_validate = df_val[target]
287
- X_validate = df_val[features]
288
- preds = xgb_model.predict(X_validate)
289
- if model_type == "classifier":
290
- # Also get the probabilities for each class
291
- print("Processing Probabilities...")
292
- probs = xgb_model.predict_proba(X_validate)
293
- df_val["pred_proba"] = [p.tolist() for p in probs]
294
-
295
- # Expand the pred_proba column into separate columns for each class
296
- print(df_val.columns)
297
- df_val = expand_proba_column(df_val, label_encoder.classes_)
298
- print(df_val.columns)
299
-
300
- # Decode the target and prediction labels
301
- y_validate = label_encoder.inverse_transform(y_validate)
302
- preds = label_encoder.inverse_transform(preds)
303
-
304
- # Save predictions to S3 (just the target, prediction, and '_proba' columns)
305
- df_val["prediction"] = preds
306
- output_columns = [target, "prediction"]
307
- output_columns += [col for col in df_val.columns if col.endswith("_proba")]
308
- wr.s3.to_csv(
309
- df_val[output_columns],
310
- path=f"{model_metrics_s3_path}/validation_predictions.csv",
311
- index=False,
312
- )
254
+ all_df[target] = label_encoder.fit_transform(all_df[target])
255
+ print(f"Class labels: {label_encoder.classes_.tolist()}")
313
256
 
314
- # Report Performance Metrics
315
- if model_type == "classifier":
316
- # Get the label names and their integer mapping
317
- label_names = label_encoder.classes_
257
+ # -------------------------------------------------------------------------
258
+ # Cross-validation setup
259
+ # -------------------------------------------------------------------------
260
+ n_folds = hyperparameters["n_folds"]
261
+ xgb_params = {k: v for k, v in hyperparameters.items() if k not in WORKBENCH_PARAMS}
318
262
 
319
- # Calculate various model performance metrics
320
- scores = precision_recall_fscore_support(y_validate, preds, average=None, labels=label_names)
321
-
322
- # Put the scores into a dataframe
323
- score_df = pd.DataFrame(
324
- {
325
- target: label_names,
326
- "precision": scores[0],
327
- "recall": scores[1],
328
- "f1": scores[2],
329
- "support": scores[3],
330
- }
331
- )
332
-
333
- # We need to get creative with the Classification Metrics
334
- metrics = ["precision", "recall", "f1", "support"]
335
- for t in label_names:
336
- for m in metrics:
337
- value = score_df.loc[score_df[target] == t, m].iloc[0]
338
- print(f"Metrics:{t}:{m} {value}")
339
-
340
- # Compute and output the confusion matrix
341
- conf_mtx = confusion_matrix(y_validate, preds, labels=label_names)
342
- for i, row_name in enumerate(label_names):
343
- for j, col_name in enumerate(label_names):
344
- value = conf_mtx[i, j]
345
- print(f"ConfusionMatrix:{row_name}:{col_name} {value}")
263
+ # Map 'seed' to 'random_state' for XGBoost
264
+ if "seed" in xgb_params:
265
+ xgb_params["random_state"] = xgb_params.pop("seed")
346
266
 
267
+ # Handle objective: filter regression-only params for classifiers, set default for regressors
268
+ if model_type == "classifier":
269
+ xgb_params = {k: v for k, v in xgb_params.items() if k not in REGRESSION_ONLY_PARAMS}
347
270
  else:
348
- # Calculate various model performance metrics (regression)
349
- rmse = root_mean_squared_error(y_validate, preds)
350
- mae = mean_absolute_error(y_validate, preds)
351
- r2 = r2_score(y_validate, preds)
352
- print(f"RMSE: {rmse:.3f}")
353
- print(f"MAE: {mae:.3f}")
354
- print(f"R2: {r2:.3f}")
355
- print(f"NumRows: {len(df_val)}")
356
-
357
- # Now save the model to the standard place/name
358
- joblib.dump(xgb_model, os.path.join(args.model_dir, "xgb_model.joblib"))
359
-
360
- # Save the label encoder if we have one
361
- if label_encoder:
362
- joblib.dump(label_encoder, os.path.join(args.model_dir, "label_encoder.joblib"))
363
-
364
- # Save the features (this will validate input during predictions)
365
- with open(os.path.join(args.model_dir, "feature_columns.json"), "w") as fp:
366
- json.dump(orig_features, fp) # We save the original features, not the decompressed ones
367
-
368
- # Save the category mappings
369
- with open(os.path.join(args.model_dir, "category_mappings.json"), "w") as fp:
370
- json.dump(category_mappings, fp)
271
+ # Default to MAE (reg:absoluteerror) for regression if not specified
272
+ xgb_params.setdefault("objective", "reg:absoluteerror")
371
273
 
