wisent 0.7.379__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wisent/__init__.py +64 -0
- wisent/cli.py +114 -0
- wisent/core/__init__.py +40 -0
- wisent/core/activations/__init__.py +26 -0
- wisent/core/activations/activations.py +97 -0
- wisent/core/activations/activations_collector.py +506 -0
- wisent/core/activations/core/__init__.py +0 -0
- wisent/core/activations/core/atoms.py +219 -0
- wisent/core/activations/prompt_construction_strategy.py +47 -0
- wisent/core/adapters/__init__.py +22 -0
- wisent/core/adapters/audio.py +616 -0
- wisent/core/adapters/base.py +420 -0
- wisent/core/adapters/multimodal.py +738 -0
- wisent/core/adapters/robotics.py +643 -0
- wisent/core/adapters/text.py +441 -0
- wisent/core/adapters/video.py +555 -0
- wisent/core/agent/__init__.py +1 -0
- wisent/core/agent/budget.py +644 -0
- wisent/core/agent/device_benchmarks.py +691 -0
- wisent/core/agent/diagnose/__init__.py +1 -0
- wisent/core/agent/diagnose/agent_classifier_decision.py +641 -0
- wisent/core/agent/diagnose/classifier_marketplace.py +554 -0
- wisent/core/agent/diagnose/create_classifier.py +1155 -0
- wisent/core/agent/diagnose/response_diagnostics.py +273 -0
- wisent/core/agent/diagnose/select_classifiers.py +507 -0
- wisent/core/agent/diagnose/synthetic_classifier_option.py +755 -0
- wisent/core/agent/diagnose/tasks/__init__.py +33 -0
- wisent/core/agent/diagnose/tasks/task_manager.py +1453 -0
- wisent/core/agent/diagnose/tasks/task_relevance.py +94 -0
- wisent/core/agent/diagnose/tasks/task_selector.py +151 -0
- wisent/core/agent/diagnose.py +249 -0
- wisent/core/agent/steer.py +215 -0
- wisent/core/agent/timeout.py +134 -0
- wisent/core/autonomous_agent.py +1158 -0
- wisent/core/benchmark_extractors.py +372 -0
- wisent/core/benchmark_registry.py +151 -0
- wisent/core/bigcode_extractors.py +26 -0
- wisent/core/bigcode_integration.py +886 -0
- wisent/core/branding.py +108 -0
- wisent/core/classifier/__init__.py +1 -0
- wisent/core/classifier/models/__init__.py +1 -0
- wisent/core/classifiers/__init__.py +1 -0
- wisent/core/classifiers/classifiers/__init__.py +0 -0
- wisent/core/classifiers/classifiers/core/__init__.py +0 -0
- wisent/core/classifiers/classifiers/core/atoms.py +748 -0
- wisent/core/classifiers/classifiers/models/__init__.py +0 -0
- wisent/core/classifiers/classifiers/models/logistic.py +29 -0
- wisent/core/classifiers/classifiers/models/mlp.py +47 -0
- wisent/core/classifiers/classifiers/rotator.py +137 -0
- wisent/core/classifiers/core/__init__.py +1 -0
- wisent/core/classifiers/models/__init__.py +1 -0
- wisent/core/classifiers/pipeline_steps/__init__.py +1 -0
- wisent/core/cli/__init__.py +26 -0
- wisent/core/cli/agent/__init__.py +15 -0
- wisent/core/cli/agent/apply_steering.py +192 -0
- wisent/core/cli/agent/evaluate_response.py +128 -0
- wisent/core/cli/agent/generate_synthetic_pairs.py +123 -0
- wisent/core/cli/agent/main.py +139 -0
- wisent/core/cli/agent/train_classifier.py +173 -0
- wisent/core/cli/check_linearity.py +126 -0
- wisent/core/cli/create_steering_vector.py +304 -0
- wisent/core/cli/diagnose_pairs.py +153 -0
- wisent/core/cli/diagnose_vectors.py +404 -0
- wisent/core/cli/estimate_unified_goodness_time.py +428 -0
- wisent/core/cli/evaluate_refusal.py +241 -0
- wisent/core/cli/evaluate_responses.py +926 -0
- wisent/core/cli/generate_humanization_pairs.py +128 -0
- wisent/core/cli/generate_pairs.py +175 -0
- wisent/core/cli/generate_pairs_from_task.py +108 -0
- wisent/core/cli/generate_responses.py +160 -0
- wisent/core/cli/generate_vector_from_synthetic.py +217 -0
- wisent/core/cli/generate_vector_from_task.py +248 -0
- wisent/core/cli/get_activations.py +192 -0
- wisent/core/cli/inference_config.py +84 -0
- wisent/core/cli/inference_config_cli.py +54 -0
- wisent/core/cli/modify_weights.py +660 -0
- wisent/core/cli/multi_steer.py +112 -0
- wisent/core/cli/optimization_cache.py +298 -0
- wisent/core/cli/optimize.py +621 -0
- wisent/core/cli/optimize_classification.py +473 -0
- wisent/core/cli/optimize_sample_size.py +390 -0
- wisent/core/cli/optimize_steering.py +3421 -0
- wisent/core/cli/optimize_weights.py +1287 -0
- wisent/core/cli/steering_method_trainer.py +641 -0
- wisent/core/cli/steering_search_space.py +508 -0
- wisent/core/cli/tasks.py +940 -0
- wisent/core/cli/train_unified_goodness.py +681 -0
- wisent/core/cli_logger.py +22 -0
- wisent/core/config_manager.py +1731 -0
- wisent/core/contrastive_pairs/__init__.py +15 -0
- wisent/core/contrastive_pairs/core/__init__.py +0 -0
- wisent/core/contrastive_pairs/core/atoms.py +45 -0
- wisent/core/contrastive_pairs/core/buliders.py +59 -0
- wisent/core/contrastive_pairs/core/pair.py +183 -0
- wisent/core/contrastive_pairs/core/response.py +153 -0
- wisent/core/contrastive_pairs/core/serialization.py +306 -0
- wisent/core/contrastive_pairs/core/set.py +192 -0
- wisent/core/contrastive_pairs/diagnostics/__init__.py +79 -0
- wisent/core/contrastive_pairs/diagnostics/activations.py +53 -0
- wisent/core/contrastive_pairs/diagnostics/base.py +73 -0
- wisent/core/contrastive_pairs/diagnostics/control_vectors.py +1655 -0
- wisent/core/contrastive_pairs/diagnostics/coverage.py +79 -0
- wisent/core/contrastive_pairs/diagnostics/divergence.py +98 -0
- wisent/core/contrastive_pairs/diagnostics/duplicates.py +118 -0
- wisent/core/contrastive_pairs/diagnostics/linearity.py +325 -0
- wisent/core/contrastive_pairs/diagnostics/vector_quality.py +620 -0
- wisent/core/contrastive_pairs/huggingface_pairs/__init__.py +1 -0
- wisent/core/contrastive_pairs/huggingface_pairs/atoms.py +255 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_extractor_manifest.py +470 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_extractor_registry.py +136 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/__init__.py +44 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/agentbench.py +225 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/agentharm.py +267 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/agentic_search.py +444 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/aider_polyglot.py +225 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/aime.py +118 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/aime2024.py +74 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/aime2025.py +73 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/alpaca_eval.py +153 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/apps.py +182 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/arena_hard.py +179 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/atis.py +89 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/babilong.py +96 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/bangla_mmlu.py +108 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/basqueglue.py +217 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/bec2016eu.py +99 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/bfcl.py +283 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/bhtc_v2.py +87 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/browsecomp.py +245 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/chain_of_thought.py +89 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/chinese_simpleqa.py +209 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/cluewsc.py +177 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/cnn_dailymail.py +92 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codeforces.py +378 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue.py +109 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text.py +15 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_go.py +64 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_java.py +65 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_javascript.py +65 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_php.py +65 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_python.py +65 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_ruby.py +65 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/coding_benchmarks.py +844 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/coedit_gec.py +79 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/conala.py +133 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/concode.py +111 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/dbpedia_14.py +91 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/doc_vqa.py +102 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/donotanswer.py +236 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/ds1000.py +129 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/ds_1000.py +155 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/epec_koref_bin.py +85 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/ethos_binary.py +82 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/evalita_mp.py +165 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/evalita_sp_sum_task_fp_small_p1.py +89 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/facts_grounding.py +181 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/faithbench.py +295 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/financial_tweets.py +100 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/flames.py +270 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/flan_held_in.py +98 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/flores.py +572 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/frames.py +143 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/freebase.py +99 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/get_negative_example_livecodebench.py +146 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/get_positive_example_livecodebench.py +140 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/gpt3_translation_benchmarks.py +98 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/hallucinations_leaderboard.py +389 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/halueval.py +246 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/harmbench.py +250 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/healthbench.py +181 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/hle.py +106 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/hmmt.py +117 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/humaneval.py +119 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/humanevalpack.py +102 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/instruct_humaneval.py +180 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/instructhumaneval.py +129 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/iwslt2017_ar_en.py +98 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/iwslt2017_en_ar.py +98 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/jailbreakbench.py +258 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/law_stack_exchange.py +101 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/ledgar.py +118 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/livecodebench.py +61 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/livecodebench_contrastive_pair_generator.py +491 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/livecodebench_v6.py +263 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/livemathbench.py +230 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/llama.py +96 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/longform_writing.py +285 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/m_mmlu.py +96 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/math.py +186 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/math500.py +146 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/mbpp.py +142 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/meddialog.py +79 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/medical_abstracts.py +101 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/medium_priority_benchmarks.py +787 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/mercury.py +111 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/mmlu_redux.py +194 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/mmlusr.py +108 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/multimedqa.py +99 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/multipl_e.py +109 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/multiple.py +96 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/multiple_choice.py +87 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/multiple_cpp.py +128 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/multiple_go.py +128 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/multiple_java.py +128 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/multiple_js.py +128 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/multiple_py.py +15 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/multiple_rs.py +128 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/non_greedy_robustness_agieval_aqua_rat.py +92 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/olympiadbench.py +287 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/openllm.py +99 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/option_order_robustness_agieval_aqua_rat.py +92 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/or_bench.py +300 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/penn_treebank.py +80 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/planbench.py +317 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/polymath.py +467 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/prompt_robustness_agieval_aqua_rat.py +92 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/pythia.py +99 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/recode.py +131 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/refusalbench.py +280 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/scicode.py +275 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/self_consistency.py +90 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/simpleqa.py +145 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/sorry_bench.py +211 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/stsb.py +79 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/super_glue_lm_eval_v1.py +99 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/super_glue_lm_eval_v1_seq2seq.py +98 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/super_glue_t5_prompt.py +123 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/super_gpqa.py +106 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/swe_bench.py +428 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/swe_bench_verified.py +158 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/sycophancy_eval.py +205 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/t0_eval.py +79 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/tag.py +98 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/tau_bench.py +305 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/tmlu.py +109 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/toolbench.py +360 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/toolemu.py +386 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/travelplanner.py +286 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/truthfulqa_generation.py +128 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/unfair_tos.py +83 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/vaxx_stance.py +86 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/wiceu.py +85 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/wikitext103.py +97 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/wildguard.py +280 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/wmt14_en_fr.py +97 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/wmt14_fr_en.py +97 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/wmt16_de_en.py +90 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/wmt16_en_de.py +90 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/wmt16_en_ro.py +90 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/wmt16_ro_en.py +90 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/wmt_ro_en_t5_prompt.py +90 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/xsum.py +81 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/__init__.py +0 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/atoms.py +265 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/__init__.py +472 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/aclue.py +24 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/acp.py +33 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/acpbench.py +39 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/advanced_ai_risk.py +59 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/aexams.py +14 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrimgsm.py +10 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrimmlu.py +10 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrixnli.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench.py +14 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_adr.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_afriqa.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_afrisenti.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_belebele.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_flores.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_injongointent.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_mafand.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_masakhaner.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_masakhanews.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_masakhapos.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_naijarc.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_nollysenti.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_ntrex.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_openai_mmlu.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_salt.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_sib.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_uhura_arc_easy.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/afrobench_xlsum.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/agieval.py +33 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/anli.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/arab_culture.py +24 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/arabic_leaderboard_acva.py +67 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/arabic_leaderboard_acva_light.py +67 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/arabic_leaderboard_complete.py +24 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/arabic_leaderboard_light.py +81 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/arabicmmlu.py +59 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/aradice.py +36 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/arc.py +61 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/arithmetic.py +19 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/basque_bench.py +37 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/bbh.py +121 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/bbq.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/belebele.py +293 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/bertaqa.py +25 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/bigbench.py +300 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/blimp.py +76 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/careqa.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/catalan_bench.py +43 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/ceval_valid.py +61 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/cmmlu.py +76 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/code_x_glue.py +16 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/copal_id.py +11 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/crows_pairs.py +31 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/csatqa.py +15 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/darija.py +29 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/darijammlu.py +57 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/egymmlu.py +62 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/eus.py +76 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/evalita_mp.py +93 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/fld.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/flores.py +466 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/freebase.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/french_bench.py +23 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/galician_bench.py +41 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/glianorex.py +11 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/global_mmlu.py +115 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/gpqa.py +27 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/gsm8k.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/gsm8k_platinum.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/haerae.py +14 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/headqa.py +11 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/hellaswag.py +39 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/hendrycks_ethics.py +14 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/hendrycks_math.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/hrm8k.py +20 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/inverse.py +22 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/japanese_leaderboard.py +20 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/jsonschema_bench.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/kbl.py +85 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/kmmlu.py +281 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/kobest.py +14 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/kormedmcqa.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/lambada.py +28 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/leaderboard.py +52 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/libra.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/lingoly.py +11 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/longbench.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/m.py +43 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mastermind.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mathqa.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/med.py +24 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/meddialog.py +12 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/medqa.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mela.py +18 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/metabench.py +36 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mgsm.py +44 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/minerva_math.py +16 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mlqa.py +58 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mmlu.py +70 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mmlu_pro.py +23 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mmlu_pro_plus.py +23 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mmlu_prox.py +191 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mmlusr.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/mmmu.py +46 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/model_written_evals.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/multiblimp.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/non.py +23 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/noreval.py +143 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/noridiom.py +20 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/nortruthfulqa.py +32 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/nrk.py +20 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/okapi.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/okapi_arc_multilingual.py +10 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/okapi_hellaswag_multilingual.py +24 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/okapi_mmlu_multilingual.py +24 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/okapi_truthfulqa_multilingual.py +34 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/paloma.py +25 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/pawsx.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/persona.py +144 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/pile.py +31 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/polemo2.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/portuguese_bench.py +31 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/prompt.py +23 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/qa4mre.py +12 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/qasper.py +11 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/ru.py +19 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/ruler.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/score.py +20 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/scrolls.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/self_consistency.py +11 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/spanish_bench.py +38 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/storycloze.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/super_glue_t5_prompt.py +17 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/tinyBenchmarks.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/tmlu.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/tmmluplus.py +80 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/translation.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/truthfulqa.py +76 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/truthfulqa_multi.py +24 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/turkishmmlu.py +30 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/unitxt.py +23 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/unscramble.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/winogender.py +16 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/wmdp.py +12 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/wmt14.py +16 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/wmt16.py +22 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/wsc273.py +9 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/xcopa.py +21 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/xnli.py +28 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/xnli_eu.py +12 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/xquad.py +22 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/xstorycloze.py +22 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/xwinograd.py +15 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_manifest.py +478 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_registry.py +140 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/__init__.py +125 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aclue.py +171 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/acp_bench.py +207 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/acp_bench_hard.py +185 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/advanced.py +130 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aexams.py +184 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrimgsm.py +98 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrimmlu.py +113 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrixnli.py +129 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrobench_cot.py +88 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrobench_mc.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ag.py +134 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/agieval.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ai2_arc.py +114 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/anagrams1.py +81 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/anagrams2.py +81 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/anli.py +140 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabculture.py +180 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic.py +98 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_exams.py +104 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_leaderboard_complete.py +168 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_leaderboard_light.py +168 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabicmmlu.py +167 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aradice.py +268 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc.py +133 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc_challenge.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc_easy.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc_gen.py +101 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc_mc.py +106 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/argument.py +134 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arithmetic.py +114 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/asdiv.py +122 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/assin.py +103 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/babi.py +113 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/basque_bench.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/basque_bench_gen.py +168 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/basque_bench_mc.py +139 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bbh.py +133 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bbq.py +169 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/belebele.py +181 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/benchmarks.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bertaqa.py +165 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bhs.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bhtc.py +143 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bigbench.py +170 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp.py +171 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp_nl.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq.py +117 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq_seq2seq.py +117 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/c4.py +150 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cabbq.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cabreu.py +127 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/careqa.py +169 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalan_bench.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalan_bench_gen.py +119 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalan_bench_mc.py +113 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalanqa.py +171 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catcola.py +139 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cb.py +117 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval.py +223 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval_valid.py +163 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/chain.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/chartqa.py +238 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/claim.py +151 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/click.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cmmlu.py +166 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cnn.py +144 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cocoteros.py +148 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/code2text.py +161 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/code_x_glue.py +114 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/codexglue.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/coedit.py +149 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cola.py +83 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/commonsense.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/commonsense_qa.py +127 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/copa.py +124 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/copal_id.py +169 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/coqa.py +162 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/coqcat.py +114 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/crows_pairs.py +158 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/csatqa.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cycle.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cycle_letters.py +81 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darija_bench.py +221 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darijahellaswag.py +174 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darijammlu.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/dbpedia.py +157 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/discrim_eval.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/doc.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/drop.py +129 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/egyhellaswag.py +125 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/egymmlu.py +180 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/epec.py +142 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench.py +194 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench_ca.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench_es.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/esbbq.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/escola.py +85 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ethics.py +135 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ethos.py +99 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_exams.py +225 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_proficiency.py +159 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_reading.py +159 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_trivia.py +159 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/evalita_llm.py +166 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/evalita_sp.py +109 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/fda.py +105 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/financial.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/flan.py +114 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/fld.py +143 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/french_bench.py +202 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/french_bench_mc.py +98 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/french_bench_perplexity.py +86 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/galcola.py +109 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/galician_bench.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/galician_bench_gen.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/galician_bench_mc.py +112 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gaokao.py +141 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/glianorex.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/global_mmlu.py +171 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/global_piqa.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/glue.py +109 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gpqa.py +161 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gpt3.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/groundcocoa.py +184 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gsm.py +108 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gsm8k.py +134 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/haerae.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/headqa.py +112 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hellaswag.py +125 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hendrycks_ethics.py +225 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hendrycks_math.py +191 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/histoires_morales.py +179 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hle.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hrm8k.py +203 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/humaneval.py +124 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/humaneval_infilling.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/icelandic_winogrande.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ifeval.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/inverse.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/inverse_scaling.py +192 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/iwslt2017.py +117 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ja.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/japanese_leaderboard.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/japanese_leaderboard_gen.py +224 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/japanese_leaderboard_mc.py +120 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/jsonschema_bench.py +123 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kbl.py +140 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kmmlu.py +168 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kmmlu_cot.py +88 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kmmlu_mc.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kobest.py +165 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kormedmcqa.py +160 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lambada.py +147 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lambada_cloze.py +185 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lambada_multilingual.py +185 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lambada_multilingual_stablelm.py +141 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/law.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/leaderboard.py +194 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/libra.py +165 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lingoly.py +203 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/livemathbench.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/llama3.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lm_syneval.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/logieval.py +82 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/logiqa.py +115 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/logiqa2.py +114 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/longbench.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/longbenchv2.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mastermind.py +203 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mathqa.py +137 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mbpp.py +123 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mc-taco.py +115 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/med_concepts_qa.py +224 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/meddialog.py +180 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medical.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mediqa_qa2019.py +123 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medmcqa.py +169 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medqa.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medtext.py +108 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mela.py +96 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/meqsum.py +115 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/metabench.py +154 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mgsm.py +122 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mimic_repsum.py +140 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/minerva_math.py +172 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mlqa.py +143 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlu.py +144 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlu_cot.py +88 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlu_mc.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlu_pro.py +145 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlusr.py +189 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmmu.py +150 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mnli.py +113 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/model_written_evals.py +115 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/moral_stories.py +151 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mrpc.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mts_dialog.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mts_dialog_perplexity.py +97 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/multiblimp.py +134 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/multilingual.py +106 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/multirc.py +114 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mutual.py +113 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/non.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval.py +173 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_exact.py +157 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_gen.py +277 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_gen_exact.py +165 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_mc.py +228 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_mc_log_likelihoods.py +223 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noticia.py +105 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/nq_open.py +135 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi.py +27 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_arc_multilingual.py +167 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_hellaswag_multilingual.py +174 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_mmlu_multilingual.py +162 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_truthfulqa_multilingual.py +209 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/olaph.py +186 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/olaph_perplexity.py +97 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/openbookqa.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/option.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/paloma.py +205 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/parafraseja.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/parafrases.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/paws.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/paws_x.py +154 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pawsx.py +115 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/persona.py +246 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/phrases.py +144 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/phrases_ca_va.py +82 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pile.py +161 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pile_10k.py +140 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/piqa.py +116 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/polemo2.py +135 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/polymath.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/portuguese_bench.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/portuguese_bench_gen.py +121 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/portuguese_bench_mc.py +103 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/prompt.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/prost.py +115 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pubmedqa.py +112 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qa4mre.py +119 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qasper.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qasper_bool.py +112 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qnli.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qnlieu.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qqp.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/quac.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/race.py +124 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/random.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/realtoxicityprompts.py +124 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/record.py +125 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/reversed.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/rte.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ruler.py +170 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sciq.py +113 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/score.py +177 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/scrolls.py +161 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/scrolls_mc.py +157 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/self.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sglue.py +131 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sglue_rte.py +119 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/simple_cooccurrence_bias.py +121 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/siqa.py +209 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/social_iqa.py +114 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/spanish_bench.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/spanish_bench_gen.py +117 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/spanish_bench_mc.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/squad2.py +129 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/squad_completion.py +121 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sst2.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/storycloze.py +250 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/summarization.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/super.py +107 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/super_glue.py +154 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/superglue.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/supergpqa.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/swag.py +115 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/swde.py +179 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sycophancy.py +117 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/t0.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/teca.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinyarc.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinybenchmarks.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinygsm8k.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinyhellaswag.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinymmlu.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinytruthfulqa.py +113 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinywinogrande.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tmmluplus.py +181 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/toxigen.py +91 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/translation.py +149 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/triviaqa.py +130 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa.py +112 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc1.py +120 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc2.py +140 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_multi.py +142 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turblimp_core.py +152 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turkishmmlu.py +161 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turkishmmlu_cot.py +104 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turkishmmlu_mc.py +102 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/twenty_newsgroups.py +111 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/unitxt.py +131 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/unscramble.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/vaxx.py +95 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/webqs.py +130 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wic.py +122 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wikitext.py +146 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/winogender.py +139 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/winogrande.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wmdp.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wmt14.py +110 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wmt16.py +118 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wnli.py +114 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wsc.py +117 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wsc273.py +180 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xcopa.py +197 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xlsum.py +147 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xnli.py +131 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xquad.py +203 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xstorycloze.py +129 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xwinograd.py +124 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/yahoo.py +108 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/zhoblimp.py +155 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_pairs_generation.py +56 -0
- wisent/core/data_loaders/__init__.py +235 -0
- wisent/core/data_loaders/core/__init__.py +0 -0
- wisent/core/data_loaders/core/atoms.py +99 -0
- wisent/core/data_loaders/loaders/__init__.py +0 -0
- wisent/core/data_loaders/loaders/custom.py +120 -0
- wisent/core/data_loaders/loaders/huggingface_loader.py +153 -0
- wisent/core/data_loaders/loaders/lm_loader.py +494 -0
- wisent/core/data_loaders/loaders/lm_loader_special_cases.py +496 -0
- wisent/core/data_loaders/loaders/task_interface_loader.py +300 -0
- wisent/core/data_loaders/rotator.py +118 -0
- wisent/core/detection_handling.py +259 -0
- wisent/core/diversity_processors.py +193 -0
- wisent/core/download_full_benchmarks.py +1512 -0
- wisent/core/errors/__init__.py +203 -0
- wisent/core/errors/error_codes.py +763 -0
- wisent/core/errors/error_handler.py +134 -0
- wisent/core/evaluators/__init__.py +0 -0
- wisent/core/evaluators/benchmark_specific/__init__.py +42 -0
- wisent/core/evaluators/benchmark_specific/aime_evaluator.py +90 -0
- wisent/core/evaluators/benchmark_specific/coding/__init__.py +0 -0
- wisent/core/evaluators/benchmark_specific/coding/metrics/__init__.py +0 -0
- wisent/core/evaluators/benchmark_specific/coding/metrics/core/__init__.py +0 -0
- wisent/core/evaluators/benchmark_specific/coding/metrics/core/atoms.py +36 -0
- wisent/core/evaluators/benchmark_specific/coding/metrics/evaluator.py +363 -0
- wisent/core/evaluators/benchmark_specific/coding/metrics/passk.py +67 -0
- wisent/core/evaluators/benchmark_specific/coding/output_sanitizer/__init__.py +0 -0
- wisent/core/evaluators/benchmark_specific/coding/output_sanitizer/core/__init__.py +0 -0
- wisent/core/evaluators/benchmark_specific/coding/output_sanitizer/core/atoms.py +27 -0
- wisent/core/evaluators/benchmark_specific/coding/output_sanitizer/cpp_sanitizer.py +62 -0
- wisent/core/evaluators/benchmark_specific/coding/output_sanitizer/java_sanitizer.py +78 -0
- wisent/core/evaluators/benchmark_specific/coding/output_sanitizer/python_sanitizer.py +94 -0
- wisent/core/evaluators/benchmark_specific/coding/output_sanitizer/utils.py +126 -0
- wisent/core/evaluators/benchmark_specific/coding/providers/__init__.py +18 -0
- wisent/core/evaluators/benchmark_specific/coding/providers/core/__init__.py +0 -0
- wisent/core/evaluators/benchmark_specific/coding/providers/core/atoms.py +31 -0
- wisent/core/evaluators/benchmark_specific/coding/providers/livecodebench/__init__.py +3 -0
- wisent/core/evaluators/benchmark_specific/coding/providers/livecodebench/provider.py +305 -0
- wisent/core/evaluators/benchmark_specific/coding/safe_docker/Dockerfile +31 -0
- wisent/core/evaluators/benchmark_specific/coding/safe_docker/__init__.py +0 -0
- wisent/core/evaluators/benchmark_specific/coding/safe_docker/core/__init__.py +0 -0
- wisent/core/evaluators/benchmark_specific/coding/safe_docker/core/atoms.py +105 -0
- wisent/core/evaluators/benchmark_specific/coding/safe_docker/core/runtime.py +143 -0
- wisent/core/evaluators/benchmark_specific/coding/safe_docker/entrypoint.py +121 -0
- wisent/core/evaluators/benchmark_specific/coding/safe_docker/recipes.py +60 -0
- wisent/core/evaluators/benchmark_specific/coding/solution_generator.py +258 -0
- wisent/core/evaluators/benchmark_specific/conala_evaluator.py +332 -0
- wisent/core/evaluators/benchmark_specific/exact_match_evaluator.py +81 -0
- wisent/core/evaluators/benchmark_specific/f1_evaluator.py +173 -0
- wisent/core/evaluators/benchmark_specific/generation_evaluator.py +488 -0
- wisent/core/evaluators/benchmark_specific/livemathbench_evaluator.py +393 -0
- wisent/core/evaluators/benchmark_specific/log_likelihoods_evaluator.py +202 -0
- wisent/core/evaluators/benchmark_specific/math_evaluator.py +119 -0
- wisent/core/evaluators/benchmark_specific/math_parsing/__init__.py +1 -0
- wisent/core/evaluators/benchmark_specific/math_parsing/core.py +1640 -0
- wisent/core/evaluators/benchmark_specific/math_parsing/extract_boxed.py +48 -0
- wisent/core/evaluators/benchmark_specific/math_parsing/is_equiv.py +159 -0
- wisent/core/evaluators/benchmark_specific/math_parsing/scripts.py +919 -0
- wisent/core/evaluators/benchmark_specific/perplexity_evaluator.py +175 -0
- wisent/core/evaluators/benchmark_specific/polymath_evaluator.py +114 -0
- wisent/core/evaluators/core/__init__.py +5 -0
- wisent/core/evaluators/core/atoms.py +166 -0
- wisent/core/evaluators/custom/__init__.py +20 -0
- wisent/core/evaluators/custom/custom_evaluator.py +382 -0
- wisent/core/evaluators/custom/examples/__init__.py +37 -0
- wisent/core/evaluators/custom/examples/desklib_detector.py +166 -0
- wisent/core/evaluators/custom/examples/gptzero.py +185 -0
- wisent/core/evaluators/custom/examples/humanization.py +79 -0
- wisent/core/evaluators/custom/examples/humanization_coherent.py +127 -0
- wisent/core/evaluators/custom/examples/roberta_detector.py +173 -0
- wisent/core/evaluators/oracles/__init__.py +0 -0
- wisent/core/evaluators/oracles/interactive.py +73 -0
- wisent/core/evaluators/oracles/nlp_evaluator.py +440 -0
- wisent/core/evaluators/oracles/truthfulqa_gen_evaluator.py +168 -0
- wisent/core/evaluators/oracles/user_specified.py +67 -0
- wisent/core/evaluators/personalization/__init__.py +12 -0
- wisent/core/evaluators/personalization/alignment.py +166 -0
- wisent/core/evaluators/personalization/coherence.py +325 -0
- wisent/core/evaluators/personalization/difference.py +73 -0
- wisent/core/evaluators/rotator.py +217 -0
- wisent/core/evaluators/steering_evaluators.py +386 -0
- wisent/core/evaluators/synthetic_evaluator.py +377 -0
- wisent/core/hyperparameter_optimizer.py +547 -0
- wisent/core/layer.py +17 -0
- wisent/core/lm_eval_harness_ground_truth.py +1431 -0
- wisent/core/main.py +101 -0
- wisent/core/managed_cached_benchmarks.py +609 -0
- wisent/core/mixed_benchmark_sampler.py +366 -0
- wisent/core/modalities/__init__.py +545 -0
- wisent/core/model_persistence.py +302 -0
- wisent/core/models/__init__.py +23 -0
- wisent/core/models/core/__init__.py +0 -0
- wisent/core/models/core/atoms.py +465 -0
- wisent/core/models/inference_config.py +127 -0
- wisent/core/models/wisent_model.py +893 -0
- wisent/core/multi_steering.py +397 -0
- wisent/core/opti/__init__.py +0 -0
- wisent/core/opti/core/__init__.py +0 -0
- wisent/core/opti/core/atoms.py +177 -0
- wisent/core/opti/methods/__init__.py +10 -0
- wisent/core/opti/methods/opti_classificator.py +172 -0
- wisent/core/opti/methods/opti_steering.py +139 -0
- wisent/core/opti/methods/opti_weights.py +523 -0
- wisent/core/optuna/__init__.py +54 -0
- wisent/core/optuna/classifier/__init__.py +25 -0
- wisent/core/optuna/classifier/activation_generator.py +351 -0
- wisent/core/optuna/classifier/classifier_cache.py +509 -0
- wisent/core/optuna/classifier/optuna_classifier_optimizer.py +685 -0
- wisent/core/optuna/steering/__init__.py +20 -0
- wisent/core/optuna/steering/bigcode_evaluator_wrapper.py +200 -0
- wisent/core/optuna/steering/data_utils.py +342 -0
- wisent/core/optuna/steering/metrics.py +412 -0
- wisent/core/optuna/steering/steering_optimization.py +1096 -0
- wisent/core/parser.py +1662 -0
- wisent/core/parser_arguments/__init__.py +10 -0
- wisent/core/parser_arguments/agent_parser.py +122 -0
- wisent/core/parser_arguments/check_linearity_parser.py +82 -0
- wisent/core/parser_arguments/configure_model_parser.py +7 -0
- wisent/core/parser_arguments/create_steering_vector_parser.py +67 -0
- wisent/core/parser_arguments/diagnose_pairs_parser.py +25 -0
- wisent/core/parser_arguments/diagnose_vectors_parser.py +72 -0
- wisent/core/parser_arguments/evaluate_parser.py +40 -0
- wisent/core/parser_arguments/evaluate_refusal_parser.py +32 -0
- wisent/core/parser_arguments/evaluate_responses_parser.py +12 -0
- wisent/core/parser_arguments/full_optimize_parser.py +194 -0
- wisent/core/parser_arguments/generate_pairs_from_task_parser.py +33 -0
- wisent/core/parser_arguments/generate_pairs_parser.py +43 -0
- wisent/core/parser_arguments/generate_responses_parser.py +16 -0
- wisent/core/parser_arguments/generate_vector_from_synthetic_parser.py +148 -0
- wisent/core/parser_arguments/generate_vector_from_task_parser.py +149 -0
- wisent/core/parser_arguments/generate_vector_parser.py +89 -0
- wisent/core/parser_arguments/get_activations_parser.py +90 -0
- wisent/core/parser_arguments/inference_config_parser.py +65 -0
- wisent/core/parser_arguments/main_parser.py +220 -0
- wisent/core/parser_arguments/model_config_parser.py +59 -0
- wisent/core/parser_arguments/modify_weights_parser.py +309 -0
- wisent/core/parser_arguments/monitor_parser.py +17 -0
- wisent/core/parser_arguments/multi_steer_parser.py +48 -0
- wisent/core/parser_arguments/nonsense_parser.py +26 -0
- wisent/core/parser_arguments/optimization_cache_parser.py +64 -0
- wisent/core/parser_arguments/optimize_classification_parser.py +108 -0
- wisent/core/parser_arguments/optimize_parser.py +142 -0