274
+ print(f"XGBoost params: {xgb_params}")
372
275
 
373
- def model_fn(model_dir):
374
- """Deserialize and return fitted XGBoost model"""
375
- model_path = os.path.join(model_dir, "xgb_model.joblib")
376
- model = joblib.load(model_path)
377
- return model
378
-
379
-
380
- def input_fn(input_data, content_type):
381
- """Parse input data and return a DataFrame."""
382
- if not input_data:
383
- raise ValueError("Empty input data is not supported!")
276
+ if n_folds == 1:
277
+ # Single train/val split
278
+ if "training" in all_df.columns:
279
+ print("Using 'training' column for train/val split")
280
+ train_idx = np.where(all_df["training"])[0]
281
+ val_idx = np.where(~all_df["training"])[0]
282
+ else:
283
+ print("WARNING: No 'training' column found, using random 80/20 split")
284
+ indices = np.arange(len(all_df))
285
+ train_idx, val_idx = train_test_split(indices, test_size=0.2, random_state=42)
286
+ folds = [(train_idx, val_idx)]
287
+ else:
288
+ # K-fold cross-validation
289
+ if model_type == "classifier":
290
+ kfold = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=42)
291
+ folds = list(kfold.split(all_df, all_df[target]))
292
+ else:
293
+ kfold = KFold(n_splits=n_folds, shuffle=True, random_state=42)
294
+ folds = list(kfold.split(all_df))
384
295
 
385
- # Decode bytes to string if necessary
386
- if isinstance(input_data, bytes):
387
- input_data = input_data.decode("utf-8")
296
+ print(f"Training {'single model' if n_folds == 1 else f'{n_folds}-fold ensemble'}...")
388
297
 
389
- if "text/csv" in content_type:
390
- return pd.read_csv(StringIO(input_data))
391
- elif "application/json" in content_type:
392
- return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
298
+ # -------------------------------------------------------------------------
299
+ # Training loop
300
+ # -------------------------------------------------------------------------
301
+ # Initialize out-of-fold storage
302
+ oof_predictions = np.full(len(all_df), np.nan, dtype=np.float64)
303
+ if model_type == "classifier":
304
+ num_classes = len(label_encoder.classes_)
305
+ oof_proba = np.full((len(all_df), num_classes), np.nan, dtype=np.float64)
393
306
  else:
394
- raise ValueError(f"{content_type} not supported!")
395
-
307
+ oof_proba = None
308
+
309
+ # Check for sample weights
310
+ has_sample_weights = "sample_weight" in all_df.columns
311
+ if has_sample_weights:
312
+ sw = all_df["sample_weight"]
313
+ print(f"Using sample weights: min={sw.min():.2f}, max={sw.max():.2f}, mean={sw.mean():.2f}")
314
+
315
+ # Train ensemble
316
+ ensemble_models = []
317
+ for fold_idx, (train_idx, val_idx) in enumerate(folds):
318
+ print(f"\n{'='*50}")
319
+ print(f"Fold {fold_idx + 1}/{len(folds)} - Train: {len(train_idx)}, Val: {len(val_idx)}")
320
+ print(f"{'='*50}")
321
+
322
+ # Prepare fold data
323
+ X_train = all_df.iloc[train_idx][features]
324
+ y_train = all_df.iloc[train_idx][target]
325
+ X_val = all_df.iloc[val_idx][features]
326
+ sample_weights = all_df.iloc[train_idx]["sample_weight"] if has_sample_weights else None
327
+
328
+ # Create model with fold-specific random state for diversity
329
+ fold_params = {**xgb_params, "random_state": xgb_params.get("random_state", 42) + fold_idx}
330
+ if model_type == "classifier":
331
+ model = xgb.XGBClassifier(enable_categorical=True, **fold_params)
332
+ else:
333
+ model = xgb.XGBRegressor(enable_categorical=True, **fold_params)
334
+
335
+ # Train
336
+ model.fit(X_train, y_train, sample_weight=sample_weights)
337
+ ensemble_models.append(model)
338
+
339
+ # Out-of-fold predictions
340
+ oof_predictions[val_idx] = model.predict(X_val)
341
+ if model_type == "classifier":
342
+ oof_proba[val_idx] = model.predict_proba(X_val)
343
+
344
+ print(f"\nTraining complete! Trained {len(ensemble_models)} model(s).")
345
+
346
+ # -------------------------------------------------------------------------
347
+ # Prepare validation results
348
+ # -------------------------------------------------------------------------
349
+ if n_folds == 1:
350
+ # Single fold: only validation rows
351
+ val_mask = ~np.isnan(oof_predictions)
352
+ df_val = all_df[val_mask].copy()
353
+ predictions = oof_predictions[val_mask]
354
+ if oof_proba is not None:
355
+ oof_proba = oof_proba[val_mask]
356
+ else:
357
+ # K-fold: all rows have out-of-fold predictions
358
+ df_val = all_df.copy()
359
+ predictions = oof_predictions
396
360
 