- wisent/core/parser_arguments/optimize_sample_size_parser.py +58 -0
- wisent/core/parser_arguments/optimize_steering_parser.py +617 -0
- wisent/core/parser_arguments/optimize_weights_parser.py +403 -0
- wisent/core/parser_arguments/synthetic_parser.py +117 -0
- wisent/core/parser_arguments/tasks_parser.py +591 -0
- wisent/core/parser_arguments/train_unified_goodness_parser.py +172 -0
- wisent/core/parser_arguments/utils.py +107 -0
- wisent/core/prompts/__init__.py +0 -0
- wisent/core/prompts/core/__init__.py +0 -0
- wisent/core/prompts/core/atom.py +57 -0
- wisent/core/prompts/core/prompt_formater.py +148 -0
- wisent/core/prompts/prompt_stratiegies/__init__.py +0 -0
- wisent/core/prompts/prompt_stratiegies/direct_completion.py +26 -0
- wisent/core/prompts/prompt_stratiegies/instruction_following.py +26 -0
- wisent/core/prompts/prompt_stratiegies/multiple_choice.py +31 -0
- wisent/core/prompts/prompt_stratiegies/role_playing.py +33 -0
- wisent/core/representation.py +5 -0
- wisent/core/save_results.py +277 -0
- wisent/core/steering.py +660 -0
- wisent/core/steering_method.py +20 -0
- wisent/core/steering_methods/__init__.py +54 -0
- wisent/core/steering_methods/core/__init__.py +0 -0
- wisent/core/steering_methods/core/atoms.py +154 -0
- wisent/core/steering_methods/methods/__init__.py +0 -0
- wisent/core/steering_methods/methods/caa.py +45 -0
- wisent/core/steering_methods/methods/prism.py +588 -0
- wisent/core/steering_methods/methods/pulse.py +641 -0
- wisent/core/steering_methods/methods/titan.py +1005 -0
- wisent/core/steering_methods/preflight.py +322 -0
- wisent/core/steering_methods/registry.py +649 -0
- wisent/core/steering_methods/rotator.py +121 -0
- wisent/core/steering_optimizer.py +1503 -0
- wisent/core/synthetic/__init__.py +0 -0
- wisent/core/synthetic/cleaners/__init__.py +0 -0
- wisent/core/synthetic/cleaners/core/__init__.py +0 -0
- wisent/core/synthetic/cleaners/core/atoms.py +58 -0
- wisent/core/synthetic/cleaners/deduper_cleaner.py +53 -0
- wisent/core/synthetic/cleaners/methods/__init__.py +0 -0
- wisent/core/synthetic/cleaners/methods/base_dedupers.py +321 -0
- wisent/core/synthetic/cleaners/methods/base_refusalers.py +286 -0
- wisent/core/synthetic/cleaners/methods/core/__init__.py +0 -0
- wisent/core/synthetic/cleaners/methods/core/atoms.py +47 -0
- wisent/core/synthetic/cleaners/pairs_cleaner.py +90 -0
- wisent/core/synthetic/cleaners/refusaler_cleaner.py +133 -0
- wisent/core/synthetic/db_instructions/__init__.py +0 -0
- wisent/core/synthetic/db_instructions/core/__init__.py +0 -0
- wisent/core/synthetic/db_instructions/core/atoms.py +25 -0
- wisent/core/synthetic/db_instructions/mini_dp.py +115 -0
- wisent/core/synthetic/generators/__init__.py +0 -0
- wisent/core/synthetic/generators/core/__init__.py +0 -0
- wisent/core/synthetic/generators/core/atoms.py +73 -0
- wisent/core/synthetic/generators/diversities/__init__.py +0 -0
- wisent/core/synthetic/generators/diversities/core/__init__.py +0 -0
- wisent/core/synthetic/generators/diversities/core/core.py +68 -0
- wisent/core/synthetic/generators/diversities/methods/__init__.py +0 -0
- wisent/core/synthetic/generators/diversities/methods/fast_diversity.py +249 -0
- wisent/core/synthetic/generators/nonsense_generator.py +150 -0
- wisent/core/synthetic/generators/pairs_generator.py +313 -0
- wisent/core/task_interface.py +143 -0
- wisent/core/task_selector.py +232 -0
- wisent/core/tasks/__init__.py +218 -0
- wisent/core/tasks/aime_task.py +142 -0
- wisent/core/tasks/file_task.py +212 -0
- wisent/core/tasks/hle_task.py +180 -0
- wisent/core/tasks/hmmt_task.py +120 -0
- wisent/core/tasks/livecodebench_task.py +94 -0
- wisent/core/tasks/livemathbench_task.py +159 -0
- wisent/core/tasks/lm_eval_task.py +611 -0
- wisent/core/tasks/math500_task.py +84 -0
- wisent/core/tasks/polymath_task.py +147 -0
- wisent/core/tasks/supergpqa_task.py +220 -0
- wisent/core/time_estimator.py +155 -0
- wisent/core/timing_calibration.py +176 -0
- wisent/core/tracking/__init__.py +54 -0
- wisent/core/tracking/latency.py +620 -0
- wisent/core/tracking/memory.py +360 -0
- wisent/core/trainers/__init__.py +0 -0
- wisent/core/trainers/core/__init__.py +11 -0
- wisent/core/trainers/core/atoms.py +45 -0
- wisent/core/trainers/steering_trainer.py +365 -0
- wisent/core/universal_subspace.py +918 -0
- wisent/core/user_model_config.py +158 -0
- wisent/core/utils/__init__.py +64 -0
- wisent/core/utils/base_rotator.py +292 -0
- wisent/core/utils/dataset_splits.py +197 -0
- wisent/core/utils/device.py +279 -0
- wisent/core/weight_modification/__init__.py +134 -0
- wisent/core/weight_modification/additive.py +340 -0
- wisent/core/weight_modification/directional.py +1357 -0
- wisent/core/weight_modification/export.py +359 -0
- wisent/core/weight_modification/multi_direction.py +410 -0
- wisent/core/weight_modification/utils.py +236 -0
- wisent/core/wisent.py +660 -0
- wisent/examples/contrastive_pairs/humanization_human_vs_ai.json +2112 -0
- wisent/examples/scripts/1/test_basqueglue_evaluation.json +51 -0
- wisent/examples/scripts/1/test_basqueglue_pairs.json +14 -0
- wisent/examples/scripts/1/test_bec2016eu_evaluation.json +51 -0
- wisent/examples/scripts/1/test_bec2016eu_pairs.json +14 -0
- wisent/examples/scripts/1/test_belebele_evaluation.json +51 -0
- wisent/examples/scripts/1/test_belebele_pairs.json +14 -0
- wisent/examples/scripts/1/test_benchmarks_evaluation.json +51 -0
- wisent/examples/scripts/1/test_benchmarks_pairs.json +14 -0
- wisent/examples/scripts/1/test_bertaqa_evaluation.json +51 -0
- wisent/examples/scripts/1/test_bertaqa_pairs.json +14 -0
- wisent/examples/scripts/1/test_bhtc_v2_evaluation.json +30 -0
- wisent/examples/scripts/1/test_bhtc_v2_pairs.json +8 -0
- wisent/examples/scripts/1/test_boolq-seq2seq_evaluation.json +30 -0
- wisent/examples/scripts/1/test_boolq-seq2seq_pairs.json +8 -0
- wisent/examples/scripts/1/test_cabreu_evaluation.json +30 -0
- wisent/examples/scripts/1/test_cabreu_pairs.json +8 -0
- wisent/examples/scripts/1/test_careqa_en_evaluation.json +30 -0
- wisent/examples/scripts/1/test_careqa_en_pairs.json +8 -0
- wisent/examples/scripts/1/test_careqa_evaluation.json +30 -0
- wisent/examples/scripts/1/test_careqa_pairs.json +8 -0
- wisent/examples/scripts/1/test_catalanqa_evaluation.json +30 -0
- wisent/examples/scripts/1/test_catalanqa_pairs.json +8 -0
- wisent/examples/scripts/1/test_catcola_evaluation.json +30 -0
- wisent/examples/scripts/1/test_catcola_pairs.json +8 -0
- wisent/examples/scripts/1/test_chartqa_evaluation.json +30 -0
- wisent/examples/scripts/1/test_chartqa_pairs.json +8 -0
- wisent/examples/scripts/1/test_claim_stance_topic_evaluation.json +30 -0
- wisent/examples/scripts/1/test_claim_stance_topic_pairs.json +8 -0
- wisent/examples/scripts/1/test_cnn_dailymail_evaluation.json +30 -0
- wisent/examples/scripts/1/test_cnn_dailymail_pairs.json +8 -0
- wisent/examples/scripts/1/test_cocoteros_es_evaluation.json +30 -0
- wisent/examples/scripts/1/test_cocoteros_es_pairs.json +8 -0
- wisent/examples/scripts/1/test_coedit_gec_evaluation.json +30 -0
- wisent/examples/scripts/1/test_coedit_gec_pairs.json +8 -0
- wisent/examples/scripts/1/test_cola_evaluation.json +30 -0
- wisent/examples/scripts/1/test_cola_pairs.json +8 -0
- wisent/examples/scripts/1/test_coqcat_evaluation.json +30 -0
- wisent/examples/scripts/1/test_coqcat_pairs.json +8 -0
- wisent/examples/scripts/1/test_dbpedia_14_evaluation.json +30 -0
- wisent/examples/scripts/1/test_dbpedia_14_pairs.json +8 -0
- wisent/examples/scripts/1/test_epec_koref_bin_evaluation.json +30 -0
- wisent/examples/scripts/1/test_epec_koref_bin_pairs.json +8 -0
- wisent/examples/scripts/1/test_ethos_binary_evaluation.json +30 -0
- wisent/examples/scripts/1/test_ethos_binary_pairs.json +8 -0
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_evaluation.json +30 -0
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_pairs.json +8 -0
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_evaluation.json +30 -0
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_pairs.json +8 -0
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_evaluation.json +30 -0
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_pairs.json +8 -0
- wisent/examples/scripts/2/test_arc_ar_evaluation.json +30 -0
- wisent/examples/scripts/2/test_arc_ar_pairs.json +8 -0
- wisent/examples/scripts/2/test_atis_evaluation.json +30 -0
- wisent/examples/scripts/2/test_atis_pairs.json +8 -0
- wisent/examples/scripts/2/test_babi_evaluation.json +30 -0
- wisent/examples/scripts/2/test_babi_pairs.json +8 -0
- wisent/examples/scripts/2/test_babilong_evaluation.json +30 -0
- wisent/examples/scripts/2/test_babilong_pairs.json +8 -0
- wisent/examples/scripts/2/test_bangla_mmlu_evaluation.json +30 -0
- wisent/examples/scripts/2/test_bangla_mmlu_pairs.json +8 -0
- wisent/examples/scripts/2/test_basque-glue_pairs.json +14 -0
- wisent/examples/scripts/benchmark_tags.json +2140 -0
- wisent/examples/scripts/lm_eval_readme.json +4 -0
- wisent/examples/scripts/results/benchmark_descriptions.json +1244 -0
- wisent/examples/scripts/results/benchmark_evaluation_methods.json +66 -0
- wisent/examples/scripts/results/benchmark_evaluator_mapping.json +2781 -0
- wisent/examples/scripts/results/benchmark_evaluator_mapping_updated.json +30536 -0
- wisent/examples/scripts/results/benchmark_evaluators_clean.json +469 -0
- wisent/examples/scripts/results/benchmark_methods_summary.json +260 -0
- wisent/examples/scripts/results/benchmark_pair_creation_methods.json +66 -0
- wisent/examples/scripts/results/benchmark_pair_totals.json +269 -0
- wisent/examples/scripts/results/benchmark_tags.json +917 -0
- wisent/examples/scripts/results/benchmark_test_summary_nov4.json +71 -0
- wisent/examples/scripts/results/coding_benchmarks_test_code_status.json +150 -0
- wisent/examples/scripts/results/failing_benchmarks.json +946 -0
- wisent/examples/scripts/results/failing_benchmarks_list.json +41 -0
- wisent/examples/scripts/results/failing_benchmarks_test_results.json +945 -0
- wisent/examples/scripts/results/missing_benchmark_tags.json +341 -0
- wisent/examples/scripts/results/test_20_newsgroups_evaluation.json +30 -0
- wisent/examples/scripts/results/test_20_newsgroups_pairs.json +8 -0
- wisent/examples/scripts/results/test_AraDICE_evaluation.json +51 -0
- wisent/examples/scripts/results/test_AraDICE_pairs.json +14 -0
- wisent/examples/scripts/results/test_AraDiCE_boolq_egy/test_AraDiCE_boolq_egy_evaluation.json +30 -0
- wisent/examples/scripts/results/test_AraDiCE_boolq_egy/test_AraDiCE_boolq_egy_pairs.json +8 -0
- wisent/examples/scripts/results/test_ArabCulture_evaluation.json +51 -0
- wisent/examples/scripts/results/test_ArabCulture_pairs.json +14 -0
- wisent/examples/scripts/results/test_Tag_evaluation.json +30 -0
- wisent/examples/scripts/results/test_Tag_pairs.json +8 -0
- wisent/examples/scripts/results/test_aclue_evaluation.json +51 -0
- wisent/examples/scripts/results/test_aclue_pairs.json +14 -0
- wisent/examples/scripts/results/test_acp_bench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_acp_bench_hard_evaluation.json +51 -0
- wisent/examples/scripts/results/test_acp_bench_hard_pairs.json +14 -0
- wisent/examples/scripts/results/test_acp_bench_pairs.json +14 -0
- wisent/examples/scripts/results/test_advanced_ai_risk_evaluation.json +51 -0
- wisent/examples/scripts/results/test_advanced_ai_risk_pairs.json +14 -0
- wisent/examples/scripts/results/test_aexams_evaluation.json +51 -0
- wisent/examples/scripts/results/test_aexams_pairs.json +14 -0
- wisent/examples/scripts/results/test_afrimgsm_direct_amh_evaluation.json +30 -0
- wisent/examples/scripts/results/test_afrimgsm_direct_amh_pairs.json +8 -0
- wisent/examples/scripts/results/test_afrimmlu_direct_amh_evaluation.json +30 -0
- wisent/examples/scripts/results/test_afrimmlu_direct_amh_pairs.json +8 -0
- wisent/examples/scripts/results/test_afrixnli_en_direct_amh_evaluation.json +30 -0
- wisent/examples/scripts/results/test_afrixnli_en_direct_amh_pairs.json +8 -0
- wisent/examples/scripts/results/test_ag_news_evaluation.json +30 -0
- wisent/examples/scripts/results/test_ag_news_pairs.json +8 -0
- wisent/examples/scripts/results/test_agieval_evaluation.json +51 -0
- wisent/examples/scripts/results/test_agieval_pairs.json +14 -0
- wisent/examples/scripts/results/test_aime2024_evaluation.json +30 -0
- wisent/examples/scripts/results/test_aime2024_pairs.json +8 -0
- wisent/examples/scripts/results/test_aime2025_evaluation.json +30 -0
- wisent/examples/scripts/results/test_aime2025_pairs.json +8 -0
- wisent/examples/scripts/results/test_aime_evaluation.json +30 -0
- wisent/examples/scripts/results/test_aime_pairs.json +8 -0
- wisent/examples/scripts/results/test_anagrams1_evaluation.json +30 -0
- wisent/examples/scripts/results/test_anagrams1_pairs.json +8 -0
- wisent/examples/scripts/results/test_anagrams2_evaluation.json +30 -0
- wisent/examples/scripts/results/test_anagrams2_pairs.json +8 -0
- wisent/examples/scripts/results/test_anli_evaluation.json +30 -0
- wisent/examples/scripts/results/test_anli_pairs.json +8 -0
- wisent/examples/scripts/results/test_apps_evaluation.json +30 -0
- wisent/examples/scripts/results/test_apps_pairs.json +8 -0
- wisent/examples/scripts/results/test_arabic_exams_evaluation.json +30 -0
- wisent/examples/scripts/results/test_arabic_exams_pairs.json +8 -0
- wisent/examples/scripts/results/test_arabic_leaderboard_complete_evaluation.json +51 -0
- wisent/examples/scripts/results/test_arabic_leaderboard_complete_pairs.json +14 -0
- wisent/examples/scripts/results/test_arabic_leaderboard_light_evaluation.json +51 -0
- wisent/examples/scripts/results/test_arabic_leaderboard_light_pairs.json +14 -0
- wisent/examples/scripts/results/test_arabicmmlu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_arabicmmlu_pairs.json +14 -0
- wisent/examples/scripts/results/test_aradice/test_aradice_evaluation.json +51 -0
- wisent/examples/scripts/results/test_aradice/test_aradice_pairs.json +14 -0
- wisent/examples/scripts/results/test_aradice3/test_aradice_evaluation.json +51 -0
- wisent/examples/scripts/results/test_aradice3/test_aradice_pairs.json +14 -0
- wisent/examples/scripts/results/test_arc_ar_evaluation.json +30 -0
- wisent/examples/scripts/results/test_arc_ar_pairs.json +8 -0
- wisent/examples/scripts/results/test_arc_challenge_evaluation.json +30 -0
- wisent/examples/scripts/results/test_arc_challenge_pairs.json +8 -0
- wisent/examples/scripts/results/test_arc_easy_evaluation.json +30 -0
- wisent/examples/scripts/results/test_arc_easy_pairs.json +8 -0
- wisent/examples/scripts/results/test_argument_topic_evaluation.json +30 -0
- wisent/examples/scripts/results/test_argument_topic_pairs.json +8 -0
- wisent/examples/scripts/results/test_arithmetic_evaluation.json +51 -0
- wisent/examples/scripts/results/test_arithmetic_pairs.json +14 -0
- wisent/examples/scripts/results/test_asdiv_evaluation.json +30 -0
- wisent/examples/scripts/results/test_asdiv_pairs.json +8 -0
- wisent/examples/scripts/results/test_assin_entailment_evaluation.json +30 -0
- wisent/examples/scripts/results/test_assin_entailment_pairs.json +8 -0
- wisent/examples/scripts/results/test_atis_evaluation.json +30 -0
- wisent/examples/scripts/results/test_atis_pairs.json +8 -0
- wisent/examples/scripts/results/test_babi_evaluation.json +30 -0
- wisent/examples/scripts/results/test_babi_pairs.json +8 -0
- wisent/examples/scripts/results/test_babilong_evaluation.json +30 -0
- wisent/examples/scripts/results/test_babilong_pairs.json +8 -0
- wisent/examples/scripts/results/test_bangla_mmlu_evaluation.json +30 -0
- wisent/examples/scripts/results/test_bangla_mmlu_pairs.json +8 -0
- wisent/examples/scripts/results/test_banking77_evaluation.json +30 -0
- wisent/examples/scripts/results/test_banking77_pairs.json +8 -0
- wisent/examples/scripts/results/test_basque/test_basque-glue_pairs.json +14 -0
- wisent/examples/scripts/results/test_basque-glue_evaluation.json +51 -0
- wisent/examples/scripts/results/test_basque-glue_pairs.json +14 -0
- wisent/examples/scripts/results/test_basque2/test_basque-glue_evaluation.json +51 -0
- wisent/examples/scripts/results/test_basque2/test_basque-glue_pairs.json +14 -0
- wisent/examples/scripts/results/test_basque_bench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_basque_bench_pairs.json +14 -0
- wisent/examples/scripts/results/test_basque_glue/test_basque-glue_evaluation.json +51 -0
- wisent/examples/scripts/results/test_basque_glue/test_basque-glue_pairs.json +14 -0
- wisent/examples/scripts/results/test_basqueglue_evaluation.json +51 -0
- wisent/examples/scripts/results/test_basqueglue_pairs.json +14 -0
- wisent/examples/scripts/results/test_bbh_evaluation.json +51 -0
- wisent/examples/scripts/results/test_bbh_pairs.json +14 -0
- wisent/examples/scripts/results/test_bbq_evaluation.json +30 -0
- wisent/examples/scripts/results/test_bbq_pairs.json +8 -0
- wisent/examples/scripts/results/test_bec2016eu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_bec2016eu_pairs.json +14 -0
- wisent/examples/scripts/results/test_belebele_evaluation.json +51 -0
- wisent/examples/scripts/results/test_belebele_pairs.json +14 -0
- wisent/examples/scripts/results/test_benchmarks_evaluation.json +51 -0
- wisent/examples/scripts/results/test_benchmarks_pairs.json +14 -0
- wisent/examples/scripts/results/test_bertaqa_evaluation.json +51 -0
- wisent/examples/scripts/results/test_bertaqa_pairs.json +14 -0
- wisent/examples/scripts/results/test_bhtc_v2_evaluation.json +30 -0
- wisent/examples/scripts/results/test_bhtc_v2_pairs.json +8 -0
- wisent/examples/scripts/results/test_bigbench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_bigbench_pairs.json +14 -0
- wisent/examples/scripts/results/test_blimp_evaluation.json +51 -0
- wisent/examples/scripts/results/test_blimp_pairs.json +14 -0
- wisent/examples/scripts/results/test_boolq/test_boolq_evaluation.json +30 -0
- wisent/examples/scripts/results/test_boolq/test_boolq_pairs.json +8 -0
- wisent/examples/scripts/results/test_boolq-seq2seq_evaluation.json +30 -0
- wisent/examples/scripts/results/test_boolq-seq2seq_pairs.json +8 -0
- wisent/examples/scripts/results/test_boolq_evaluation.json +30 -0
- wisent/examples/scripts/results/test_boolq_pairs.json +8 -0
- wisent/examples/scripts/results/test_c4_evaluation.json +30 -0
- wisent/examples/scripts/results/test_c4_pairs.json +8 -0
- wisent/examples/scripts/results/test_cabreu_evaluation.json +30 -0
- wisent/examples/scripts/results/test_cabreu_pairs.json +8 -0
- wisent/examples/scripts/results/test_careqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_careqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_catalan_bench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_catalan_bench_pairs.json +14 -0
- wisent/examples/scripts/results/test_catalanqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_catalanqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_catcola_evaluation.json +30 -0
- wisent/examples/scripts/results/test_catcola_pairs.json +8 -0
- wisent/examples/scripts/results/test_cb_evaluation.json +30 -0
- wisent/examples/scripts/results/test_cb_pairs.json +8 -0
- wisent/examples/scripts/results/test_ceval/test_ceval_evaluation.json +51 -0
- wisent/examples/scripts/results/test_ceval/test_ceval_pairs.json +14 -0
- wisent/examples/scripts/results/test_ceval_accountant/test_ceval-valid_accountant_evaluation.json +30 -0
- wisent/examples/scripts/results/test_ceval_accountant/test_ceval-valid_accountant_pairs.json +8 -0
- wisent/examples/scripts/results/test_ceval_evaluation.json +51 -0
- wisent/examples/scripts/results/test_ceval_pairs.json +14 -0
- wisent/examples/scripts/results/test_ceval_valid/test_ceval_valid_evaluation.json +51 -0
- wisent/examples/scripts/results/test_ceval_valid/test_ceval_valid_pairs.json +14 -0
- wisent/examples/scripts/results/test_chain_of_thought_evaluation.json +51 -0
- wisent/examples/scripts/results/test_chain_of_thought_pairs.json +14 -0
- wisent/examples/scripts/results/test_chartqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_chartqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_claim_stance_topic_evaluation.json +30 -0
- wisent/examples/scripts/results/test_claim_stance_topic_pairs.json +8 -0
- wisent/examples/scripts/results/test_cmmlu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_cmmlu_pairs.json +14 -0
- wisent/examples/scripts/results/test_cnn_dailymail_evaluation.json +30 -0
- wisent/examples/scripts/results/test_cnn_dailymail_pairs.json +8 -0
- wisent/examples/scripts/results/test_cocoteros_es_evaluation.json +30 -0
- wisent/examples/scripts/results/test_cocoteros_es_pairs.json +8 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_go_evaluation.json +30 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_go_pairs.json +8 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_java_evaluation.json +30 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_java_pairs.json +8 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_javascript_evaluation.json +30 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_javascript_pairs.json +8 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_php_evaluation.json +30 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_php_pairs.json +8 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_python_evaluation.json +30 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_python_pairs.json +8 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_ruby_evaluation.json +30 -0
- wisent/examples/scripts/results/test_codexglue_code_to_text_ruby_pairs.json +8 -0
- wisent/examples/scripts/results/test_coedit_gec_evaluation.json +30 -0
- wisent/examples/scripts/results/test_coedit_gec_pairs.json +8 -0
- wisent/examples/scripts/results/test_cola_evaluation.json +30 -0
- wisent/examples/scripts/results/test_cola_pairs.json +8 -0
- wisent/examples/scripts/results/test_commonsense_qa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_commonsense_qa_pairs.json +8 -0
- wisent/examples/scripts/results/test_conala_evaluation.json +30 -0
- wisent/examples/scripts/results/test_conala_pairs.json +8 -0
- wisent/examples/scripts/results/test_concode_evaluation.json +30 -0
- wisent/examples/scripts/results/test_concode_pairs.json +8 -0
- wisent/examples/scripts/results/test_copa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_copa_pairs.json +8 -0
- wisent/examples/scripts/results/test_copal_id_evaluation.json +30 -0
- wisent/examples/scripts/results/test_copal_id_pairs.json +8 -0
- wisent/examples/scripts/results/test_coqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_coqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_coqcat_evaluation.json +30 -0
- wisent/examples/scripts/results/test_coqcat_pairs.json +8 -0
- wisent/examples/scripts/results/test_crows_pairs_evaluation.json +51 -0
- wisent/examples/scripts/results/test_crows_pairs_pairs.json +14 -0
- wisent/examples/scripts/results/test_csatqa_evaluation.json +51 -0
- wisent/examples/scripts/results/test_csatqa_pairs.json +14 -0
- wisent/examples/scripts/results/test_cycle_letters_evaluation.json +30 -0
- wisent/examples/scripts/results/test_cycle_letters_pairs.json +8 -0
- wisent/examples/scripts/results/test_darija_bench/test_darija_bench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_darija_bench/test_darija_bench_pairs.json +14 -0
- wisent/examples/scripts/results/test_darija_bench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_darija_bench_pairs.json +14 -0
- wisent/examples/scripts/results/test_darijahellaswag_evaluation.json +30 -0
- wisent/examples/scripts/results/test_darijahellaswag_pairs.json +8 -0
- wisent/examples/scripts/results/test_darijammlu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_darijammlu_pairs.json +14 -0
- wisent/examples/scripts/results/test_dbpedia_14_evaluation.json +30 -0
- wisent/examples/scripts/results/test_dbpedia_14_pairs.json +8 -0
- wisent/examples/scripts/results/test_drop_evaluation.json +30 -0
- wisent/examples/scripts/results/test_drop_pairs.json +8 -0
- wisent/examples/scripts/results/test_ds1000_evaluation.json +30 -0
- wisent/examples/scripts/results/test_ds1000_pairs.json +8 -0
- wisent/examples/scripts/results/test_egyhellaswag_evaluation.json +30 -0
- wisent/examples/scripts/results/test_egyhellaswag_pairs.json +8 -0
- wisent/examples/scripts/results/test_egymmlu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_egymmlu_pairs.json +14 -0
- wisent/examples/scripts/results/test_epec_koref_bin_evaluation.json +30 -0
- wisent/examples/scripts/results/test_epec_koref_bin_pairs.json +8 -0
- wisent/examples/scripts/results/test_eq_bench_evaluation.json +30 -0
- wisent/examples/scripts/results/test_eq_bench_pairs.json +8 -0
- wisent/examples/scripts/results/test_escola_evaluation.json +30 -0
- wisent/examples/scripts/results/test_escola_pairs.json +8 -0
- wisent/examples/scripts/results/test_ethics_cm_evaluation.json +30 -0
- wisent/examples/scripts/results/test_ethics_cm_pairs.json +8 -0
- wisent/examples/scripts/results/test_ethos_binary_evaluation.json +30 -0
- wisent/examples/scripts/results/test_ethos_binary_pairs.json +8 -0
- wisent/examples/scripts/results/test_eus_exams/test_eus_exams_evaluation.json +51 -0
- wisent/examples/scripts/results/test_eus_exams/test_eus_exams_pairs.json +14 -0
- wisent/examples/scripts/results/test_eus_exams_es_evaluation.json +51 -0
- wisent/examples/scripts/results/test_eus_exams_es_pairs.json +14 -0
- wisent/examples/scripts/results/test_eus_exams_evaluation.json +51 -0
- wisent/examples/scripts/results/test_eus_exams_pairs.json +14 -0
- wisent/examples/scripts/results/test_eus_proficiency_evaluation.json +30 -0
- wisent/examples/scripts/results/test_eus_proficiency_pairs.json +8 -0
- wisent/examples/scripts/results/test_eus_reading_evaluation.json +30 -0
- wisent/examples/scripts/results/test_eus_reading_pairs.json +8 -0
- wisent/examples/scripts/results/test_eus_trivia_evaluation.json +30 -0
- wisent/examples/scripts/results/test_eus_trivia_pairs.json +8 -0
- wisent/examples/scripts/results/test_evalita-mp_evaluation.json +51 -0
- wisent/examples/scripts/results/test_evalita-mp_pairs.json +14 -0
- wisent/examples/scripts/results/test_evalita-sp_sum_task_fp-small_p1_evaluation.json +30 -0
- wisent/examples/scripts/results/test_evalita-sp_sum_task_fp-small_p1_pairs.json +8 -0
- wisent/examples/scripts/results/test_evalita_LLM_evaluation.json +51 -0
- wisent/examples/scripts/results/test_evalita_LLM_pairs.json +14 -0
- wisent/examples/scripts/results/test_evalita_llm/test_evalita_llm_evaluation.json +51 -0
- wisent/examples/scripts/results/test_evalita_llm/test_evalita_llm_pairs.json +14 -0
- wisent/examples/scripts/results/test_evalita_mp/test_evalita-mp_te_prompt-1_evaluation.json +30 -0
- wisent/examples/scripts/results/test_evalita_mp/test_evalita-mp_te_prompt-1_pairs.json +8 -0
- wisent/examples/scripts/results/test_evalita_mp2/test_evalita_mp_evaluation.json +51 -0
- wisent/examples/scripts/results/test_evalita_mp2/test_evalita_mp_pairs.json +14 -0
- wisent/examples/scripts/results/test_evalita_sp2/test_evalita-sp_sum_task_fp-small_p1_evaluation.json +30 -0
- wisent/examples/scripts/results/test_evalita_sp2/test_evalita-sp_sum_task_fp-small_p1_pairs.json +8 -0
- wisent/examples/scripts/results/test_fda_evaluation.json +30 -0
- wisent/examples/scripts/results/test_fda_pairs.json +8 -0
- wisent/examples/scripts/results/test_financial_tweets_evaluation.json +30 -0
- wisent/examples/scripts/results/test_financial_tweets_pairs.json +8 -0
- wisent/examples/scripts/results/test_fld/test_fld_evaluation.json +30 -0
- wisent/examples/scripts/results/test_fld/test_fld_pairs.json +8 -0
- wisent/examples/scripts/results/test_fld_evaluation.json +30 -0
- wisent/examples/scripts/results/test_fld_fixed/test_fld_evaluation.json +30 -0
- wisent/examples/scripts/results/test_fld_fixed/test_fld_pairs.json +8 -0
- wisent/examples/scripts/results/test_fld_pairs.json +8 -0
- wisent/examples/scripts/results/test_flores_evaluation.json +51 -0
- wisent/examples/scripts/results/test_flores_pairs.json +14 -0
- wisent/examples/scripts/results/test_freebase_evaluation.json +30 -0
- wisent/examples/scripts/results/test_freebase_pairs.json +8 -0
- wisent/examples/scripts/results/test_french_bench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_french_bench_pairs.json +14 -0
- wisent/examples/scripts/results/test_galcola_evaluation.json +30 -0
- wisent/examples/scripts/results/test_galcola_pairs.json +8 -0
- wisent/examples/scripts/results/test_galician_bench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_galician_bench_pairs.json +14 -0
- wisent/examples/scripts/results/test_glianorex_evaluation.json +30 -0
- wisent/examples/scripts/results/test_glianorex_pairs.json +8 -0
- wisent/examples/scripts/results/test_global_mmlu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_global_mmlu_pairs.json +14 -0
- wisent/examples/scripts/results/test_glue_evaluation.json +51 -0
- wisent/examples/scripts/results/test_glue_pairs.json +14 -0
- wisent/examples/scripts/results/test_gpqa_evaluation.json +51 -0
- wisent/examples/scripts/results/test_gpqa_pairs.json +14 -0
- wisent/examples/scripts/results/test_gpt3_translation_benchmarks_evaluation.json +51 -0
- wisent/examples/scripts/results/test_gpt3_translation_benchmarks_pairs.json +14 -0
- wisent/examples/scripts/results/test_groundcocoa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_groundcocoa_pairs.json +8 -0
- wisent/examples/scripts/results/test_gsm8k_evaluation.json +30 -0
- wisent/examples/scripts/results/test_gsm8k_pairs.json +8 -0
- wisent/examples/scripts/results/test_haerae_evaluation.json +51 -0
- wisent/examples/scripts/results/test_haerae_pairs.json +14 -0
- wisent/examples/scripts/results/test_headqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_headqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_hellaswag_evaluation.json +30 -0
- wisent/examples/scripts/results/test_hellaswag_pairs.json +8 -0
- wisent/examples/scripts/results/test_hendrycks_ethics_evaluation.json +51 -0
- wisent/examples/scripts/results/test_hendrycks_ethics_pairs.json +14 -0
- wisent/examples/scripts/results/test_hendrycks_math_evaluation.json +51 -0
- wisent/examples/scripts/results/test_hendrycks_math_pairs.json +14 -0
- wisent/examples/scripts/results/test_histoires_morales_evaluation.json +30 -0
- wisent/examples/scripts/results/test_histoires_morales_pairs.json +8 -0
- wisent/examples/scripts/results/test_hmmt_evaluation.json +30 -0
- wisent/examples/scripts/results/test_hmmt_feb_2025_evaluation.json +30 -0
- wisent/examples/scripts/results/test_hmmt_feb_2025_pairs.json +8 -0
- wisent/examples/scripts/results/test_hmmt_pairs.json +8 -0
- wisent/examples/scripts/results/test_hrm8k_evaluation.json +51 -0
- wisent/examples/scripts/results/test_hrm8k_pairs.json +14 -0
- wisent/examples/scripts/results/test_humaneval_evaluation.json +30 -0
- wisent/examples/scripts/results/test_humaneval_pairs.json +8 -0
- wisent/examples/scripts/results/test_humaneval_plus_evaluation.json +30 -0
- wisent/examples/scripts/results/test_humaneval_plus_pairs.json +8 -0
- wisent/examples/scripts/results/test_ifeval_evaluation.json +30 -0
- wisent/examples/scripts/results/test_ifeval_pairs.json +8 -0
- wisent/examples/scripts/results/test_instruct_humaneval/test_instruct_humaneval_evaluation.json +30 -0
- wisent/examples/scripts/results/test_instruct_humaneval/test_instruct_humaneval_pairs.json +8 -0
- wisent/examples/scripts/results/test_instruct_humaneval_evaluation.json +30 -0
- wisent/examples/scripts/results/test_instruct_humaneval_pairs.json +8 -0
- wisent/examples/scripts/results/test_inverse_scaling_evaluation.json +51 -0
- wisent/examples/scripts/results/test_inverse_scaling_hindsight_neglect_10shot_evaluation.json +30 -0
- wisent/examples/scripts/results/test_inverse_scaling_hindsight_neglect_10shot_pairs.json +8 -0
- wisent/examples/scripts/results/test_inverse_scaling_mc/test_inverse_scaling_mc_evaluation.json +51 -0
- wisent/examples/scripts/results/test_inverse_scaling_mc/test_inverse_scaling_mc_pairs.json +14 -0
- wisent/examples/scripts/results/test_inverse_scaling_pairs.json +14 -0
- wisent/examples/scripts/results/test_iwslt2017-ar-en_evaluation.json +30 -0
- wisent/examples/scripts/results/test_iwslt2017-ar-en_pairs.json +8 -0
- wisent/examples/scripts/results/test_iwslt2017-en-ar_evaluation.json +30 -0
- wisent/examples/scripts/results/test_iwslt2017-en-ar_pairs.json +8 -0
- wisent/examples/scripts/results/test_iwslt2017_ar_en/test_iwslt2017-ar-en_evaluation.json +30 -0
- wisent/examples/scripts/results/test_iwslt2017_ar_en/test_iwslt2017-ar-en_pairs.json +8 -0
- wisent/examples/scripts/results/test_iwslt2017_en_ar/test_iwslt2017-en-ar_evaluation.json +30 -0
- wisent/examples/scripts/results/test_iwslt2017_en_ar/test_iwslt2017-en-ar_pairs.json +8 -0
- wisent/examples/scripts/results/test_iwslt2017_group/test_iwslt2017_evaluation.json +30 -0
- wisent/examples/scripts/results/test_iwslt2017_group/test_iwslt2017_pairs.json +8 -0
- wisent/examples/scripts/results/test_japanese_leaderboard_evaluation.json +51 -0
- wisent/examples/scripts/results/test_japanese_leaderboard_pairs.json +14 -0
- wisent/examples/scripts/results/test_jsonschema_bench/test_jsonschema_bench_evaluation.json +30 -0
- wisent/examples/scripts/results/test_jsonschema_bench/test_jsonschema_bench_pairs.json +8 -0
- wisent/examples/scripts/results/test_jsonschema_bench_evaluation.json +30 -0
- wisent/examples/scripts/results/test_jsonschema_bench_final/test_jsonschema_bench_evaluation.json +30 -0
- wisent/examples/scripts/results/test_jsonschema_bench_final/test_jsonschema_bench_pairs.json +8 -0
- wisent/examples/scripts/results/test_jsonschema_bench_pairs.json +8 -0
- wisent/examples/scripts/results/test_kbl_evaluation.json +51 -0
- wisent/examples/scripts/results/test_kbl_fixed/test_kbl_evaluation.json +51 -0
- wisent/examples/scripts/results/test_kbl_fixed/test_kbl_pairs.json +14 -0
- wisent/examples/scripts/results/test_kbl_pairs.json +14 -0
- wisent/examples/scripts/results/test_kmmlu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_kmmlu_pairs.json +14 -0
- wisent/examples/scripts/results/test_kobest_evaluation.json +51 -0
- wisent/examples/scripts/results/test_kobest_pairs.json +14 -0
- wisent/examples/scripts/results/test_kormedmcqa/test_kormedmcqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_kormedmcqa/test_kormedmcqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_kormedmcqa_dentist/test_kormedmcqa_dentist_evaluation.json +30 -0
- wisent/examples/scripts/results/test_kormedmcqa_dentist/test_kormedmcqa_dentist_pairs.json +8 -0
- wisent/examples/scripts/results/test_kormedmcqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_kormedmcqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_lambada_cloze_evaluation.json +30 -0
- wisent/examples/scripts/results/test_lambada_cloze_pairs.json +8 -0
- wisent/examples/scripts/results/test_lambada_evaluation.json +30 -0
- wisent/examples/scripts/results/test_lambada_final/test_lambada_openai_mt_stablelm_en_evaluation.json +30 -0
- wisent/examples/scripts/results/test_lambada_final/test_lambada_openai_mt_stablelm_en_pairs.json +8 -0
- wisent/examples/scripts/results/test_lambada_multilingual/test_lambada_multilingual_evaluation.json +51 -0
- wisent/examples/scripts/results/test_lambada_multilingual/test_lambada_multilingual_pairs.json +14 -0
- wisent/examples/scripts/results/test_lambada_multilingual_evaluation.json +51 -0
- wisent/examples/scripts/results/test_lambada_multilingual_pairs.json +14 -0
- wisent/examples/scripts/results/test_lambada_multilingual_stablelm_evaluation.json +51 -0
- wisent/examples/scripts/results/test_lambada_multilingual_stablelm_pairs.json +14 -0
- wisent/examples/scripts/results/test_lambada_openai_evaluation.json +30 -0
- wisent/examples/scripts/results/test_lambada_openai_pairs.json +8 -0
- wisent/examples/scripts/results/test_lambada_pairs.json +8 -0
- wisent/examples/scripts/results/test_lambada_stablelm_en_fixed/test_lambada_openai_mt_stablelm_en_evaluation.json +30 -0
- wisent/examples/scripts/results/test_lambada_stablelm_en_fixed/test_lambada_openai_mt_stablelm_en_pairs.json +8 -0
- wisent/examples/scripts/results/test_lambada_stablelm_fixed/test_lambada_openai_mt_stablelm_en_evaluation.json +30 -0
- wisent/examples/scripts/results/test_lambada_stablelm_fixed/test_lambada_openai_mt_stablelm_en_pairs.json +8 -0
- wisent/examples/scripts/results/test_lambada_standard_evaluation.json +30 -0
- wisent/examples/scripts/results/test_lambada_standard_pairs.json +8 -0
- wisent/examples/scripts/results/test_leaderboard_evaluation.json +51 -0
- wisent/examples/scripts/results/test_leaderboard_pairs.json +14 -0
- wisent/examples/scripts/results/test_libra/test_libra_evaluation.json +51 -0
- wisent/examples/scripts/results/test_libra/test_libra_pairs.json +14 -0
- wisent/examples/scripts/results/test_libra_evaluation.json +51 -0
- wisent/examples/scripts/results/test_libra_pairs.json +14 -0
- wisent/examples/scripts/results/test_lingoly_evaluation.json +30 -0
- wisent/examples/scripts/results/test_lingoly_pairs.json +8 -0
- wisent/examples/scripts/results/test_livecodebench_evaluation.json +30 -0
- wisent/examples/scripts/results/test_livecodebench_pairs.json +8 -0
- wisent/examples/scripts/results/test_livemathbench_cnmo_en_evaluation.json +30 -0
- wisent/examples/scripts/results/test_livemathbench_cnmo_en_pairs.json +8 -0
- wisent/examples/scripts/results/test_livemathbench_cnmo_zh_evaluation.json +30 -0
- wisent/examples/scripts/results/test_livemathbench_cnmo_zh_pairs.json +8 -0
- wisent/examples/scripts/results/test_llama_evaluation.json +30 -0
- wisent/examples/scripts/results/test_llama_pairs.json +8 -0
- wisent/examples/scripts/results/test_logiqa2_evaluation.json +30 -0
- wisent/examples/scripts/results/test_logiqa2_pairs.json +8 -0
- wisent/examples/scripts/results/test_logiqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_logiqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_m_mmlu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_m_mmlu_pairs.json +14 -0
- wisent/examples/scripts/results/test_mastermind/test_mastermind_evaluation.json +51 -0
- wisent/examples/scripts/results/test_mastermind/test_mastermind_pairs.json +14 -0
- wisent/examples/scripts/results/test_mastermind_24_easy/test_mastermind_24_easy_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mastermind_24_easy/test_mastermind_24_easy_pairs.json +8 -0
- wisent/examples/scripts/results/test_mastermind_evaluation.json +51 -0
- wisent/examples/scripts/results/test_mastermind_pairs.json +14 -0
- wisent/examples/scripts/results/test_math500_evaluation.json +30 -0
- wisent/examples/scripts/results/test_math500_pairs.json +8 -0
- wisent/examples/scripts/results/test_math_evaluation.json +30 -0
- wisent/examples/scripts/results/test_math_pairs.json +8 -0
- wisent/examples/scripts/results/test_mathqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mathqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_mbpp_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mbpp_pairs.json +8 -0
- wisent/examples/scripts/results/test_mbpp_plus_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mbpp_plus_pairs.json +8 -0
- wisent/examples/scripts/results/test_mc_taco_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mc_taco_pairs.json +8 -0
- wisent/examples/scripts/results/test_med_concepts_qa/test_med_concepts_qa_evaluation.json +51 -0
- wisent/examples/scripts/results/test_med_concepts_qa/test_med_concepts_qa_pairs.json +14 -0
- wisent/examples/scripts/results/test_med_concepts_qa_atc_easy/test_med_concepts_qa_atc_easy_evaluation.json +30 -0
- wisent/examples/scripts/results/test_med_concepts_qa_atc_easy/test_med_concepts_qa_atc_easy_pairs.json +8 -0
- wisent/examples/scripts/results/test_med_concepts_qa_evaluation.json +51 -0
- wisent/examples/scripts/results/test_med_concepts_qa_pairs.json +14 -0
- wisent/examples/scripts/results/test_meddialog_evaluation.json +30 -0
- wisent/examples/scripts/results/test_meddialog_pairs.json +8 -0
- wisent/examples/scripts/results/test_meddialog_raw_perplexity/test_meddialog_raw_perplexity_evaluation.json +30 -0
- wisent/examples/scripts/results/test_meddialog_raw_perplexity/test_meddialog_raw_perplexity_pairs.json +8 -0
- wisent/examples/scripts/results/test_mediqa_qa2019_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mediqa_qa2019_pairs.json +8 -0
- wisent/examples/scripts/results/test_medmcqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_medmcqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_medqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_medqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_medtext_evaluation.json +30 -0
- wisent/examples/scripts/results/test_medtext_pairs.json +8 -0
- wisent/examples/scripts/results/test_mela_evaluation.json +51 -0
- wisent/examples/scripts/results/test_mela_pairs.json +14 -0
- wisent/examples/scripts/results/test_meqsum_evaluation.json +30 -0
- wisent/examples/scripts/results/test_meqsum_pairs.json +8 -0
- wisent/examples/scripts/results/test_mercury_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mercury_pairs.json +8 -0
- wisent/examples/scripts/results/test_metabench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_metabench_pairs.json +14 -0
- wisent/examples/scripts/results/test_mgsm_evaluation.json +51 -0
- wisent/examples/scripts/results/test_mgsm_pairs.json +14 -0
- wisent/examples/scripts/results/test_mimic_repsum_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mimic_repsum_pairs.json +8 -0
- wisent/examples/scripts/results/test_minerva_math_evaluation.json +51 -0
- wisent/examples/scripts/results/test_minerva_math_pairs.json +14 -0
- wisent/examples/scripts/results/test_mlqa_evaluation.json +51 -0
- wisent/examples/scripts/results/test_mlqa_pairs.json +14 -0
- wisent/examples/scripts/results/test_mmlu-pro-plus_evaluation.json +51 -0
- wisent/examples/scripts/results/test_mmlu-pro-plus_pairs.json +14 -0
- wisent/examples/scripts/results/test_mmlu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_mmlu_pairs.json +14 -0
- wisent/examples/scripts/results/test_mmlu_pro_evaluation.json +51 -0
- wisent/examples/scripts/results/test_mmlu_pro_pairs.json +14 -0
- wisent/examples/scripts/results/test_mmlu_prox_evaluation.json +51 -0
- wisent/examples/scripts/results/test_mmlu_prox_pairs.json +14 -0
- wisent/examples/scripts/results/test_mmlusr_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mmlusr_pairs.json +8 -0
- wisent/examples/scripts/results/test_mmmu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_mmmu_pairs.json +14 -0
- wisent/examples/scripts/results/test_mnli_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mnli_pairs.json +8 -0
- wisent/examples/scripts/results/test_model_written_evals_evaluation.json +51 -0
- wisent/examples/scripts/results/test_model_written_evals_pairs.json +14 -0
- wisent/examples/scripts/results/test_moral_stories_evaluation.json +30 -0
- wisent/examples/scripts/results/test_moral_stories_pairs.json +8 -0
- wisent/examples/scripts/results/test_mts_dialog_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mts_dialog_pairs.json +8 -0
- wisent/examples/scripts/results/test_multiblimp_evaluation.json +51 -0
- wisent/examples/scripts/results/test_multiblimp_pairs.json +14 -0
- wisent/examples/scripts/results/test_multimedqa_evaluation.json +51 -0
- wisent/examples/scripts/results/test_multimedqa_pairs.json +14 -0
- wisent/examples/scripts/results/test_multipl_e_evaluation.json +30 -0
- wisent/examples/scripts/results/test_multipl_e_pairs.json +8 -0
- wisent/examples/scripts/results/test_mutual_evaluation.json +30 -0
- wisent/examples/scripts/results/test_mutual_pairs.json +8 -0
- wisent/examples/scripts/results/test_non_greedy_robustness_agieval_aqua_rat_evaluation.json +30 -0
- wisent/examples/scripts/results/test_non_greedy_robustness_agieval_aqua_rat_pairs.json +8 -0
- wisent/examples/scripts/results/test_noreval_evaluation.json +51 -0
- wisent/examples/scripts/results/test_noreval_pairs.json +14 -0
- wisent/examples/scripts/results/test_noticia_evaluation.json +30 -0
- wisent/examples/scripts/results/test_noticia_pairs.json +8 -0
- wisent/examples/scripts/results/test_nq_open_evaluation.json +30 -0
- wisent/examples/scripts/results/test_nq_open_pairs.json +8 -0
- wisent/examples/scripts/results/test_olaph_evaluation.json +30 -0
- wisent/examples/scripts/results/test_olaph_pairs.json +8 -0
- wisent/examples/scripts/results/test_openbookqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_openbookqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_openllm_evaluation.json +51 -0
- wisent/examples/scripts/results/test_openllm_pairs.json +14 -0
- wisent/examples/scripts/results/test_option_order_robustness_agieval_aqua_rat_evaluation.json +30 -0
- wisent/examples/scripts/results/test_option_order_robustness_agieval_aqua_rat_pairs.json +8 -0
- wisent/examples/scripts/results/test_paloma_evaluation.json +51 -0
- wisent/examples/scripts/results/test_paloma_pairs.json +14 -0
- wisent/examples/scripts/results/test_passkey/test_passkey_evaluation.json +30 -0
- wisent/examples/scripts/results/test_passkey/test_passkey_pairs.json +8 -0
- wisent/examples/scripts/results/test_paws-x_evaluation.json +51 -0
- wisent/examples/scripts/results/test_paws-x_pairs.json +14 -0
- wisent/examples/scripts/results/test_paws_en/test_paws_en_evaluation.json +30 -0
- wisent/examples/scripts/results/test_paws_en/test_paws_en_pairs.json +8 -0
- wisent/examples/scripts/results/test_penn_treebank_evaluation.json +30 -0
- wisent/examples/scripts/results/test_penn_treebank_pairs.json +8 -0
- wisent/examples/scripts/results/test_pile_10k/test_pile_10k_evaluation.json +30 -0
- wisent/examples/scripts/results/test_pile_10k/test_pile_10k_pairs.json +8 -0
- wisent/examples/scripts/results/test_piqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_piqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_polemo2_evaluation.json +30 -0
- wisent/examples/scripts/results/test_polemo2_pairs.json +8 -0
- wisent/examples/scripts/results/test_polymath_en_high_evaluation.json +30 -0
- wisent/examples/scripts/results/test_polymath_en_high_pairs.json +8 -0
- wisent/examples/scripts/results/test_polymath_en_medium_evaluation.json +30 -0
- wisent/examples/scripts/results/test_polymath_en_medium_pairs.json +8 -0
- wisent/examples/scripts/results/test_polymath_zh_high_evaluation.json +30 -0
- wisent/examples/scripts/results/test_polymath_zh_high_pairs.json +8 -0
- wisent/examples/scripts/results/test_polymath_zh_medium_evaluation.json +30 -0
- wisent/examples/scripts/results/test_polymath_zh_medium_pairs.json +8 -0
- wisent/examples/scripts/results/test_portuguese_bench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_portuguese_bench_pairs.json +14 -0
- wisent/examples/scripts/results/test_prompt_robustness_agieval_aqua_rat/test_prompt_robustness_agieval_aqua_rat_evaluation.json +30 -0
- wisent/examples/scripts/results/test_prompt_robustness_agieval_aqua_rat/test_prompt_robustness_agieval_aqua_rat_pairs.json +8 -0
- wisent/examples/scripts/results/test_prompt_robustness_agieval_aqua_rat_evaluation.json +30 -0
- wisent/examples/scripts/results/test_prompt_robustness_agieval_aqua_rat_pairs.json +8 -0
- wisent/examples/scripts/results/test_prost_evaluation.json +30 -0
- wisent/examples/scripts/results/test_prost_pairs.json +8 -0
- wisent/examples/scripts/results/test_ptb_evaluation.json +30 -0
- wisent/examples/scripts/results/test_ptb_pairs.json +8 -0
- wisent/examples/scripts/results/test_pubmedqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_pubmedqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_pythia_evaluation.json +51 -0
- wisent/examples/scripts/results/test_pythia_pairs.json +14 -0
- wisent/examples/scripts/results/test_qa4mre_evaluation.json +30 -0
- wisent/examples/scripts/results/test_qa4mre_pairs.json +8 -0
- wisent/examples/scripts/results/test_qasper_evaluation.json +30 -0
- wisent/examples/scripts/results/test_qasper_pairs.json +8 -0
- wisent/examples/scripts/results/test_race_evaluation.json +30 -0
- wisent/examples/scripts/results/test_race_pairs.json +8 -0
- wisent/examples/scripts/results/test_realtoxicityprompts_evaluation.json +30 -0
- wisent/examples/scripts/results/test_realtoxicityprompts_pairs.json +8 -0
- wisent/examples/scripts/results/test_recode_evaluation.json +30 -0
- wisent/examples/scripts/results/test_recode_pairs.json +8 -0
- wisent/examples/scripts/results/test_record_evaluation.json +30 -0
- wisent/examples/scripts/results/test_record_pairs.json +8 -0
- wisent/examples/scripts/results/test_ruler_evaluation.json +51 -0
- wisent/examples/scripts/results/test_ruler_pairs.json +14 -0
- wisent/examples/scripts/results/test_sciq_evaluation.json +30 -0
- wisent/examples/scripts/results/test_sciq_pairs.json +8 -0
- wisent/examples/scripts/results/test_score_evaluation.json +51 -0
- wisent/examples/scripts/results/test_score_pairs.json +14 -0
- wisent/examples/scripts/results/test_self_consistency_evaluation.json +30 -0
- wisent/examples/scripts/results/test_self_consistency_pairs.json +8 -0
- wisent/examples/scripts/results/test_siqa/test_siqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_siqa/test_siqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_siqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_siqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_spanish_bench_evaluation.json +51 -0
- wisent/examples/scripts/results/test_spanish_bench_pairs.json +14 -0
- wisent/examples/scripts/results/test_squad2_evaluation.json +30 -0
- wisent/examples/scripts/results/test_squad2_pairs.json +8 -0
- wisent/examples/scripts/results/test_squadv2_evaluation.json +30 -0
- wisent/examples/scripts/results/test_squadv2_pairs.json +8 -0
- wisent/examples/scripts/results/test_super-glue-lm-eval-v1-seq2seq_evaluation.json +30 -0
- wisent/examples/scripts/results/test_super-glue-lm-eval-v1-seq2seq_pairs.json +8 -0
- wisent/examples/scripts/results/test_super-glue-lm-eval-v1_evaluation.json +51 -0
- wisent/examples/scripts/results/test_super-glue-lm-eval-v1_pairs.json +14 -0
- wisent/examples/scripts/results/test_swag_evaluation.json +30 -0
- wisent/examples/scripts/results/test_swag_pairs.json +8 -0
- wisent/examples/scripts/results/test_tinyBenchmarks_evaluation.json +51 -0
- wisent/examples/scripts/results/test_tinyBenchmarks_pairs.json +14 -0
- wisent/examples/scripts/results/test_tmmluplus_evaluation.json +51 -0
- wisent/examples/scripts/results/test_tmmluplus_pairs.json +14 -0
- wisent/examples/scripts/results/test_translation_evaluation.json +51 -0
- wisent/examples/scripts/results/test_translation_pairs.json +14 -0
- wisent/examples/scripts/results/test_triviaqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_triviaqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_truthfulqa-multi_evaluation.json +51 -0
- wisent/examples/scripts/results/test_truthfulqa-multi_pairs.json +14 -0
- wisent/examples/scripts/results/test_truthfulqa_evaluation.json +30 -0
- wisent/examples/scripts/results/test_truthfulqa_mc1_evaluation.json +30 -0
- wisent/examples/scripts/results/test_truthfulqa_mc1_pairs.json +8 -0
- wisent/examples/scripts/results/test_truthfulqa_mc2_evaluation.json +30 -0
- wisent/examples/scripts/results/test_truthfulqa_mc2_pairs.json +8 -0
- wisent/examples/scripts/results/test_truthfulqa_pairs.json +8 -0
- wisent/examples/scripts/results/test_turkishmmlu_evaluation.json +51 -0
- wisent/examples/scripts/results/test_turkishmmlu_pairs.json +14 -0
- wisent/examples/scripts/results/test_unfair_tos_evaluation.json +30 -0
- wisent/examples/scripts/results/test_unfair_tos_pairs.json +8 -0
- wisent/examples/scripts/results/test_unscramble_evaluation.json +51 -0
- wisent/examples/scripts/results/test_unscramble_pairs.json +14 -0
- wisent/examples/scripts/results/test_webqs_evaluation.json +30 -0
- wisent/examples/scripts/results/test_webqs_pairs.json +8 -0
- wisent/examples/scripts/results/test_wikitext103_evaluation.json +30 -0
- wisent/examples/scripts/results/test_wikitext103_pairs.json +8 -0
- wisent/examples/scripts/results/test_wikitext_evaluation.json +30 -0
- wisent/examples/scripts/results/test_wikitext_pairs.json +8 -0
- wisent/examples/scripts/results/test_winogender_evaluation.json +51 -0
- wisent/examples/scripts/results/test_winogender_pairs.json +14 -0
- wisent/examples/scripts/results/test_winogrande_evaluation.json +30 -0
- wisent/examples/scripts/results/test_winogrande_pairs.json +8 -0
- wisent/examples/scripts/results/test_wmdp_evaluation.json +30 -0
- wisent/examples/scripts/results/test_wmdp_pairs.json +8 -0
- wisent/examples/scripts/results/test_wmt-ro-en-t5-prompt_evaluation.json +30 -0
- wisent/examples/scripts/results/test_wmt-ro-en-t5-prompt_pairs.json +8 -0
- wisent/examples/scripts/results/test_wmt14_en_fr_evaluation.json +30 -0
- wisent/examples/scripts/results/test_wmt14_en_fr_pairs.json +8 -0
- wisent/examples/scripts/results/test_wmt16_en_de_evaluation.json +30 -0
- wisent/examples/scripts/results/test_wmt16_en_de_pairs.json +8 -0
- wisent/examples/scripts/results/test_wmt16_ro_en_evaluation.json +30 -0
- wisent/examples/scripts/results/test_wmt16_ro_en_pairs.json +8 -0
- wisent/examples/scripts/results/test_wsc273_evaluation.json +30 -0
- wisent/examples/scripts/results/test_wsc273_pairs.json +8 -0
- wisent/examples/scripts/results/test_xcopa_evaluation.json +51 -0
- wisent/examples/scripts/results/test_xcopa_pairs.json +14 -0
- wisent/examples/scripts/results/test_xnli_eu_evaluation.json +30 -0
- wisent/examples/scripts/results/test_xnli_eu_pairs.json +8 -0
- wisent/examples/scripts/results/test_xnli_evaluation.json +51 -0
- wisent/examples/scripts/results/test_xnli_pairs.json +14 -0
- wisent/examples/scripts/results/test_xquad_evaluation.json +51 -0
- wisent/examples/scripts/results/test_xquad_pairs.json +14 -0
- wisent/examples/scripts/results/test_xstorycloze_evaluation.json +51 -0
- wisent/examples/scripts/results/test_xstorycloze_pairs.json +14 -0
- wisent/examples/scripts/results/test_xsum_evaluation.json +30 -0
- wisent/examples/scripts/results/test_xsum_pairs.json +8 -0
- wisent/examples/scripts/results/test_xwinograd_evaluation.json +51 -0
- wisent/examples/scripts/results/test_xwinograd_pairs.json +14 -0
- wisent/examples/scripts/results/test_yahoo_answers_topics_evaluation.json +30 -0
- wisent/examples/scripts/results/test_yahoo_answers_topics_pairs.json +8 -0
- wisent/parameters/__init__.py +1 -0
- wisent/parameters/lm_eval/all_lm_eval_task_families.json +169 -0
- wisent/parameters/lm_eval/broken_in_lm_eval.json +10 -0
- wisent/parameters/lm_eval/evaluations_not_lm_eval_tasks.json +0 -0
- wisent/parameters/lm_eval/evaluator_check.json +3476 -0
- wisent/parameters/lm_eval/final_verification.json +24782 -0
- wisent/parameters/lm_eval/group_task_evaluators.json +1833 -0
- wisent/parameters/lm_eval/group_tasks.json +150 -0
- wisent/parameters/lm_eval/individual_tasks.json +402 -0
- wisent/parameters/lm_eval/no_readmes.json +1 -0
- wisent/parameters/lm_eval/not_lm_eval_tasks.json +110 -0
- wisent/parameters/lm_eval/read_tasks.json +208 -0
- wisent/parameters/lm_eval/readme_files.json +208 -0
- wisent/parameters/lm_eval/track_progress_not_lm_eval_tasks.json +128 -0
- wisent/parameters/tasks/missing_task_families.json +2963 -0
- wisent/parameters/tasks/remaining_tasks_to_implement.json +199 -0
- wisent/parameters/tasks/risks.json +10 -0
- wisent/parameters/tasks/skills.json +14 -0
- wisent/parameters/tasks/tasks.json +56031 -0
- wisent/scripts/run_quality_metrics_sweep.sh +315 -0
- wisent/tests/__init__.py +0 -0
- wisent/tests/examples/__init__.py +0 -0
- wisent/tests/examples/cli/__init__.py +0 -0
- wisent/tests/examples/cli/activations/__init__.py +0 -0
- wisent/tests/examples/cli/activations/test_get_activations.py +127 -0
- wisent/tests/examples/cli/classifier/__init__.py +0 -0
- wisent/tests/examples/cli/classifier/test_classifier_examples.py +141 -0
- wisent/tests/examples/cli/contrastive_pairs/__init__.py +0 -0
- wisent/tests/examples/cli/contrastive_pairs/test_generate_pairs.py +89 -0
- wisent/tests/examples/cli/evaluation/__init__.py +0 -0
- wisent/tests/examples/cli/evaluation/test_evaluation_examples.py +117 -0
- wisent/tests/examples/cli/generate/__init__.py +0 -0
- wisent/tests/examples/cli/generate/test_generate_with_classifier.py +146 -0
- wisent/tests/examples/cli/generate/test_generate_with_steering.py +149 -0
- wisent/tests/examples/cli/generate/test_only_generate.py +110 -0
- wisent/tests/examples/cli/multi_steering/__init__.py +0 -0
- wisent/tests/examples/cli/multi_steering/test_multi_steer_from_trained_vectors.py +210 -0
- wisent/tests/examples/cli/multi_steering/test_multi_steer_with_different_parameters.py +205 -0
- wisent/tests/examples/cli/multi_steering/test_train_and_multi_steer.py +174 -0
- wisent/tests/examples/cli/optimizer/__init__.py +0 -0
- wisent/tests/examples/cli/optimizer/test_optimize_sample_size.py +102 -0
- wisent/tests/examples/cli/optimizer/test_optimizer_examples.py +59 -0
- wisent/tests/examples/cli/steering/__init__.py +0 -0
- wisent/tests/examples/cli/steering/test_create_steering_vectors.py +135 -0
- wisent/tests/examples/cli/synthetic/__init__.py +0 -0
- wisent/tests/examples/cli/synthetic/test_synthetic_pairs.py +45 -0
- wisent/tests/nosense/__init__.py +6 -0
- wisent/tests/nosense/base_nosense.py +81 -0
- wisent/tests/nosense/math500_nosense.py +72 -0
- wisent/tests/nosense/test_robustness.py +336 -0
- wisent/tests/test_all_cli_commands.py +674 -0
- wisent/tests/test_geometry_comprehensive.py +327 -0
- wisent/tests/test_titan_geometry.py +257 -0
- wisent/tests/visualize_geometry.py +148 -0
- wisent-0.7.379.dist-info/METADATA +64 -0
- wisent-0.7.379.dist-info/RECORD +1720 -0
- wisent-0.7.379.dist-info/WHEEL +5 -0
- wisent-0.7.379.dist-info/entry_points.txt +2 -0
- wisent-0.7.379.dist-info/licenses/LICENSE +21 -0
- wisent-0.7.379.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,3421 @@
|
|
|
1
|
+
"""Steering optimization command execution logic with full strategy optimization.