397
- def output_fn(output_df, accept_type):
398
- """Supports both CSV and JSON output formats."""
399
- if "text/csv" in accept_type:
400
- csv_output = output_df.fillna("N/A").to_csv(index=False) # CSV with N/A for missing values
401
- return csv_output, "text/csv"
402
- elif "application/json" in accept_type:
403
- return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
361
+ # Decode labels for classification
362
+ if model_type == "classifier":
363
+ df_val[target] = label_encoder.inverse_transform(df_val[target].astype(int))
364
+ df_val["prediction"] = label_encoder.inverse_transform(predictions.astype(int))
365
+ if oof_proba is not None:
366
+ df_val["pred_proba"] = [p.tolist() for p in oof_proba]
367
+ df_val = expand_proba_column(df_val, label_encoder.classes_)
404
368
  else:
405
- raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
369
+ df_val["prediction"] = predictions
406
370
 
371
+ # -------------------------------------------------------------------------
372
+ # Compute and print metrics
373
+ # -------------------------------------------------------------------------
374
+ y_true = df_val[target].values
375
+ y_pred = df_val["prediction"].values
407
376
 
408
- def predict_fn(df, model) -> pd.DataFrame:
409
- """Make Predictions with our XGB Model
377
+ if model_type == "classifier":
378
+ label_names = label_encoder.classes_
379
+ score_df = compute_classification_metrics(y_true, y_pred, label_names, target)
380
+ print_classification_metrics(score_df, target, label_names)
381
+ print_confusion_matrix(y_true, y_pred, label_names)
382
+ else:
383
+ metrics = compute_regression_metrics(y_true, y_pred)
384
+ print_regression_metrics(metrics)
385
+
386
+ # Compute ensemble prediction_std
387
+ if n_folds > 1:
388
+ all_preds = np.stack([m.predict(all_df[features]) for m in ensemble_models])
389
+ df_val["prediction_std"] = np.std(all_preds, axis=0)
390
+ print(f"Ensemble std - mean: {df_val['prediction_std'].mean():.4f}, max: {df_val['prediction_std'].max():.4f}")
391
+ else:
392
+ df_val["prediction_std"] = 0.0
393
+
394
+ # Train UQ models for uncertainty quantification
395
+ print("\n" + "=" * 50)
396
+ print("Training UQ Models")
397
+ print("=" * 50)
398
+ uq_models, uq_metadata = train_uq_models(
399
+ all_df[features], all_df[target], df_val[features], y_true
400
+ )
401
+ df_val = predict_intervals(df_val, df_val[features], uq_models, uq_metadata)
402
+ df_val = compute_confidence(df_val, uq_metadata["median_interval_width"])
410
403
 
411
- Args:
412
- df (pd.DataFrame): The input DataFrame
413
- model: The model use for predictions
404
+ # -------------------------------------------------------------------------
405
+ # Save validation predictions to S3
406
+ # -------------------------------------------------------------------------
407
+ output_columns = []
408
+ if id_column in df_val.columns:
409
+ output_columns.append(id_column)
410
+ output_columns += [target, "prediction"]
414
411
 