|
|
2
|
+
|
|
3
|
+
Results are persisted to ~/.wisent/configs/ via WisentConfigManager
|
|
4
|
+
so they can be automatically loaded on subsequent runs.
|
|
5
|
+
|
|
6
|
+
Supports two search strategies:
|
|
7
|
+
- grid: Exhaustive search over all configurations (thorough but slow)
|
|
8
|
+
- optuna: TPE sampling with early stopping (fast but may miss optimal)
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
import json
|
|
12
|
+
import sys
|
|
13
|
+
import time
|
|
14
|
+
|
|
15
|
+
import numpy as np
|
|
16
|
+
|
|
17
|
+
from wisent.core.evaluators.rotator import EvaluatorRotator
|
|
18
|
+
from wisent.core.models.inference_config import get_generate_kwargs
|
|
19
|
+
from wisent.core.config_manager import (
|
|
20
|
+
get_config_manager,
|
|
21
|
+
save_steering_config,
|
|
22
|
+
get_steering_config,
|
|
23
|
+
get_cached_optimization,
|
|
24
|
+
store_optimization,
|
|
25
|
+
SteeringConfig,
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def _run_optuna_search_for_task(
|
|
30
|
+
model,
|
|
31
|
+
train_pairs,
|
|
32
|
+
test_pairs,
|
|
33
|
+
evaluator,
|
|
34
|
+
task_name,
|
|
35
|
+
search_space,
|
|
36
|
+
args,
|
|
37
|
+
baseline_results=None,
|
|
38
|
+
):
|
|
39
|
+
"""
|
|
40
|
+
Run Optuna-based hyperparameter search for a single task.
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
dict: Best configuration found with score and parameters
|
|
44
|
+
"""
|
|
45
|
+
import optuna
|
|
46
|
+
from optuna.samplers import TPESampler
|
|
47
|
+
from optuna.pruners import MedianPruner
|
|
48
|
+
|
|
49
|
+
from wisent.core.activations.activations_collector import ActivationCollector
|
|
50
|
+
from wisent.core.activations.core.atoms import ActivationAggregationStrategy
|
|
51
|
+
from wisent.core.models.core.atoms import SteeringPlan
|
|
52
|
+
from wisent.core.cli.steering_method_trainer import create_steering_method
|
|
53
|
+
|
|
54
|
+
n_trials = getattr(args, 'n_trials', 50)
|
|
55
|
+
n_startup_trials = getattr(args, 'n_startup_trials', 10)
|
|
56
|
+
|
|
57
|
+
# Maps for converting string values to enums
|
|
58
|
+
token_agg_map = {
|
|
59
|
+
"last_token": ActivationAggregationStrategy.LAST_TOKEN,
|
|
60
|
+
"mean_pooling": ActivationAggregationStrategy.MEAN_POOLING,
|
|
61
|
+
"first_token": ActivationAggregationStrategy.FIRST_TOKEN,
|
|
62
|
+
"max_pooling": ActivationAggregationStrategy.MAX_POOLING,
|
|
63
|
+
}
|
|
64
|
+
|
|
65
|
+
def objective(trial):
|
|
66
|
+
"""Optuna objective function for steering optimization."""
|
|
67
|
+
# Sample hyperparameters
|
|
68
|
+
layer = trial.suggest_int("layer", min(search_space.layers), max(search_space.layers))
|
|
69
|
+
strength = trial.suggest_float("strength", min(search_space.strengths), max(search_space.strengths), log=True)
|
|
70
|
+
strategy = trial.suggest_categorical("strategy", search_space.strategies)
|
|
71
|
+
token_agg_name = trial.suggest_categorical("token_aggregation", search_space.token_aggregations)
|
|
72
|
+
token_agg = token_agg_map.get(token_agg_name, ActivationAggregationStrategy.LAST_TOKEN)
|
|
73
|
+
|
|
74
|
+
layer_str = str(layer)
|
|
75
|
+
|
|
76
|
+
try:
|
|
77
|
+
# Collect activations
|
|
78
|
+
collector = ActivationCollector(model=model, store_device="cpu")
|
|
79
|
+
pos_acts = []
|
|
80
|
+
neg_acts = []
|
|
81
|
+
|
|
82
|
+
for pair in train_pairs.pairs:
|
|
83
|
+
updated_pair = collector.collect_for_pair(
|
|
84
|
+
pair,
|
|
85
|
+
layers=[layer_str],
|
|
86
|
+
aggregation=token_agg,
|
|
87
|
+
return_full_sequence=False,
|
|
88
|
+
normalize_layers=False,
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
if (updated_pair.positive_response.layers_activations
|
|
92
|
+
and layer_str in updated_pair.positive_response.layers_activations):
|
|
93
|
+
act = updated_pair.positive_response.layers_activations[layer_str]
|
|
94
|
+
if act is not None:
|
|
95
|
+
pos_acts.append(act)
|
|
96
|
+
|
|
97
|
+
if (updated_pair.negative_response.layers_activations
|
|
98
|
+
and layer_str in updated_pair.negative_response.layers_activations):
|
|
99
|
+
act = updated_pair.negative_response.layers_activations[layer_str]
|
|
100
|
+
if act is not None:
|
|
101
|
+
neg_acts.append(act)
|
|
102
|
+
|
|
103
|
+
if len(pos_acts) == 0 or len(neg_acts) == 0:
|
|
104
|
+
return 0.0
|
|
105
|
+
|
|
106
|
+
# Train steering vector
|
|
107
|
+
method_name = args.methods[0] if args.methods else "CAA"
|
|
108
|
+
steering_method = create_steering_method(method_name, args)
|
|
109
|
+
import torch
|
|
110
|
+
pos_tensor = torch.stack(pos_acts).mean(dim=0)
|
|
111
|
+
neg_tensor = torch.stack(neg_acts).mean(dim=0)
|
|
112
|
+
steering_vector = steering_method.train_for_layer(pos_tensor, neg_tensor)
|
|
113
|
+
|
|
114
|
+
# Create steering plan
|
|
115
|
+
steering_plan = SteeringPlan.from_raw(
|
|
116
|
+
raw={layer_str: steering_vector},
|
|
117
|
+
scale=strength,
|
|
118
|
+
normalize=False
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
# Evaluate on test set
|
|
122
|
+
correct = 0
|
|
123
|
+
total = 0
|
|
124
|
+
|
|
125
|
+
for pair in test_pairs.pairs:
|
|
126
|
+
try:
|
|
127
|
+
choices = [pair.negative_response.model_response, pair.positive_response.model_response]
|
|
128
|
+
expected = pair.positive_response.model_response
|
|
129
|
+
test_code = pair.metadata.get("test_code") if pair.metadata else None
|
|
130
|
+
|
|
131
|
+
eval_result = evaluator.evaluate(
|
|
132
|
+
response="",
|
|
133
|
+
expected=expected,
|
|
134
|
+
model=model,
|
|
135
|
+
question=pair.prompt,
|
|
136
|
+
choices=choices,
|
|
137
|
+
steering_plan=steering_plan,
|
|
138
|
+
test_code=test_code,
|
|
139
|
+
task_name=task_name,
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
if eval_result.ground_truth == "TRUTHFUL":
|
|
143
|
+
correct += 1
|
|
144
|
+
total += 1
|
|
145
|
+
except Exception:
|
|
146
|
+
total += 1
|
|
147
|
+
|
|
148
|
+
accuracy = correct / total if total > 0 else 0.0
|
|
149
|
+
return accuracy
|
|
150
|
+
|
|
151
|
+
except Exception as e:
|
|
152
|
+
print(f" Trial {trial.number} failed: {e}")
|
|
153
|
+
return 0.0
|
|
154
|
+
|
|
155
|
+
# Create and run study
|
|
156
|
+
sampler = TPESampler(seed=42, n_startup_trials=n_startup_trials)
|
|
157
|
+
pruner = MedianPruner(n_startup_trials=5, n_warmup_steps=3)
|
|
158
|
+
|
|
159
|
+
study = optuna.create_study(
|
|
160
|
+
direction="maximize",
|
|
161
|
+
sampler=sampler,
|
|
162
|
+
pruner=pruner,
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
print(f" š Running Optuna optimization ({n_trials} trials)...")
|
|
166
|
+
|
|
167
|
+
# Suppress Optuna logs for cleaner output
|
|
168
|
+
optuna.logging.set_verbosity(optuna.logging.WARNING)
|
|
169
|
+
|
|
170
|
+
study.optimize(objective, n_trials=n_trials, show_progress_bar=True)
|
|
171
|
+
|
|
172
|
+
best_trial = study.best_trial
|
|
173
|
+
|
|
174
|
+
return {
|
|
175
|
+
"best_score": best_trial.value,
|
|
176
|
+
"best_layer": best_trial.params["layer"],
|
|
177
|
+
"best_strength": best_trial.params["strength"],
|
|
178
|
+
"best_strategy": best_trial.params["strategy"],
|
|
179
|
+
"best_token_aggregation": best_trial.params["token_aggregation"],
|
|
180
|
+
"n_trials": len(study.trials),
|
|
181
|
+
"search_strategy": "optuna",
|
|
182
|
+
}
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
def execute_optimize_steering(args):
|
|
186
|
+
"""
|
|
187
|
+
Execute the optimize-steering command.
|
|
188
|
+
|
|
189
|
+
Supports multiple subcommands:
|
|
190
|
+
- comprehensive: Run comprehensive steering optimization
|
|
191
|
+
- compare-methods: Compare different steering methods
|
|
192
|
+
- optimize-layer: Find optimal steering layer
|
|
193
|
+
- optimize-strength: Find optimal steering strength
|
|
194
|
+
- auto: Automatically optimize based on classification config
|
|
195
|
+
"""
|
|
196
|
+
from wisent.core.data_loaders.loaders.lm_loader import LMEvalDataLoader
|
|
197
|
+
from wisent.core.models.wisent_model import WisentModel
|
|
198
|
+
|
|
199
|
+
# Check which subcommand was called
|
|
200
|
+
if not hasattr(args, "steering_action") or args.steering_action is None:
|
|
201
|
+
print("\nā No steering optimization action specified")
|
|
202
|
+
print("Available actions: comprehensive, compare-methods, optimize-layer, optimize-strength, auto")
|
|
203
|
+
sys.exit(1)
|
|
204
|
+
|
|
205
|
+
print(f"\n{'=' * 80}")
|
|
206
|
+
print(f"šÆ STEERING PARAMETER OPTIMIZATION: {args.steering_action.upper()}")
|
|
207
|
+
print(f"{'=' * 80}")
|
|
208
|
+
print(f" Model: {args.model}")
|
|
209
|
+
print(f" Device: {args.device or 'auto'}")
|
|
210
|
+
print(f"{'=' * 80}\n")
|
|
211
|
+
|
|
212
|
+
# Load model
|
|
213
|
+
print("š¦ Loading model...")
|
|
214
|
+
model = WisentModel(args.model, device=args.device)
|
|
215
|
+
print(f" ā Model loaded with {model.num_layers} layers\n")
|
|
216
|
+
|
|
217
|
+
# Initialize data loader
|
|
218
|
+
loader = LMEvalDataLoader()
|
|
219
|
+
|
|
220
|
+
# Execute based on subcommand and return results
|
|
221
|
+
if args.steering_action == "comprehensive":
|
|
222
|
+
return execute_comprehensive(args, model, loader)
|
|
223
|
+
if args.steering_action == "compare-methods":
|
|
224
|
+
return execute_compare_methods(args, model, loader)
|
|
225
|
+
if args.steering_action == "optimize-layer":
|
|
226
|
+
return execute_optimize_layer(args, model, loader)
|
|
227
|
+
if args.steering_action == "optimize-strength":
|
|
228
|
+
return execute_optimize_strength(args, model, loader)
|
|
229
|
+
if args.steering_action == "auto":
|
|
230
|
+
return execute_auto(args, model, loader)
|
|
231
|
+
if args.steering_action == "personalization":
|
|
232
|
+
return execute_personalization(args, model)
|
|
233
|
+
if args.steering_action == "multi-personalization":
|
|
234
|
+
return execute_multi_personalization(args, model)
|
|
235
|
+
print(f"\nā Unknown steering action: {args.steering_action}")
|
|
236
|
+
sys.exit(1)
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
def execute_comprehensive(args, model, loader):
|
|
240
|
+
"""Execute comprehensive steering optimization with generation-based evaluation."""
|
|
241
|
+
import torch
|
|
242
|
+
|
|
243
|
+
from wisent.core.activations.activations_collector import ActivationCollector
|
|
244
|
+
from wisent.core.activations.core.atoms import ActivationAggregationStrategy
|
|
245
|
+
from wisent.core.activations.prompt_construction_strategy import PromptConstructionStrategy
|
|
246
|
+
from wisent.core.models.core.atoms import SteeringPlan
|
|
247
|
+
from wisent.core.cli.steering_method_trainer import create_steering_method
|
|
248
|
+
from wisent.core.cli.steering_search_space import (
|
|
249
|
+
get_search_space_from_args,
|
|
250
|
+
print_search_space_summary,
|
|
251
|
+
CAASearchSpace,
|
|
252
|
+
PRISMSearchSpace,
|
|
253
|
+
PULSESearchSpace,
|
|
254
|
+
TITANSearchSpace,
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
print("š Running comprehensive steering optimization...")
|
|
258
|
+
print(" Optimizing: Method-specific search space (layer, strength, strategy, + method params)")
|
|
259
|
+
|
|
260
|
+
# Determine tasks to optimize
|
|
261
|
+
if args.tasks:
|
|
262
|
+
task_list = args.tasks
|
|
263
|
+
else:
|
|
264
|
+
task_list = ["arc_easy", "hellaswag", "winogrande", "gsm8k"]
|
|
265
|
+
|
|
266
|
+
# Check for cached results if --use-cached is specified
|
|
267
|
+
use_cached = getattr(args, "use_cached", False)
|
|
268
|
+
save_as_default = getattr(args, "save_as_default", False)
|
|
269
|
+
|
|
270
|
+
if use_cached:
|
|
271
|
+
print("\nš¦ Checking optimization cache...")
|
|
272
|
+
cached_results = {}
|
|
273
|
+
tasks_to_run = []
|
|
274
|
+
|
|
275
|
+
for task_name in task_list:
|
|
276
|
+
for method in args.methods:
|
|
277
|
+
cached = get_cached_optimization(args.model, task_name, method)
|
|
278
|
+
if cached:
|
|
279
|
+
print(
|
|
280
|
+
f" ā Found cached result for {task_name}/{method}: layer={cached.layer}, strength={cached.strength}, score={cached.score:.3f}"
|
|
281
|
+
)
|
|
282
|
+
cached_results[f"{task_name}::{method}"] = cached
|
|
283
|
+
else:
|
|
284
|
+
if task_name not in tasks_to_run:
|
|
285
|
+
tasks_to_run.append(task_name)
|
|
286
|
+
|
|
287
|
+
if cached_results and not tasks_to_run:
|
|
288
|
+
print("\nā
All tasks have cached results. Returning cached configurations.")
|
|
289
|
+
# Convert cached results to the expected return format
|
|
290
|
+
all_results = {}
|
|
291
|
+
for key, cached in cached_results.items():
|
|
292
|
+
task_name, method = key.split("::")
|
|
293
|
+
if task_name not in all_results:
|
|
294
|
+
all_results[task_name] = {}
|
|
295
|
+
all_results[task_name][method] = {
|
|
296
|
+
"best_layer": cached.layer,
|
|
297
|
+
"best_strength": cached.strength,
|
|
298
|
+
"best_score": cached.score,
|
|
299
|
+
"token_aggregation": cached.token_aggregation,
|
|
300
|
+
"prompt_strategy": cached.prompt_strategy,
|
|
301
|
+
"from_cache": True,
|
|
302
|
+
}
|
|
303
|
+
return all_results
|
|
304
|
+
|
|
305
|
+
if tasks_to_run:
|
|
306
|
+
print(f" Tasks needing optimization: {', '.join(tasks_to_run)}")
|
|
307
|
+
task_list = tasks_to_run
|
|
308
|
+
|
|
309
|
+
print(f" Tasks: {', '.join(task_list)}")
|
|
310
|
+
print(f" Methods: {', '.join(args.methods)}")
|
|
311
|
+
print(f" Limit: {args.limit} samples per task")
|
|
312
|
+
quick_search = getattr(args, 'quick_search', False)
|
|
313
|
+
print(f" Quick search: {quick_search}")
|
|
314
|
+
|
|
315
|
+
# Search strategy
|
|
316
|
+
search_strategy = getattr(args, 'search_strategy', 'grid')
|
|
317
|
+
n_trials = getattr(args, 'n_trials', 50)
|
|
318
|
+
print(f" Search strategy: {search_strategy}" + (f" ({n_trials} trials)" if search_strategy == "optuna" else ""))
|
|
319
|
+
print(" Time limit: DISABLED (no time limit)\n")
|
|
320
|
+
|
|
321
|
+
all_results = {}
|
|
322
|
+
|
|
323
|
+
# Get search spaces for each method and print summary
|
|
324
|
+
method_search_spaces = {}
|
|
325
|
+
total_all_methods = 0
|
|
326
|
+
for method_name in args.methods:
|
|
327
|
+
search_space = get_search_space_from_args(method_name, args, model.num_layers)
|
|
328
|
+
method_search_spaces[method_name] = search_space
|
|
329
|
+
print_search_space_summary(search_space, method_name)
|
|
330
|
+
total_all_methods += search_space.get_total_configs()
|
|
331
|
+
|
|
332
|
+
print(f"\n Total configurations across all methods: {total_all_methods:,}\n")
|
|
333
|
+
|
|
334
|
+
# For backward compatibility, also set up the legacy variables
|
|
335
|
+
# These are used by some code paths that haven't been fully migrated
|
|
336
|
+
first_method = args.methods[0] if args.methods else "CAA"
|
|
337
|
+
first_space = method_search_spaces.get(first_method)
|
|
338
|
+
if isinstance(first_space, (CAASearchSpace, PRISMSearchSpace)):
|
|
339
|
+
layers_to_test = first_space.layers
|
|
340
|
+
else:
|
|
341
|
+
# PULSE/TITAN don't use direct layers, compute defaults
|
|
342
|
+
layers_to_test = list(range(model.num_layers // 2, model.num_layers - 2, 2))
|
|
343
|
+
|
|
344
|
+
strengths_to_test = first_space.strengths if first_space else [0.5, 1.0, 1.5, 2.0]
|
|
345
|
+
strategies_to_test = first_space.strategies if first_space else ["constant", "initial_only", "diminishing"]
|
|
346
|
+
|
|
347
|
+
# Convert string token aggregations to enum
|
|
348
|
+
token_agg_map = {
|
|
349
|
+
"last_token": ActivationAggregationStrategy.LAST_TOKEN,
|
|
350
|
+
"mean_pooling": ActivationAggregationStrategy.MEAN_POOLING,
|
|
351
|
+
"first_token": ActivationAggregationStrategy.FIRST_TOKEN,
|
|
352
|
+
"max_pooling": ActivationAggregationStrategy.MAX_POOLING,
|
|
353
|
+
"choice_token": ActivationAggregationStrategy.CHOICE_TOKEN,
|
|
354
|
+
"continuation_token": ActivationAggregationStrategy.CONTINUATION_TOKEN,
|
|
355
|
+
}
|
|
356
|
+
token_aggregations_to_test = [
|
|
357
|
+
token_agg_map.get(t, ActivationAggregationStrategy.LAST_TOKEN)
|
|
358
|
+
for t in (first_space.token_aggregations if first_space else ["last_token", "mean_pooling"])
|
|
359
|
+
]
|
|
360
|
+
|
|
361
|
+
# Convert string prompt constructions to enum
|
|
362
|
+
prompt_const_map = {
|
|
363
|
+
"chat_template": PromptConstructionStrategy.CHAT_TEMPLATE,
|
|
364
|
+
"direct_completion": PromptConstructionStrategy.DIRECT_COMPLETION,
|
|
365
|
+
"multiple_choice": PromptConstructionStrategy.MULTIPLE_CHOICE,
|
|
366
|
+
"role_playing": PromptConstructionStrategy.ROLE_PLAYING,
|
|
367
|
+
"instruction_following": PromptConstructionStrategy.INSTRUCTION_FOLLOWING,
|
|
368
|
+
}
|
|
369
|
+
prompt_constructions_to_test = [
|
|
370
|
+
prompt_const_map.get(p, PromptConstructionStrategy.CHAT_TEMPLATE)
|
|
371
|
+
for p in (first_space.prompt_constructions if first_space else ["chat_template", "direct_completion"])
|
|
372
|
+
]
|
|
373
|
+
|
|
374
|
+
# For legacy code paths
|
|
375
|
+
total_configs = first_space.get_total_configs() if first_space else 100
|
|
376
|
+
|
|
377
|
+
for task_idx, task_name in enumerate(task_list, 1):
|
|
378
|
+
print(f"\n{'=' * 80}")
|
|
379
|
+
print(f"Task {task_idx}/{len(task_list)}: {task_name}")
|
|
380
|
+
print(f"{'=' * 80}")
|
|
381
|
+
|
|
382
|
+
task_start_time = time.time()
|
|
383
|
+
|
|
384
|
+
try:
|
|
385
|
+
# Load task data
|
|
386
|
+
print(" š Loading task data...")
|
|
387
|
+
result = loader._load_one_task(
|
|
388
|
+
task_name=task_name, split_ratio=0.8, seed=42, limit=args.limit, training_limit=None, testing_limit=None
|
|
389
|
+
)
|
|
390
|
+
|
|
391
|
+
train_pairs = result["train_qa_pairs"]
|
|
392
|
+
test_pairs = result["test_qa_pairs"]
|
|
393
|
+
|
|
394
|
+
print(f" ā Loaded {len(train_pairs.pairs)} train, {len(test_pairs.pairs)} test pairs")
|
|
395
|
+
|
|
396
|
+
# Initialize evaluator for this task (auto-select based on task_name)
|
|
397
|
+
EvaluatorRotator.discover_evaluators("wisent.core.evaluators.benchmark_specific")
|
|
398
|
+
evaluator = EvaluatorRotator(evaluator=None, task_name=task_name) # None = auto-select
|
|
399
|
+
print(f" ā Using evaluator: {evaluator._plugin.name} (auto-selected for {task_name})")
|
|
400
|
+
|
|
401
|
+
# Compute baseline (unsteered) results if requested
|
|
402
|
+
baseline_results = {}
|
|
403
|
+
if hasattr(args, "compute_baseline") and args.compute_baseline:
|
|
404
|
+
print("\n š Computing BASELINE (unsteered) accuracy...")
|
|
405
|
+
baseline_scores = []
|
|
406
|
+
baseline_per_problem = []
|
|
407
|
+
|
|
408
|
+
for pair_idx, pair in enumerate(test_pairs.pairs):
|
|
409
|
+
try:
|
|
410
|
+
# Prepare choices for multiple choice evaluation
|
|
411
|
+
choices = [pair.negative_response.model_response, pair.positive_response.model_response]
|
|
412
|
+
expected = pair.positive_response.model_response
|
|
413
|
+
|
|
414
|
+
# Evaluate WITHOUT steering
|
|
415
|
+
test_code = pair.metadata.get("test_code") if pair.metadata else None
|
|
416
|
+
eval_result = evaluator.evaluate(
|
|
417
|
+
response="",
|
|
418
|
+
expected=expected,
|
|
419
|
+
model=model,
|
|
420
|
+
question=pair.prompt,
|
|
421
|
+
choices=choices,
|
|
422
|
+
steering_plan=None, # No steering for baseline
|
|
423
|
+
test_code=test_code,
|
|
424
|
+
task_name=task_name,
|
|
425
|
+
)
|
|
426
|
+
|
|
427
|
+
is_correct = eval_result.ground_truth == "TRUTHFUL"
|
|
428
|
+
baseline_scores.append(1.0 if is_correct else 0.0)
|
|
429
|
+
|
|
430
|
+
# Store per-problem baseline result with details
|
|
431
|
+
baseline_per_problem.append(
|
|
432
|
+
{
|
|
433
|
+
"pair_index": pair_idx,
|
|
434
|
+
"prompt": pair.prompt,
|
|
435
|
+
"expected": expected,
|
|
436
|
+
"baseline_correct": is_correct,
|
|
437
|
+
"ground_truth": eval_result.ground_truth,
|
|
438
|
+
"method_used": eval_result.method_used,
|
|
439
|
+
"confidence": eval_result.confidence,
|
|
440
|
+
}
|
|
441
|
+
)
|
|
442
|
+
|
|
443
|
+
if (pair_idx + 1) % 10 == 0:
|
|
444
|
+
print(
|
|
445
|
+
f" Evaluated {pair_idx + 1}/{len(test_pairs.pairs)} baseline samples...", end="\r"
|
|
446
|
+
)
|
|
447
|
+
|
|
448
|
+
except Exception as e:
|
|
449
|
+
print(f"\nā Baseline evaluation failed for pair {pair_idx}:")
|
|
450
|
+
print(f" Error: {e}")
|
|
451
|
+
raise
|
|
452
|
+
|
|
453
|
+
baseline_accuracy = np.mean(baseline_scores) if baseline_scores else 0.0
|
|
454
|
+
print(
|
|
455
|
+
f"\n ā Baseline accuracy: {baseline_accuracy:.3f} ({sum(baseline_scores):.0f}/{len(baseline_scores)} correct)"
|
|
456
|
+
)
|
|
457
|
+
|
|
458
|
+
baseline_results = {
|
|
459
|
+
"accuracy": baseline_accuracy,
|
|
460
|
+
"per_problem": baseline_per_problem,
|
|
461
|
+
"num_correct": int(sum(baseline_scores)),
|
|
462
|
+
"num_total": len(baseline_scores),
|
|
463
|
+
}
|
|
464
|
+
|
|
465
|
+
# Dispatch based on search strategy
|
|
466
|
+
if search_strategy == "optuna":
|
|
467
|
+
# Use Optuna-based search
|
|
468
|
+
optuna_result = _run_optuna_search_for_task(
|
|
469
|
+
model=model,
|
|
470
|
+
train_pairs=train_pairs,
|
|
471
|
+
test_pairs=test_pairs,
|
|
472
|
+
evaluator=evaluator,
|
|
473
|
+
task_name=task_name,
|
|
474
|
+
search_space=first_space,
|
|
475
|
+
args=args,
|
|
476
|
+
baseline_results=baseline_results,
|
|
477
|
+
)
|
|
478
|
+
|
|
479
|
+
best_score = optuna_result["best_score"]
|
|
480
|
+
best_config = {
|
|
481
|
+
"layer": optuna_result["best_layer"],
|
|
482
|
+
"strength": optuna_result["best_strength"],
|
|
483
|
+
"strategy": optuna_result["best_strategy"],
|
|
484
|
+
"token_aggregation": optuna_result["best_token_aggregation"],
|
|
485
|
+
}
|
|
486
|
+
|
|
487
|
+
print(f" Best: layer={best_config['layer']}, strength={best_config['strength']:.2f}, "
|
|
488
|
+
f"strategy={best_config['strategy']}, token_agg={best_config['token_aggregation']}")
|
|
489
|
+
print(f" Score: {best_score:.4f} (from {optuna_result['n_trials']} trials)")
|
|
490
|
+
|
|
491
|
+
# Store results in format compatible with grid search
|
|
492
|
+
method_results = {
|
|
493
|
+
first_method: {
|
|
494
|
+
"best_score": best_score,
|
|
495
|
+
"best_layer": best_config["layer"],
|
|
496
|
+
"best_strength": best_config["strength"],
|
|
497
|
+
"best_strategy": best_config["strategy"],
|
|
498
|
+
"token_aggregation": best_config["token_aggregation"],
|
|
499
|
+
"search_strategy": "optuna",
|
|
500
|
+
}
|
|
501
|
+
}
|
|
502
|
+
|
|
503
|
+
# Skip the grid search loop - jump to result saving
|
|
504
|
+
all_results[task_name] = method_results
|
|
505
|
+
|
|
506
|
+
if not args.no_save:
|
|
507
|
+
save_steering_config(
|
|
508
|
+
model_name=args.model,
|
|
509
|
+
task=task_name,
|
|
510
|
+
layer=best_config["layer"],
|
|
511
|
+
strength=best_config["strength"],
|
|
512
|
+
method=first_method,
|
|
513
|
+
strategy=best_config["strategy"],
|
|
514
|
+
token_aggregation=best_config["token_aggregation"],
|
|
515
|
+
)
|
|
516
|
+
store_optimization(
|
|
517
|
+
model=args.model,
|
|
518
|
+
task=task_name,
|
|
519
|
+
layer=best_config["layer"],
|
|
520
|
+
strength=best_config["strength"],
|
|
521
|
+
method=first_method,
|
|
522
|
+
strategy=best_config["strategy"],
|
|
523
|
+
score=best_score,
|
|
524
|
+
metric="accuracy",
|
|
525
|
+
)
|
|
526
|
+
|
|
527
|
+
continue # Skip to next task
|
|
528
|
+
|
|
529
|
+
# Grid search (original behavior)
|
|
530
|
+
print(
|
|
531
|
+
"\n š Testing CAA method across layers, strengths, strategies, token aggregations, prompt constructions..."
|
|
532
|
+
)
|
|
533
|
+
print(f" Total configurations: {total_configs}")
|
|
534
|
+
|
|
535
|
+
best_score = 0
|
|
536
|
+
best_config = None
|
|
537
|
+
method_results = {}
|
|
538
|
+
configs_tested = 0
|
|
539
|
+
all_generation_examples = [] # Store generation examples for all configs
|
|
540
|
+
|
|
541
|
+
# Prepare test prompts if generating examples for all configs
|
|
542
|
+
if args.save_all_generation_examples or args.save_generation_examples:
|
|
543
|
+
num_examples = min(args.num_generation_examples, len(test_pairs.pairs))
|
|
544
|
+
example_pairs = test_pairs.pairs[:num_examples]
|
|
545
|
+
print(f" š Will generate {num_examples} example responses per configuration")
|
|
546
|
+
|
|
547
|
+
for layer in layers_to_test:
|
|
548
|
+
for strength in strengths_to_test:
|
|
549
|
+
for strategy in strategies_to_test:
|
|
550
|
+
for token_agg in token_aggregations_to_test:
|
|
551
|
+
for prompt_const in prompt_constructions_to_test:
|
|
552
|
+
# Time limit disabled - run all configurations
|
|
553
|
+
|
|
554
|
+
try:
|
|
555
|
+
configs_tested += 1
|
|
556
|
+
layer_str = str(layer)
|
|
557
|
+
|
|
558
|
+
# Step 1: Generate steering vector using CAA with current token aggregation
|
|
559
|
+
collector = ActivationCollector(model=model, store_device="cpu")
|
|
560
|
+
|
|
561
|
+
pos_acts = []
|
|
562
|
+
neg_acts = []
|
|
563
|
+
|
|
564
|
+
for pair in train_pairs.pairs:
|
|
565
|
+
updated_pair = collector.collect_for_pair(
|
|
566
|
+
pair,
|
|
567
|
+
layers=[layer_str],
|
|
568
|
+
aggregation=token_agg, # Use current token aggregation strategy
|
|
569
|
+
return_full_sequence=False,
|
|
570
|
+
normalize_layers=False,
|
|
571
|
+
)
|
|
572
|
+
|
|
573
|
+
if (
|
|
574
|
+
updated_pair.positive_response.layers_activations
|
|
575
|
+
and layer_str in updated_pair.positive_response.layers_activations
|
|
576
|
+
):
|
|
577
|
+
act = updated_pair.positive_response.layers_activations[layer_str]
|
|
578
|
+
if act is not None:
|
|
579
|
+
pos_acts.append(act)
|
|
580
|
+
|
|
581
|
+
if (
|
|
582
|
+
updated_pair.negative_response.layers_activations
|
|
583
|
+
and layer_str in updated_pair.negative_response.layers_activations
|
|
584
|
+
):
|
|
585
|
+
act = updated_pair.negative_response.layers_activations[layer_str]
|
|
586
|
+
if act is not None:
|
|
587
|
+
neg_acts.append(act)
|
|
588
|
+
|
|
589
|
+
if len(pos_acts) == 0 or len(neg_acts) == 0:
|
|
590
|
+
continue
|
|
591
|
+
|
|
592
|
+
# Create CAA steering vector
|
|
593
|
+
# Use the selected method (first from args.methods or default to CAA)
|
|
594
|
+
method_name = args.methods[0] if args.methods else "CAA"
|
|
595
|
+
steering_method = create_steering_method(method_name, args)
|
|
596
|
+
steering_vector = steering_method.train_for_layer(pos_acts, neg_acts)
|
|
597
|
+
|
|
598
|
+
# Step 2: Evaluate with ACTUAL GENERATION and task evaluator
|
|
599
|
+
# Create steering plan
|
|
600
|
+
from wisent.core.models.core.atoms import SteeringPlan, SteeringVector
|
|
601
|
+
|
|
602
|
+
steering_vec = SteeringVector(vector=steering_vector, scale=strength)
|
|
603
|
+
steering_plan = SteeringPlan(
|
|
604
|
+
layers={layer_str: steering_vec},
|
|
605
|
+
layers_description=[
|
|
606
|
+
f"CAA L{layer} S{strength} {strategy} T:{token_agg.value} P:{prompt_const.value}"
|
|
607
|
+
],
|
|
608
|
+
)
|
|
609
|
+
|
|
610
|
+
# Apply steering to model
|
|
611
|
+
model.apply_steering(steering_plan)
|
|
612
|
+
|
|
613
|
+
test_scores = []
|
|
614
|
+
detailed_results = [] # Store full evaluation details
|
|
615
|
+
delta_tracking = [] # Track improved/regressed/unchanged per problem
|
|
616
|
+
|
|
617
|
+
for pair_idx, pair in enumerate(test_pairs.pairs):
|
|
618
|
+
try:
|
|
619
|
+
# Prepare choices for multiple choice evaluation
|
|
620
|
+
# ContrastivePair uses: prompt, positive_response.model_response, negative_response.model_response
|
|
621
|
+
choices = [
|
|
622
|
+
pair.negative_response.model_response,
|
|
623
|
+
pair.positive_response.model_response,
|
|
624
|
+
]
|
|
625
|
+
expected = pair.positive_response.model_response
|
|
626
|
+
|
|
627
|
+
# Use the Wisent evaluator to check correctness
|
|
628
|
+
# The evaluator will use log likelihood if possible,
|
|
629
|
+
# otherwise fall back to generation
|
|
630
|
+
# Pass test_code from metadata for coding tasks
|
|
631
|
+
test_code = pair.metadata.get("test_code") if pair.metadata else None
|
|
632
|
+
eval_result = evaluator.evaluate(
|
|
633
|
+
response="", # Not used for log likelihood eval
|
|
634
|
+
expected=expected,
|
|
635
|
+
model=model,
|
|
636
|
+
question=pair.prompt,
|
|
637
|
+
choices=choices,
|
|
638
|
+
steering_plan=steering_plan,
|
|
639
|
+
test_code=test_code,
|
|
640
|
+
task_name=task_name,
|
|
641
|
+
)
|
|
642
|
+
|
|
643
|
+
# Convert TRUTHFUL/UNTRUTHFUL to 1.0/0.0
|
|
644
|
+
is_correct = eval_result.ground_truth == "TRUTHFUL"
|
|
645
|
+
test_scores.append(1.0 if is_correct else 0.0)
|
|
646
|
+
|
|
647
|
+
# Save full evaluation details
|
|
648
|
+
detailed_results.append(
|
|
649
|
+
{
|
|
650
|
+
"prompt": pair.prompt,
|
|
651
|
+
"choices": choices,
|
|
652
|
+
"expected": expected,
|
|
653
|
+
"ground_truth": eval_result.ground_truth,
|
|
654
|
+
"method_used": eval_result.method_used,
|
|
655
|
+
"confidence": eval_result.confidence,
|
|
656
|
+
"details": eval_result.details,
|
|
657
|
+
"meta": dict(eval_result.meta) if eval_result.meta else {},
|
|
658
|
+
"is_correct": is_correct,
|
|
659
|
+
}
|
|
660
|
+
)
|
|
661
|
+
|
|
662
|
+
# Track delta if baseline was computed
|
|
663
|
+
if baseline_results and "per_problem" in baseline_results:
|
|
664
|
+
baseline_correct = baseline_results["per_problem"][pair_idx][
|
|
665
|
+
"baseline_correct"
|
|
666
|
+
]
|
|
667
|
+
if not baseline_correct and is_correct:
|
|
668
|
+
delta_status = "improved"
|
|
669
|
+
elif baseline_correct and not is_correct:
|
|
670
|
+
delta_status = "regressed"
|
|
671
|
+
else:
|
|
672
|
+
delta_status = "unchanged"
|
|
673
|
+
|
|
674
|
+
delta_tracking.append(
|
|
675
|
+
{
|
|
676
|
+
"pair_index": pair_idx,
|
|
677
|
+
"prompt": pair.prompt,
|
|
678
|
+
"expected": expected,
|
|
679
|
+
"baseline_correct": baseline_correct,
|
|
680
|
+
"steered_correct": is_correct,
|
|
681
|
+
"delta_status": delta_status,
|
|
682
|
+
}
|
|
683
|
+
)
|
|
684
|
+
|
|
685
|
+
except Exception as e:
|
|
686
|
+
# NO FALLBACK - raise the error immediately
|
|
687
|
+
print("\nā Evaluation failed for test pair:")
|
|
688
|
+
print(f" Prompt: {pair.prompt[:100]}")
|
|
689
|
+
print(f" Error: {e}")
|
|
690
|
+
raise
|
|
691
|
+
|
|
692
|
+
# Clear steering
|
|
693
|
+
model.clear_steering()
|
|
694
|
+
|
|
695
|
+
if len(test_scores) > 0:
|
|
696
|
+
avg_score = np.mean(test_scores)
|
|
697
|
+
|
|
698
|
+
# Generate examples for this configuration if requested
|
|
699
|
+
if args.save_all_generation_examples:
|
|
700
|
+
config_examples = []
|
|
701
|
+
# Get inference config settings
|
|
702
|
+
for idx, pair in enumerate(example_pairs):
|
|
703
|
+
prompt = pair.prompt
|
|
704
|
+
try:
|
|
705
|
+
# Generate without steering (only once per prompt, reuse if already generated)
|
|
706
|
+
unsteered_response = model.generate(
|
|
707
|
+
[[{"role": "user", "content": prompt}]],
|
|
708
|
+
**get_generate_kwargs(max_new_tokens=100),
|
|
709
|
+
use_steering=False,
|
|
710
|
+
)[0]
|
|
711
|
+
|
|
712
|
+
# Create steering plan for this config
|
|
713
|
+
from wisent.core.models.core.atoms import (
|
|
714
|
+
SteeringPlan,
|
|
715
|
+
SteeringVector,
|
|
716
|
+
)
|
|
717
|
+
|
|
718
|
+
steering_vec = SteeringVector(
|
|
719
|
+
vector=steering_vector, scale=strength
|
|
720
|
+
)
|
|
721
|
+
steering_plan = SteeringPlan(
|
|
722
|
+
layers={layer_str: steering_vec},
|
|
723
|
+
layers_description=[
|
|
724
|
+
f"CAA steering layer={layer}, strength={strength}, strategy={strategy}"
|
|
725
|
+
],
|
|
726
|
+
)
|
|
727
|
+
|
|
728
|
+
# Generate with steering
|
|
729
|
+
model.apply_steering(steering_plan)
|
|
730
|
+
steered_response = model.generate(
|
|
731
|
+
[[{"role": "user", "content": prompt}]],
|
|
732
|
+
**get_generate_kwargs(max_new_tokens=100),
|
|
733
|
+
use_steering=True,
|
|
734
|
+
steering_plan=steering_plan,
|
|
735
|
+
)[0]
|
|
736
|
+
model.clear_steering()
|
|
737
|
+
|
|
738
|
+
config_examples.append(
|
|
739
|
+
{
|
|
740
|
+
"prompt": prompt,
|
|
741
|
+
"correct_answer": pair.positive_response.model_response,
|
|
742
|
+
"incorrect_answer": pair.negative_response.model_response,
|
|
743
|
+
"unsteered_generation": unsteered_response,
|
|
744
|
+
"steered_generation": steered_response,
|
|
745
|
+
}
|
|
746
|
+
)
|
|
747
|
+
except Exception as e:
|
|
748
|
+
if args.verbose:
|
|
749
|
+
print(
|
|
750
|
+
f" ā ļø Failed to generate example for config layer={layer}, strength={strength}, strategy={strategy}: {e}"
|
|
751
|
+
)
|
|
752
|
+
|
|
753
|
+
# Store this config's examples
|
|
754
|
+
all_generation_examples.append(
|
|
755
|
+
{
|
|
756
|
+
"layer": layer,
|
|
757
|
+
"strength": strength,
|
|
758
|
+
"strategy": strategy,
|
|
759
|
+
"accuracy": avg_score,
|
|
760
|
+
"examples": config_examples,
|
|
761
|
+
}
|
|
762
|
+
)
|
|
763
|
+
|
|
764
|
+
# Compute delta summary if baseline was computed
|
|
765
|
+
delta_summary = {}
|
|
766
|
+
if delta_tracking:
|
|
767
|
+
improved = sum(1 for d in delta_tracking if d["delta_status"] == "improved")
|
|
768
|
+
regressed = sum(
|
|
769
|
+
1 for d in delta_tracking if d["delta_status"] == "regressed"
|
|
770
|
+
)
|
|
771
|
+
unchanged = sum(
|
|
772
|
+
1 for d in delta_tracking if d["delta_status"] == "unchanged"
|
|
773
|
+
)
|
|
774
|
+
delta_summary = {
|
|
775
|
+
"improved": improved,
|
|
776
|
+
"regressed": regressed,
|
|
777
|
+
"unchanged": unchanged,
|
|
778
|
+
"net_change": improved - regressed,
|
|
779
|
+
}
|
|
780
|
+
|
|
781
|
+
# Store detailed results for this configuration
|
|
782
|
+
config_key = (
|
|
783
|
+
f"L{layer}_S{strength}_{strategy}_{token_agg.value}_{prompt_const.value}"
|
|
784
|
+
)
|
|
785
|
+
method_results[config_key] = {
|
|
786
|
+
"layer": layer,
|
|
787
|
+
"strength": strength,
|
|
788
|
+
"strategy": strategy,
|
|
789
|
+
"token_aggregation": token_agg.value,
|
|
790
|
+
"prompt_construction": prompt_const.value,
|
|
791
|
+
"accuracy": avg_score,
|
|
792
|
+
"num_test_samples": len(test_scores),
|
|
793
|
+
"detailed_results": detailed_results, # Save all eval details
|
|
794
|
+
"delta_tracking": delta_tracking if delta_tracking else None,
|
|
795
|
+
"delta_summary": delta_summary if delta_summary else None,
|
|
796
|
+
}
|
|
797
|
+
|
|
798
|
+
if avg_score > best_score:
|
|
799
|
+
best_score = avg_score
|
|
800
|
+
best_config = {
|
|
801
|
+
"layer": layer,
|
|
802
|
+
"strength": strength,
|
|
803
|
+
"strategy": strategy,
|
|
804
|
+
"token_aggregation": token_agg.value,
|
|
805
|
+
"prompt_construction": prompt_const.value,
|
|
806
|
+
"accuracy": avg_score,
|
|
807
|
+
}
|
|
808
|
+
|
|
809
|
+
if configs_tested % 10 == 0 and args.verbose:
|
|
810
|
+
print(f" Tested {configs_tested} configurations...", end="\r")
|
|
811
|
+
|
|
812
|
+
except Exception as e:
|
|
813
|
+
# NO FALLBACK - raise the error immediately
|
|
814
|
+
print("\nā Configuration test failed:")
|
|
815
|
+
print(f" Layer: {layer}")
|
|
816
|
+
print(f" Strength: {strength}")
|
|
817
|
+
print(f" Strategy: {strategy}")
|
|
818
|
+
print(f" Error: {e}")
|
|
819
|
+
raise
|
|
820
|
+
|
|
821
|
+
if best_config:
|
|
822
|
+
print("\n ā
Best configuration found:")
|
|
823
|
+
print(" Method: CAA")
|
|
824
|
+
print(f" Layer: {best_config['layer']}")
|
|
825
|
+
print(f" Strength: {best_config['strength']}")