415
- Returns:
416
- pd.DataFrame: The DataFrame with the predictions added
417
- """
418
- compressed_features = TEMPLATE_PARAMS["compressed_features"]
412
+ if model_type != "classifier":
413
+ output_columns.append("prediction_std")
414
+ output_columns += [c for c in df_val.columns if c.startswith("q_") or c == "confidence"]
419
415
 
420
- # Grab our feature columns (from training)
421
- model_dir = os.environ.get("SM_MODEL_DIR", "/opt/ml/model")
422
- with open(os.path.join(model_dir, "feature_columns.json")) as fp:
423
- features = json.load(fp)
424
- print(f"Model Features: {features}")
416
+ output_columns += [c for c in df_val.columns if c.endswith("_proba")]
425
417
 
426
- # Load the category mappings (from training)
427
- with open(os.path.join(model_dir, "category_mappings.json")) as fp:
428
- category_mappings = json.load(fp)
418
+ wr.s3.to_csv(df_val[output_columns], f"{model_metrics_s3_path}/validation_predictions.csv", index=False)
429
419
 
430
- # Load our Label Encoder if we have one
431
- label_encoder = None
432
- if os.path.exists(os.path.join(model_dir, "label_encoder.joblib")):
433
- label_encoder = joblib.load(os.path.join(model_dir, "label_encoder.joblib"))
420
+ # -------------------------------------------------------------------------
421
+ # Save model artifacts
422
+ # -------------------------------------------------------------------------
423
+ for idx, m in enumerate(ensemble_models):
424
+ joblib.dump(m, os.path.join(args.model_dir, f"xgb_model_{idx}.joblib"))
425
+ print(f"Saved {len(ensemble_models)} model(s)")
434
426
 
435
- # We're going match features in a case-insensitive manner, accounting for all the permutations
436
- # - Model has a feature list that's any case ("Id", "taCos", "cOunT", "likes_tacos")
437
- # - Incoming data has columns that are mixed case ("ID", "Tacos", "Count", "Likes_Tacos")
438
- matched_df = match_features_case_insensitive(df, features)
427
+ with open(os.path.join(args.model_dir, "ensemble_metadata.json"), "w") as f:
428
+ json.dump({"n_ensemble": len(ensemble_models), "n_folds": n_folds}, f)
439
429
 
440
- # Detect categorical types in the incoming DataFrame
441
- matched_df, _ = convert_categorical_types(matched_df, features, category_mappings)
430
+ with open(os.path.join(args.model_dir, "feature_columns.json"), "w") as f:
431
+ json.dump(orig_features, f)
442
432
 
443
- # If we have compressed features, decompress them
444
- if compressed_features:
445
- print("Decompressing features for prediction...")
446
- matched_df, features = decompress_features(matched_df, features, compressed_features)
433
+ with open(os.path.join(args.model_dir, "category_mappings.json"), "w") as f:
434
+ json.dump(category_mappings, f)
447
435
 
448
- # Predict the features against our XGB Model
449
- X = matched_df[features]
450
- predictions = model.predict(X)
436
+ with open(os.path.join(args.model_dir, "hyperparameters.json"), "w") as f:
437
+ json.dump(hyperparameters, f, indent=2)
451
438
 
452
- # If we have a label encoder, decode the predictions
453
439
  if label_encoder:
454
- predictions = label_encoder.inverse_transform(predictions)
455
-
456
- # Set the predictions on the DataFrame
457
- df["prediction"] = predictions
458
-
459
- # Does our model have a 'predict_proba' method? If so we will call it and add the results to the DataFrame
460
- if getattr(model, "predict_proba", None):
461
- probs = model.predict_proba(matched_df[features])
462
- df["pred_proba"] = [p.tolist() for p in probs]
440
+ joblib.dump(label_encoder, os.path.join(args.model_dir, "label_encoder.joblib"))
463
441
 
464
- # Expand the pred_proba column into separate columns for each class
465
- df = expand_proba_column(df, label_encoder.classes_)
442
+ if model_type != "classifier":
443
+ save_uq_models(uq_models, uq_metadata, args.model_dir)
466
444
 
467
- # All done, return the DataFrame with new columns for the predictions
468
- return df
445
+ print(f"\nModel training complete! Artifacts saved to {args.model_dir}")