|
|
826
|
+
print(f" Strategy: {best_config['strategy']} ā")
|
|
827
|
+
print(f" Token Aggregation: {best_config['token_aggregation']}")
|
|
828
|
+
print(f" Prompt Construction: {best_config['prompt_construction']}")
|
|
829
|
+
print(f" Accuracy: {best_config['accuracy']:.3f}")
|
|
830
|
+
|
|
831
|
+
method_results["CAA"] = {
|
|
832
|
+
"optimal_layer": best_config["layer"],
|
|
833
|
+
"optimal_strength": best_config["strength"],
|
|
834
|
+
"optimal_strategy": best_config["strategy"],
|
|
835
|
+
"optimal_token_aggregation": best_config["token_aggregation"],
|
|
836
|
+
"optimal_prompt_construction": best_config["prompt_construction"],
|
|
837
|
+
"accuracy": best_config["accuracy"],
|
|
838
|
+
"f1": best_config["accuracy"],
|
|
839
|
+
}
|
|
840
|
+
|
|
841
|
+
# Save baseline comparison results if computed
|
|
842
|
+
if hasattr(args, "compute_baseline") and args.compute_baseline and baseline_results:
|
|
843
|
+
import os
|
|
844
|
+
|
|
845
|
+
baseline_dir = (
|
|
846
|
+
args.baseline_output_dir if hasattr(args, "baseline_output_dir") else "./baseline_comparison"
|
|
847
|
+
)
|
|
848
|
+
os.makedirs(baseline_dir, exist_ok=True)
|
|
849
|
+
|
|
850
|
+
# Get delta tracking for best config
|
|
851
|
+
best_config_key = f"L{best_config['layer']}_S{best_config['strength']}_{best_config['strategy']}_{best_config['token_aggregation']}_{best_config['prompt_construction']}"
|
|
852
|
+
best_config_results = method_results.get(best_config_key, {})
|
|
853
|
+
best_delta_tracking = best_config_results.get("delta_tracking", [])
|
|
854
|
+
best_delta_summary = best_config_results.get("delta_summary", {})
|
|
855
|
+
|
|
856
|
+
# Separate improved, regressed, unchanged for inspection
|
|
857
|
+
improved_examples = [d for d in best_delta_tracking if d.get("delta_status") == "improved"]
|
|
858
|
+
regressed_examples = [d for d in best_delta_tracking if d.get("delta_status") == "regressed"]
|
|
859
|
+
unchanged_examples = [d for d in best_delta_tracking if d.get("delta_status") == "unchanged"]
|
|
860
|
+
|
|
861
|
+
baseline_comparison_data = {
|
|
862
|
+
"task": task_name,
|
|
863
|
+
"model": args.model,
|
|
864
|
+
"baseline_accuracy": baseline_results["accuracy"],
|
|
865
|
+
"best_steered_accuracy": best_config["accuracy"],
|
|
866
|
+
"delta": best_config["accuracy"] - baseline_results["accuracy"],
|
|
867
|
+
"best_config": best_config,
|
|
868
|
+
"summary": best_delta_summary,
|
|
869
|
+
"improved_examples": improved_examples,
|
|
870
|
+
"regressed_examples": regressed_examples,
|
|
871
|
+
"unchanged_examples": unchanged_examples,
|
|
872
|
+
"baseline_per_problem": baseline_results["per_problem"],
|
|
873
|
+
}
|
|
874
|
+
|
|
875
|
+
comparison_path = os.path.join(baseline_dir, f"{task_name}_baseline_comparison.json")
|
|
876
|
+
with open(comparison_path, "w") as f:
|
|
877
|
+
json.dump(baseline_comparison_data, f, indent=2)
|
|
878
|
+
|
|
879
|
+
print("\n š Baseline Comparison Summary:")
|
|
880
|
+
print(f" Baseline (unsteered) accuracy: {baseline_results['accuracy']:.3f}")
|
|
881
|
+
print(f" Best steered accuracy: {best_config['accuracy']:.3f}")
|
|
882
|
+
print(f" Delta: {(best_config['accuracy'] - baseline_results['accuracy']) * 100:+.1f}%")
|
|
883
|
+
if best_delta_summary:
|
|
884
|
+
print(f" Improved: {best_delta_summary.get('improved', 0)} problems")
|
|
885
|
+
print(f" Regressed: {best_delta_summary.get('regressed', 0)} problems")
|
|
886
|
+
print(f" Unchanged: {best_delta_summary.get('unchanged', 0)} problems")
|
|
887
|
+
print(f" Net change: {best_delta_summary.get('net_change', 0)} problems")
|
|
888
|
+
print(f" š¾ Saved comparison to: {comparison_path}")
|
|
889
|
+
|
|
890
|
+
# Save best steering vector if requested
|
|
891
|
+
if args.save_best_vector:
|
|
892
|
+
import os
|
|
893
|
+
|
|
894
|
+
vector_dir = args.save_best_vector
|
|
895
|
+
os.makedirs(vector_dir, exist_ok=True)
|
|
896
|
+
|
|
897
|
+
# Recreate the best steering vector with optimal token aggregation
|
|
898
|
+
best_layer_str = str(best_config["layer"])
|
|
899
|
+
best_token_agg = ActivationAggregationStrategy(best_config["token_aggregation"])
|
|
900
|
+
pos_acts_best = []
|
|
901
|
+
neg_acts_best = []
|
|
902
|
+
|
|
903
|
+
for pair in train_pairs.pairs:
|
|
904
|
+
updated_pair = collector.collect_for_pair(
|
|
905
|
+
pair,
|
|
906
|
+
layers=[best_layer_str],
|
|
907
|
+
aggregation=best_token_agg, # Use optimal token aggregation
|
|
908
|
+
return_full_sequence=False,
|
|
909
|
+
normalize_layers=False,
|
|
910
|
+
)
|
|
911
|
+
|
|
912
|
+
if (
|
|
913
|
+
updated_pair.positive_response.layers_activations
|
|
914
|
+
and best_layer_str in updated_pair.positive_response.layers_activations
|
|
915
|
+
):
|
|
916
|
+
act = updated_pair.positive_response.layers_activations[best_layer_str]
|
|
917
|
+
if act is not None:
|
|
918
|
+
pos_acts_best.append(act)
|
|
919
|
+
|
|
920
|
+
if (
|
|
921
|
+
updated_pair.negative_response.layers_activations
|
|
922
|
+
and best_layer_str in updated_pair.negative_response.layers_activations
|
|
923
|
+
):
|
|
924
|
+
act = updated_pair.negative_response.layers_activations[best_layer_str]
|
|
925
|
+
if act is not None:
|
|
926
|
+
neg_acts_best.append(act)
|
|
927
|
+
|
|
928
|
+
# Create and save steering vector
|
|
929
|
+
method_name = args.methods[0] if args.methods else "CAA"
|
|
930
|
+
steering_method = create_steering_method(method_name, args)
|
|
931
|
+
best_steering_vector = steering_method.train_for_layer(pos_acts_best, neg_acts_best)
|
|
932
|
+
|
|
933
|
+
vector_path = os.path.join(vector_dir, f"{task_name}_layer{best_config['layer']}.pt")
|
|
934
|
+
torch.save(
|
|
935
|
+
{
|
|
936
|
+
"steering_vector": best_steering_vector,
|
|
937
|
+
"vector": best_steering_vector, # Legacy key
|
|
938
|
+
"layer": best_config["layer"],
|
|
939
|
+
"layer_index": best_config["layer"], # Legacy key
|
|
940
|
+
"strength": best_config["strength"],
|
|
941
|
+
"strategy": best_config["strategy"],
|
|
942
|
+
"token_aggregation": best_config["token_aggregation"],
|
|
943
|
+
"prompt_construction": best_config["prompt_construction"],
|
|
944
|
+
"method": "CAA",
|
|
945
|
+
"task": task_name,
|
|
946
|
+
"model": args.model,
|
|
947
|
+
"accuracy": best_config["accuracy"],
|
|
948
|
+
},
|
|
949
|
+
vector_path,
|
|
950
|
+
)
|
|
951
|
+
print(f" š¾ Saved steering vector to: {vector_path}")
|
|
952
|
+
|
|
953
|
+
# Save generation examples
|
|
954
|
+
if args.save_all_generation_examples:
|
|
955
|
+
# Save examples for ALL configurations
|
|
956
|
+
examples_path = os.path.join(
|
|
957
|
+
args.save_best_vector if args.save_best_vector else "./optimization_results",
|
|
958
|
+
f"{task_name}_all_generation_examples.json",
|
|
959
|
+
)
|
|
960
|
+
os.makedirs(os.path.dirname(examples_path), exist_ok=True)
|
|
961
|
+
|
|
962
|
+
with open(examples_path, "w") as f:
|
|
963
|
+
json.dump(
|
|
964
|
+
{
|
|
965
|
+
"task": task_name,
|
|
966
|
+
"model": args.model,
|
|
967
|
+
"best_config": best_config,
|
|
968
|
+
"configurations": all_generation_examples,
|
|
969
|
+
},
|
|
970
|
+
f,
|
|
971
|
+
indent=2,
|
|
972
|
+
)
|
|
973
|
+
|
|
974
|
+
print(
|
|
975
|
+
f"\n š¾ Saved generation examples for {len(all_generation_examples)} configurations to: {examples_path}"
|
|
976
|
+
)
|
|
977
|
+
|
|
978
|
+
# Generate examples for --save-generation-examples, --show-comparisons, or --save-comparisons
|
|
979
|
+
show_comparisons = getattr(args, 'show_comparisons', 0)
|
|
980
|
+
save_comparisons = getattr(args, 'save_comparisons', None)
|
|
981
|
+
need_generation = args.save_generation_examples or show_comparisons > 0 or save_comparisons
|
|
982
|
+
|
|
983
|
+
if need_generation:
|
|
984
|
+
# Save examples only for the best configuration
|
|
985
|
+
print("\n š Generating example responses for best configuration...")
|
|
986
|
+
|
|
987
|
+
# Get a few test examples to generate from
|
|
988
|
+
num_examples = min(args.num_generation_examples, len(test_pairs.pairs))
|
|
989
|
+
example_pairs = test_pairs.pairs[:num_examples]
|
|
990
|
+
|
|
991
|
+
generation_examples = []
|
|
992
|
+
|
|
993
|
+
# Get inference config settings
|
|
994
|
+
gen_kwargs = get_generate_kwargs()
|
|
995
|
+
|
|
996
|
+
for idx, pair in enumerate(example_pairs):
|
|
997
|
+
# Create prompt from the question
|
|
998
|
+
prompt = pair.prompt
|
|
999
|
+
|
|
1000
|
+
try:
|
|
1001
|
+
# Generate without steering
|
|
1002
|
+
unsteered_response = model.generate(
|
|
1003
|
+
[[{"role": "user", "content": prompt}]],
|
|
1004
|
+
**get_generate_kwargs(max_new_tokens=100),
|
|
1005
|
+
use_steering=False,
|
|
1006
|
+
)[0]
|
|
1007
|
+
|
|
1008
|
+
# Recreate best steering vector for generation
|
|
1009
|
+
best_layer_str = str(best_config["layer"])
|
|
1010
|
+
pos_acts_gen = []
|
|
1011
|
+
neg_acts_gen = []
|
|
1012
|
+
|
|
1013
|
+
# Collect activations again for steering
|
|
1014
|
+
for train_pair in train_pairs.pairs[:20]: # Use subset for speed
|
|
1015
|
+
updated_pair = collector.collect_for_pair(
|
|
1016
|
+
train_pair,
|
|
1017
|
+
layers=[best_layer_str],
|
|
1018
|
+
aggregation=ActivationAggregationStrategy.MEAN_POOLING,
|
|
1019
|
+
return_full_sequence=False,
|
|
1020
|
+
normalize_layers=False,
|
|
1021
|
+
)
|
|
1022
|
+
|
|
1023
|
+
if (
|
|
1024
|
+
updated_pair.positive_response.layers_activations
|
|
1025
|
+
and best_layer_str in updated_pair.positive_response.layers_activations
|
|
1026
|
+
):
|
|
1027
|
+
act = updated_pair.positive_response.layers_activations[best_layer_str]
|
|
1028
|
+
if act is not None:
|
|
1029
|
+
pos_acts_gen.append(act)
|
|
1030
|
+
|
|
1031
|
+
if (
|
|
1032
|
+
updated_pair.negative_response.layers_activations
|
|
1033
|
+
and best_layer_str in updated_pair.negative_response.layers_activations
|
|
1034
|
+
):
|
|
1035
|
+
act = updated_pair.negative_response.layers_activations[best_layer_str]
|
|
1036
|
+
if act is not None:
|
|
1037
|
+
neg_acts_gen.append(act)
|
|
1038
|
+
|
|
1039
|
+
# Create steering vector
|
|
1040
|
+
method_name_gen = args.methods[0] if args.methods else "CAA"
|
|
1041
|
+
steering_method_gen = create_steering_method(method_name_gen, args)
|
|
1042
|
+
steering_vector_gen = steering_method_gen.train_for_layer(pos_acts_gen, neg_acts_gen)
|
|
1043
|
+
|
|
1044
|
+
# Create SteeringPlan
|
|
1045
|
+
from wisent.core.models.core.atoms import SteeringPlan, SteeringVector
|
|
1046
|
+
|
|
1047
|
+
steering_vec = SteeringVector(vector=steering_vector_gen, scale=best_config["strength"])
|
|
1048
|
+
steering_plan = SteeringPlan(
|
|
1049
|
+
layers={best_layer_str: steering_vec},
|
|
1050
|
+
layers_description=[f"CAA steering for {task_name}"],
|
|
1051
|
+
)
|
|
1052
|
+
|
|
1053
|
+
# Generate with steering
|
|
1054
|
+
model.apply_steering(steering_plan)
|
|
1055
|
+
steered_response = model.generate(
|
|
1056
|
+
[[{"role": "user", "content": prompt}]],
|
|
1057
|
+
**get_generate_kwargs(max_new_tokens=100),
|
|
1058
|
+
use_steering=True,
|
|
1059
|
+
steering_plan=steering_plan,
|
|
1060
|
+
)[0]
|
|
1061
|
+
model.detach()
|
|
1062
|
+
|
|
1063
|
+
generation_examples.append(
|
|
1064
|
+
{
|
|
1065
|
+
"question": prompt,
|
|
1066
|
+
"correct_answer": pair.positive_response.model_response,
|
|
1067
|
+
"incorrect_answer": pair.negative_response.model_response,
|
|
1068
|
+
"unsteered_generation": unsteered_response,
|
|
1069
|
+
"steered_generation": steered_response,
|
|
1070
|
+
}
|
|
1071
|
+
)
|
|
1072
|
+
|
|
1073
|
+
print(f" Generated example {idx + 1}/{num_examples}")
|
|
1074
|
+
|
|
1075
|
+
except Exception as e:
|
|
1076
|
+
print(f" ā ļø Failed to generate example {idx + 1}: {e}")
|
|
1077
|
+
if args.verbose:
|
|
1078
|
+
import traceback
|
|
1079
|
+
|
|
1080
|
+
traceback.print_exc()
|
|
1081
|
+
|
|
1082
|
+
# Save examples to JSON only if --save-generation-examples is set
|
|
1083
|
+
if args.save_generation_examples:
|
|
1084
|
+
examples_path = os.path.join(
|
|
1085
|
+
args.save_best_vector if args.save_best_vector else "./optimization_results",
|
|
1086
|
+
f"{task_name}_generation_examples.json",
|
|
1087
|
+
)
|
|
1088
|
+
os.makedirs(os.path.dirname(examples_path), exist_ok=True)
|
|
1089
|
+
|
|
1090
|
+
with open(examples_path, "w") as f:
|
|
1091
|
+
json.dump(
|
|
1092
|
+
{
|
|
1093
|
+
"task": task_name,
|
|
1094
|
+
"model": args.model,
|
|
1095
|
+
"best_config": best_config,
|
|
1096
|
+
"examples": generation_examples,
|
|
1097
|
+
},
|
|
1098
|
+
f,
|
|
1099
|
+
indent=2,
|
|
1100
|
+
)
|
|
1101
|
+
|
|
1102
|
+
print(f" š¾ Saved {len(generation_examples)} generation examples to: {examples_path}")
|
|
1103
|
+
|
|
1104
|
+
# Handle --show-comparisons and --save-comparisons flags
|
|
1105
|
+
if (show_comparisons > 0 or save_comparisons) and generation_examples:
|
|
1106
|
+
# Build comparisons list from generation_examples
|
|
1107
|
+
comparisons = []
|
|
1108
|
+
for ex in generation_examples:
|
|
1109
|
+
comparisons.append({
|
|
1110
|
+
"prompt": ex["question"],
|
|
1111
|
+
"baseline_response": ex["unsteered_generation"],
|
|
1112
|
+
"optimized_response": ex["steered_generation"],
|
|
1113
|
+
"correct_answer": ex.get("correct_answer", ""),
|
|
1114
|
+
"incorrect_answer": ex.get("incorrect_answer", ""),
|
|
1115
|
+
})
|
|
1116
|
+
|
|
1117
|
+
# Save to JSON if requested
|
|
1118
|
+
if save_comparisons:
|
|
1119
|
+
os.makedirs(os.path.dirname(save_comparisons) if os.path.dirname(save_comparisons) else ".", exist_ok=True)
|
|
1120
|
+
with open(save_comparisons, "w") as f:
|
|
1121
|
+
json.dump({
|
|
1122
|
+
"model": args.model,
|
|
1123
|
+
"task": task_name,
|
|
1124
|
+
"best_config": best_config,
|
|
1125
|
+
"comparisons": comparisons,
|
|
1126
|
+
}, f, indent=2)
|
|
1127
|
+
print(f" š¾ Saved comparisons to: {save_comparisons}")
|
|
1128
|
+
|
|
1129
|
+
# Display in console if requested
|
|
1130
|
+
if show_comparisons > 0:
|
|
1131
|
+
print(f"\n š Top {min(show_comparisons, len(comparisons))} Baseline vs Optimized Comparisons:\n")
|
|
1132
|
+
for i, comp in enumerate(comparisons[:show_comparisons]):
|
|
1133
|
+
print(f"{'ā'*80}")
|
|
1134
|
+
print(f"Comparison {i+1}/{min(show_comparisons, len(comparisons))}")
|
|
1135
|
+
print(f"{'ā'*80}")
|
|
1136
|
+
print(f"PROMPT: {comp['prompt'][:200]}{'...' if len(comp['prompt']) > 200 else ''}")
|
|
1137
|
+
print()
|
|
1138
|
+
print(f"BASELINE (unsteered):")
|
|
1139
|
+
print(f" {comp['baseline_response'][:300]}{'...' if len(comp['baseline_response']) > 300 else ''}")
|
|
1140
|
+
print()
|
|
1141
|
+
print(f"OPTIMIZED (steered):")
|
|
1142
|
+
print(f" {comp['optimized_response'][:300]}{'...' if len(comp['optimized_response']) > 300 else ''}")
|
|
1143
|
+
print()
|
|
1144
|
+
|
|
1145
|
+
else:
|
|
1146
|
+
print("\n ā ļø No valid configuration found")
|
|
1147
|
+
method_results["CAA"] = {
|
|
1148
|
+
"optimal_layer": 8,
|
|
1149
|
+
"optimal_strength": 1.0,
|
|
1150
|
+
"optimal_strategy": "constant",
|
|
1151
|
+
"optimal_token_aggregation": "last_token",
|
|
1152
|
+
"optimal_prompt_construction": "chat_template",
|
|
1153
|
+
"accuracy": 0.5,
|
|
1154
|
+
"f1": 0.5,
|
|
1155
|
+
}
|
|
1156
|
+
|
|
1157
|
+
all_results[task_name] = {
|
|
1158
|
+
"methods": method_results,
|
|
1159
|
+
"best_method": "CAA",
|
|
1160
|
+
"best_layer": method_results["CAA"]["optimal_layer"],
|
|
1161
|
+
"best_strength": method_results["CAA"]["optimal_strength"],
|
|
1162
|
+
"best_strategy": method_results["CAA"]["optimal_strategy"],
|
|
1163
|
+
"best_token_aggregation": method_results["CAA"]["optimal_token_aggregation"],
|
|
1164
|
+
"best_prompt_construction": method_results["CAA"]["optimal_prompt_construction"],
|
|
1165
|
+
}
|
|
1166
|
+
|
|
1167
|
+
task_time = time.time() - task_start_time
|
|
1168
|
+
print(f"\n ā±ļø Task completed in {task_time:.1f}s (tested {configs_tested} configurations)")
|
|
1169
|
+
|
|
1170
|
+
except Exception as e:
|
|
1171
|
+
# NO FALLBACK - raise the error immediately
|
|
1172
|
+
print(f"\nā Task '{task_name}' optimization failed:")
|
|
1173
|
+
print(f" Error: {e}")
|
|
1174
|
+
import traceback
|
|
1175
|
+
|
|
1176
|
+
traceback.print_exc()
|
|
1177
|
+
raise
|
|
1178
|
+
|
|
1179
|
+
# Save results
|
|
1180
|
+
print(f"\n{'=' * 80}")
|
|
1181
|
+
print("š COMPREHENSIVE OPTIMIZATION COMPLETE")
|
|
1182
|
+
print(f"{'=' * 80}\n")
|
|
1183
|
+
|
|
1184
|
+
results_file = f"./optimization_results/steering_comprehensive_{args.model.replace('/', '_')}.json"
|
|
1185
|
+
import os
|
|
1186
|
+
|
|
1187
|
+
os.makedirs(os.path.dirname(results_file), exist_ok=True)
|
|
1188
|
+
|
|
1189
|
+
output_data = {
|
|
1190
|
+
"model": args.model,
|
|
1191
|
+
"tasks": all_results,
|
|
1192
|
+
"methods_tested": args.methods,
|
|
1193
|
+
"limit": args.limit,
|
|
1194
|
+
"optimization_dimensions": ["layer", "strength", "strategy", "token_aggregation", "prompt_construction"],
|
|
1195
|
+
}
|
|
1196
|
+
|
|
1197
|
+
with open(results_file, "w") as f:
|
|
1198
|
+
json.dump(output_data, f, indent=2)
|
|
1199
|
+
|
|
1200
|
+
print(f"ā
Results saved to: {results_file}\n")
|
|
1201
|
+
|
|
1202
|
+
# Print summary
|
|
1203
|
+
print("š SUMMARY BY TASK:")
|
|
1204
|
+
print("-" * 140)
|
|
1205
|
+
for task_name, config in all_results.items():
|
|
1206
|
+
print(
|
|
1207
|
+
f" {task_name:20s} | L{config['best_layer']:2d} S{config['best_strength']:.1f} | {config['best_strategy']:12s} | T:{config['best_token_aggregation']:12s} | P:{config['best_prompt_construction']:18s}"
|
|
1208
|
+
)
|
|
1209
|
+
print("-" * 140 + "\n")
|
|
1210
|
+
|
|
1211
|
+
# Store results in optimization cache
|
|
1212
|
+
save_as_default = getattr(args, "save_as_default", False)
|
|
1213
|
+
print("š¾ Storing results in optimization cache...")
|
|
1214
|
+
for task_name, config in all_results.items():
|
|
1215
|
+
# Skip results that came from cache
|
|
1216
|
+
if config.get("from_cache"):
|
|
1217
|
+
continue
|
|
1218
|
+
|
|
1219
|
+
# Get best score from methods if available
|
|
1220
|
+
best_score = 0.0
|
|
1221
|
+
if "methods" in config and "CAA" in config["methods"]:
|
|
1222
|
+
best_score = config["methods"]["CAA"].get("accuracy", 0.0)
|
|
1223
|
+
|
|
1224
|
+
# Get best method name
|
|
1225
|
+
best_method_name = config.get("best_method", "CAA")
|
|
1226
|
+
|
|
1227
|
+
# Get method-specific parameters from the best config
|
|
1228
|
+
method_config = config.get("methods", {}).get(best_method_name, {})
|
|
1229
|
+
|
|
1230
|
+
cache_key = store_optimization(
|
|
1231
|
+
model=args.model,
|
|
1232
|
+
task=task_name,
|
|
1233
|
+
layer=config["best_layer"],
|
|
1234
|
+
strength=config["best_strength"],
|
|
1235
|
+
method=best_method_name,
|
|
1236
|
+
token_aggregation=config.get("best_token_aggregation", "last_token"),
|
|
1237
|
+
prompt_strategy=config.get("best_prompt_construction", "chat_template"),
|
|
1238
|
+
strategy=config.get("best_strategy", "constant"),
|
|
1239
|
+
score=best_score,
|
|
1240
|
+
metric="accuracy",
|
|
1241
|
+
metadata={"limit": args.limit},
|
|
1242
|
+
set_as_default=save_as_default,
|
|
1243
|
+
# PRISM parameters
|
|
1244
|
+
num_directions=method_config.get("num_directions", 1),
|
|
1245
|
+
direction_weighting=method_config.get("direction_weighting", "primary_only"),
|
|
1246
|
+
retain_weight=method_config.get("retain_weight", 0.0),
|
|
1247
|
+
independence_weight=method_config.get("independence_weight", 0.05),
|
|
1248
|
+
prism_optimization_steps=method_config.get("optimization_steps", 100),
|
|
1249
|
+
# PULSE parameters
|
|
1250
|
+
sensor_layer=method_config.get("sensor_layer", -1),
|
|
1251
|
+
steering_layers=method_config.get("steering_layers", ""),
|
|
1252
|
+
condition_threshold=method_config.get("condition_threshold", 0.5),
|
|
1253
|
+
gate_temperature=method_config.get("gate_temperature", 0.5),
|
|
1254
|
+
per_layer_scaling=method_config.get("per_layer_scaling", True),
|
|
1255
|
+
use_entropy_scaling=method_config.get("use_entropy_scaling", False),
|
|
1256
|
+
max_alpha=method_config.get("max_alpha", 2.0),
|
|
1257
|
+
# TITAN parameters
|
|
1258
|
+
gate_hidden_dim=method_config.get("gate_hidden_dim", 64),
|
|
1259
|
+
intensity_hidden_dim=method_config.get("intensity_hidden_dim", 32),
|
|
1260
|
+
behavior_weight=method_config.get("behavior_weight", 1.0),
|
|
1261
|
+
sparse_weight=method_config.get("sparse_weight", 0.05),
|
|
1262
|
+
titan_optimization_steps=method_config.get("titan_optimization_steps", 200),
|
|
1263
|
+
titan_learning_rate=method_config.get("titan_learning_rate", 0.005),
|
|
1264
|
+
# Store all method params as generic dict
|
|
1265
|
+
method_params=method_config,
|
|
1266
|
+
)
|
|
1267
|
+
print(f" ā Cached {task_name}: {cache_key}")
|
|
1268
|
+
|
|
1269
|
+
if save_as_default:
|
|
1270
|
+
print(" ā Results set as default configurations")
|
|
1271
|
+
|
|
1272
|
+
# Return results for programmatic access
|
|
1273
|
+
return {
|
|
1274
|
+
"model": args.model,
|
|
1275
|
+
"action": "comprehensive",
|
|
1276
|
+
"methods_tested": args.methods,
|
|
1277
|
+
"tasks_optimized": list(all_results.keys()),
|
|
1278
|
+
"results": all_results,
|
|
1279
|
+
"results_file": results_file,
|
|
1280
|
+
"optimization_dimensions": ["layer", "strength", "strategy", "token_aggregation", "prompt_construction"],
|
|
1281
|
+
}
|
|
1282
|
+
|
|
1283
|
+
|
|
1284
|
+
def get_strategy_weight(strategy: str, position: float) -> float:
|
|
1285
|
+
"""
|
|
1286
|
+
Calculate steering weight based on strategy and token position.
|
|
1287
|
+
|
|
1288
|
+
Args:
|
|
1289
|
+
strategy: Steering strategy name
|
|
1290
|
+
position: Token position as fraction (0.0 = start, 1.0 = end)
|
|
1291
|
+
|
|
1292
|
+
Returns:
|
|
1293
|
+
Weight multiplier for steering vector
|
|
1294
|
+
"""
|
|
1295
|
+
if strategy == "last_only":
|
|
1296
|
+
return 1.0 if position >= 0.9 else 0.0
|
|
1297
|
+
if strategy == "first_only":
|
|
1298
|
+
return 1.0 if position <= 0.1 else 0.0
|
|
1299
|
+
if strategy == "all_equal":
|
|
1300
|
+
return 1.0
|
|
1301
|
+
if strategy == "exponential_decay":
|
|
1302
|
+
return np.exp(-3.0 * position) # Decay rate of 3
|
|
1303
|
+
if strategy == "exponential_growth":
|
|
1304
|
+
return np.exp(3.0 * position)
|
|
1305
|
+
if strategy == "linear_decay":
|
|
1306
|
+
return 1.0 - position
|
|
1307
|
+
if strategy == "linear_growth":
|
|
1308
|
+
return position
|
|
1309
|
+
return 1.0 # Default to all_equal
|
|
1310
|
+
|
|
1311
|
+
|
|
1312
|
+
def execute_compare_methods(args, model, loader):
|
|
1313
|
+
"""Execute method comparison - currently only CAA is implemented."""
|
|
1314
|
+
import matplotlib.pyplot as plt
|
|
1315
|
+
from wisent_plots import LineChart
|
|
1316
|
+
|
|
1317
|
+
from wisent.core.activations.activations_collector import ActivationCollector
|
|
1318
|
+
from wisent.core.activations.core.atoms import ActivationAggregationStrategy
|
|
1319
|
+
from wisent.core.models.core.atoms import SteeringPlan, SteeringVector
|
|
1320
|
+
from wisent.core.cli.steering_method_trainer import create_steering_method
|
|
1321
|
+
|
|
1322
|
+
# Check for cached results if --use-cached is specified
|
|
1323
|
+
use_cached = getattr(args, "use_cached", False)
|
|
1324
|
+
save_as_default = getattr(args, "save_as_default", False)
|
|
1325
|
+
|
|
1326
|
+
if use_cached:
|
|
1327
|
+
print(f"\nš¦ Checking optimization cache for {args.task}...")
|
|
1328
|
+
for method in args.methods:
|
|
1329
|
+
cached = get_cached_optimization(args.model, args.task, method)
|
|
1330
|
+
if cached:
|
|
1331
|
+
print(
|
|
1332
|
+
f" ā Found cached result for {method}: layer={cached.layer}, strength={cached.strength}, score={cached.score:.3f}"
|
|
1333
|
+
)
|
|
1334
|
+
return {
|
|
1335
|
+
"model": args.model,
|
|
1336
|
+
"action": "compare-methods",
|
|
1337
|
+
"task": args.task,
|
|
1338
|
+
"best_method": method,
|
|
1339
|
+
"best_layer": cached.layer,
|
|
1340
|
+
"best_strength": cached.strength,
|
|
1341
|
+
"best_score": cached.score,
|
|
1342
|
+
"from_cache": True,
|
|
1343
|
+
}
|
|
1344
|
+
print(" No cached results found. Running optimization...")
|
|
1345
|
+
|
|
1346
|
+
print(f"š Comparing steering methods for task: {args.task}\n")
|
|
1347
|
+
print(f" Methods: {', '.join(args.methods)}")
|
|
1348
|
+
print(f" Limit: {args.limit} samples")
|
|
1349
|
+
print(f" Layer: {args.layer}")
|
|
1350
|
+
print(f" Strength: {args.strength}\n")
|
|
1351
|
+
|
|
1352
|
+
# Load task data
|
|
1353
|
+
print("š Loading task data...")
|
|
1354
|
+
result = loader._load_one_task(
|
|
1355
|
+
task_name=args.task, split_ratio=0.8, seed=42, limit=args.limit, training_limit=None, testing_limit=None
|
|
1356
|
+
)
|
|
1357
|
+
|
|
1358
|
+
train_pairs = result["train_qa_pairs"]
|
|
1359
|
+
test_pairs = result["test_qa_pairs"]
|
|
1360
|
+
print(f" ā Loaded {len(train_pairs.pairs)} train, {len(test_pairs.pairs)} test pairs\n")
|
|
1361
|
+
|
|
1362
|
+
# Initialize evaluator
|
|
1363
|
+
EvaluatorRotator.discover_evaluators("wisent.core.evaluators.benchmark_specific")
|
|
1364
|
+
evaluator = EvaluatorRotator(evaluator=None, task_name=args.task)
|
|
1365
|
+
print(f" ā Using evaluator: {evaluator._plugin.name}\n")
|
|
1366
|
+
|
|
1367
|
+
# Collect activations once for all methods
|
|
1368
|
+
layer_str = str(args.layer)
|
|
1369
|
+
collector = ActivationCollector(model=model, store_device="cpu")
|
|
1370
|
+
|
|
1371
|
+
print("šÆ Collecting training activations (ONCE)...")
|
|
1372
|
+
pos_acts = []
|
|
1373
|
+
neg_acts = []
|
|
1374
|
+
|
|
1375
|
+
for i, pair in enumerate(train_pairs.pairs):
|
|
1376
|
+
if i % 10 == 0:
|
|
1377
|
+
print(f" Processing train pair {i + 1}/{len(train_pairs.pairs)}...", end="\r")
|
|
1378
|
+
|
|
1379
|
+
updated_pair = collector.collect_for_pair(
|
|
1380
|
+
pair,
|
|
1381
|
+
layers=[layer_str],
|
|
1382
|
+
aggregation=ActivationAggregationStrategy.MEAN_POOLING,
|
|
1383
|
+
return_full_sequence=False,
|
|
1384
|
+
normalize_layers=False,
|
|
1385
|
+
)
|
|
1386
|
+
|
|
1387
|
+
if (
|
|
1388
|
+
updated_pair.positive_response.layers_activations
|
|
1389
|
+
and layer_str in updated_pair.positive_response.layers_activations
|
|
1390
|
+
):
|
|
1391
|
+
act = updated_pair.positive_response.layers_activations[layer_str]
|
|
1392
|
+
if act is not None:
|
|
1393
|
+
pos_acts.append(act)
|
|
1394
|
+
|
|
1395
|
+
if (
|
|
1396
|
+
updated_pair.negative_response.layers_activations
|
|
1397
|
+
and layer_str in updated_pair.negative_response.layers_activations
|
|
1398
|
+
):
|
|
1399
|
+
act = updated_pair.negative_response.layers_activations[layer_str]
|
|
1400
|
+
if act is not None:
|
|
1401
|
+
neg_acts.append(act)
|
|
1402
|
+
|
|
1403
|
+
print(f" Processing train pair {len(train_pairs.pairs)}/{len(train_pairs.pairs)}... Done!")
|
|
1404
|
+
print(f" ā Collected {len(pos_acts)} positive, {len(neg_acts)} negative activations\n")
|
|
1405
|
+
|
|
1406
|
+
# Test each method
|
|
1407
|
+
print("š§Ŗ Testing methods...")
|
|
1408
|
+
method_results = {}
|
|
1409
|
+
|
|
1410
|
+
# Only CAA is implemented for now
|
|
1411
|
+
if "CAA" in args.methods:
|
|
1412
|
+
print("\n Testing CAA method...")
|
|
1413
|
+
|
|
1414
|
+
# Train steering vector using selected method
|
|
1415
|
+
method_name = args.methods[0] if args.methods else "CAA"
|
|
1416
|
+
steering_method = create_steering_method(method_name, args)
|
|
1417
|
+
steering_vector = steering_method.train_for_layer(pos_acts, neg_acts)
|
|
1418
|
+
|
|
1419
|
+
# Create steering plan
|
|
1420
|
+
steering_vec = SteeringVector(vector=steering_vector, scale=args.strength)
|
|
1421
|
+
steering_plan = SteeringPlan(
|
|
1422
|
+
layers={layer_str: steering_vec},
|
|
1423
|
+
layers_description=[f"CAA steering layer={args.layer}, strength={args.strength}"],
|
|
1424
|
+
)
|
|
1425
|
+
|
|
1426
|
+
# Apply steering and evaluate
|
|
1427
|
+
model.apply_steering(steering_plan)
|
|
1428
|
+
|
|
1429
|
+
test_scores = []
|
|
1430
|
+
detailed_results = []
|
|
1431
|
+
for pair in test_pairs.pairs:
|
|
1432
|
+
choices = [pair.negative_response.model_response, pair.positive_response.model_response]
|
|
1433
|
+
expected = pair.positive_response.model_response
|
|
1434
|
+
test_code = pair.metadata.get("test_code") if pair.metadata else None
|
|
1435
|
+
|
|
1436
|
+
eval_result = evaluator.evaluate(
|
|
1437
|
+
response="",
|
|
1438
|
+
expected=expected,
|
|
1439
|
+
model=model,
|
|
1440
|
+
question=pair.prompt,
|
|
1441
|
+
choices=choices,
|
|
1442
|
+
steering_plan=steering_plan,
|
|
1443
|
+
test_code=test_code,
|
|
1444
|
+
task_name=args.task,
|
|
1445
|
+
)
|
|
1446
|
+
|
|
1447
|
+
is_correct = eval_result.ground_truth == "TRUTHFUL"
|
|
1448
|
+
test_scores.append(1.0 if is_correct else 0.0)
|
|
1449
|
+
|
|
1450
|
+
# Save full evaluation details
|
|
1451
|
+
detailed_results.append(
|
|
1452
|
+
{
|
|
1453
|
+
"question": pair.prompt,
|
|
1454
|
+
"choices": choices,
|
|
1455
|
+
"expected": expected,
|
|
1456
|
+
"ground_truth": eval_result.ground_truth,
|
|
1457
|
+
"method_used": eval_result.method_used,
|
|
1458
|
+
"confidence": eval_result.confidence,
|
|
1459
|
+
"details": eval_result.details,
|
|
1460
|
+
"meta": dict(eval_result.meta) if eval_result.meta else {},
|
|
1461
|
+
"is_correct": is_correct,
|
|
1462
|
+
}
|
|
1463
|
+
)
|
|
1464
|
+
|
|
1465
|
+
model.clear_steering()
|
|
1466
|
+
|
|
1467
|
+
caa_accuracy = np.mean(test_scores) if len(test_scores) > 0 else 0.0
|
|
1468
|
+
method_results["CAA"] = {
|
|
1469
|
+
"accuracy": caa_accuracy,
|
|
1470
|
+
"num_test_samples": len(test_scores),
|
|
1471
|
+
"detailed_results": detailed_results,
|
|
1472
|
+
}
|
|
1473
|
+
|
|
1474
|
+
print(f" ā CAA: accuracy={caa_accuracy:.3f}")
|
|
1475
|
+
|
|
1476
|
+
# Other methods are not yet implemented
|
|
1477
|
+
for method in args.methods:
|
|
1478
|
+
if method not in ["CAA"]:
|
|
1479
|
+
print(f" ā ļø {method}: not yet implemented")
|
|
1480
|
+
method_results[method] = {"accuracy": 0.0, "status": "not_implemented"}
|
|
1481
|
+
|
|
1482
|
+
# Save results
|
|
1483
|
+
print(f"\n{'=' * 80}")
|
|
1484
|
+
print("š METHOD COMPARISON COMPLETE")
|
|
1485
|
+
print(f"{'=' * 80}\n")
|
|
1486
|
+
|
|
1487
|
+
results_file = f"./optimization_results/steering_compare_methods_{args.task}_{args.model.replace('/', '_')}.json"
|
|
1488
|
+
import os
|
|
1489
|
+
|
|
1490
|
+
os.makedirs(os.path.dirname(results_file), exist_ok=True)
|
|
1491
|
+
|
|
1492
|
+
output_data = {
|
|
1493
|
+
"model": args.model,
|
|
1494
|
+
"task": args.task,
|
|
1495
|
+
"layer": args.layer,
|
|
1496
|
+
"strength": args.strength,
|
|
1497
|
+
"methods": method_results,
|
|
1498
|
+
"limit": args.limit,
|
|
1499
|
+
}
|
|
1500
|
+
|
|
1501
|
+
with open(results_file, "w") as f:
|
|
1502
|
+
json.dump(output_data, f, indent=2)
|
|
1503
|
+
|
|
1504
|
+
print(f"ā
Results saved to: {results_file}\n")
|
|
1505
|
+
|
|
1506
|
+
# Create comparison plot if we have results
|
|
1507
|
+
implemented_methods = [m for m in method_results if method_results[m].get("accuracy", 0) > 0]
|
|
1508
|
+
if len(implemented_methods) > 1 and args.save_plot:
|
|
1509
|
+
plot_path_svg = f"steering_compare_methods_{args.task}_{args.model.replace('/', '_')}.svg"
|
|
1510
|
+
plot_path_png = f"steering_compare_methods_{args.task}_{args.model.replace('/', '_')}.png"
|
|
1511
|
+
|
|
1512
|
+
method_names = list(implemented_methods)
|
|
1513
|
+
accuracies = [method_results[m]["accuracy"] for m in method_names]
|
|
1514
|
+
|
|
1515
|
+
chart = LineChart(style=1, figsize=(10, 6), show_markers=True)
|
|
1516
|
+
fig, ax = plt.subplots(1, 1, figsize=(10, 6))
|
|
1517
|
+
|
|
1518
|
+
ax.bar(method_names, accuracies, color="#3498db", alpha=0.8)
|
|
1519
|
+
ax.set_xlabel("Steering Method")
|
|
1520
|
+
ax.set_ylabel("Accuracy")
|
|
1521
|
+
ax.set_title(f"Steering Method Comparison\n{args.model} on {args.task}")
|
|
1522
|
+
ax.set_ylim(0, 1)
|
|
1523
|
+
|
|
1524
|
+
fig.savefig(plot_path_svg, format="svg", bbox_inches="tight")
|
|
1525
|
+
fig.savefig(plot_path_png, dpi=150, bbox_inches="tight")
|
|
1526
|
+
plt.close(fig)
|
|
1527
|
+
|
|
1528
|
+
print("š¾ Comparison plot saved to:")
|
|
1529
|
+
print(f" SVG: {plot_path_svg}")
|
|
1530
|
+
print(f" PNG: {plot_path_png}\n")
|
|
1531
|
+
|
|
1532
|
+
# Store best result in cache
|
|
1533
|
+
save_as_default = getattr(args, "save_as_default", False)
|
|
1534
|
+
best_method = max(method_results.keys(), key=lambda m: method_results[m].get("accuracy", 0))
|
|
1535
|
+
best_accuracy = method_results[best_method].get("accuracy", 0)
|
|
1536
|
+
|
|
1537
|
+
if best_accuracy > 0:
|
|
1538
|
+
print("š¾ Storing best result in optimization cache...")
|
|
1539
|
+
cache_key = store_optimization(
|
|
1540
|
+
model=args.model,
|
|
1541
|
+
task=args.task,
|
|
1542
|
+
layer=args.layer,
|
|
1543
|
+
strength=args.strength,
|
|
1544
|
+
method=best_method,
|
|
1545
|
+
strategy="constant",
|
|
1546
|
+
score=best_accuracy,
|
|
1547
|
+
metric="accuracy",
|
|
1548
|
+
metadata={"limit": args.limit},
|
|
1549
|
+
set_as_default=save_as_default,
|
|
1550
|
+
)
|
|
1551
|
+
print(f" ā Cached: {cache_key}")
|
|
1552
|
+
if save_as_default:
|
|
1553
|
+
print(" ā Set as default configuration")
|
|
1554
|
+
|
|
1555
|
+
return {"action": "compare-methods", "task": args.task, "methods": method_results, "results_file": results_file}
|
|
1556
|
+
|
|
1557
|
+
|
|
1558
|
+
def execute_optimize_layer(args, model, loader):
|
|
1559
|
+
"""Execute layer optimization - find the best layer for steering."""
|
|
1560
|
+
import matplotlib.pyplot as plt
|
|
1561
|
+
from wisent_plots import LineChart
|
|
1562
|
+
|
|
1563
|
+
from wisent.core.activations.activations_collector import ActivationCollector
|
|
1564
|
+
from wisent.core.activations.core.atoms import ActivationAggregationStrategy
|
|
1565
|
+
from wisent.core.models.core.atoms import SteeringPlan, SteeringVector
|
|
1566
|
+
from wisent.core.cli.steering_method_trainer import create_steering_method
|
|
1567
|
+
|
|
1568
|
+
# Check for cached results if --use-cached is specified
|
|
1569
|
+
use_cached = getattr(args, "use_cached", False)
|
|
1570
|
+
save_as_default = getattr(args, "save_as_default", False)
|
|
1571
|
+
|
|
1572
|
+
if use_cached:
|
|
1573
|
+
print(f"\nš¦ Checking optimization cache for {args.task}/{args.method}...")
|
|
1574
|
+
cached = get_cached_optimization(args.model, args.task, args.method)
|
|
1575
|
+
if cached:
|
|
1576
|
+
print(
|
|
1577
|
+
f" ā Found cached result: layer={cached.layer}, strength={cached.strength}, score={cached.score:.3f}"
|
|
1578
|
+
)
|
|
1579
|
+
return {
|
|
1580
|
+
"model": args.model,
|
|
1581
|
+
"action": "optimize-layer",
|
|
1582
|
+
"task": args.task,
|
|
1583
|
+
"method": args.method,
|
|
1584
|
+
"best_layer": cached.layer,
|
|
1585
|
+
"best_strength": cached.strength,
|
|
1586
|
+
"best_accuracy": cached.score,
|
|
1587
|
+
"from_cache": True,
|
|
1588
|
+
}
|
|
1589
|
+
print(" No cached results found. Running optimization...")
|
|
1590
|
+
|
|
1591
|
+
print(f"šÆ Optimizing steering layer for task: {args.task}\n")
|
|
1592
|
+
print(f" Method: {args.method}")
|
|
1593
|
+
print(f" Strength: {args.strength}")
|
|
1594
|
+
print(f" Limit: {args.limit} samples\n")
|
|
1595
|
+
|
|
1596
|
+
# Load task data
|
|
1597
|
+
print("š Loading task data...")
|
|
1598
|
+
result = loader._load_one_task(
|
|
1599
|
+
task_name=args.task, split_ratio=0.8, seed=42, limit=args.limit, training_limit=None, testing_limit=None
|
|
1600
|
+
)
|
|
1601
|
+
|
|
1602
|
+
train_pairs = result["train_qa_pairs"]
|
|
1603
|
+
test_pairs = result["test_qa_pairs"]
|
|
1604
|
+
print(f" ā Loaded {len(train_pairs.pairs)} train, {len(test_pairs.pairs)} test pairs\n")
|
|
1605
|
+
|
|
1606
|
+
# Initialize evaluator
|
|
1607
|
+
EvaluatorRotator.discover_evaluators("wisent.core.evaluators.benchmark_specific")
|
|
1608
|
+
evaluator = EvaluatorRotator(evaluator=None, task_name=args.task)
|
|
1609
|
+
print(f" ā Using evaluator: {evaluator._plugin.name}\n")
|
|
1610
|
+
|
|
1611
|
+
# Determine layers to test
|
|
1612
|
+
if args.layers:
|
|
1613
|
+
layers_to_test = args.layers
|
|
1614
|
+
else:
|
|
1615
|
+
# Test all layers from 0 to num_layers-1
|
|
1616
|
+
layers_to_test = list(range(model.num_layers))
|
|
1617
|
+
|
|
1618
|
+
print(f"š Testing {len(layers_to_test)} layers: {layers_to_test[:5]}{'...' if len(layers_to_test) > 5 else ''}\n")
|
|
1619
|
+
|
|
1620
|
+
collector = ActivationCollector(model=model, store_device="cpu")
|
|
1621
|
+
layer_results = {}
|
|
1622
|
+
best_layer = None
|
|
1623
|
+
best_accuracy = 0.0
|
|
1624
|
+
|
|
1625
|
+
for layer_idx, layer in enumerate(layers_to_test, 1):
|
|
1626
|
+
layer_str = str(layer)
|
|
1627
|
+
print(f" [{layer_idx}/{len(layers_to_test)}] Testing layer {layer}...", end=" ")
|
|
1628
|
+
|
|
1629
|
+
try:
|
|
1630
|
+
# Collect activations for this layer
|
|
1631
|
+
pos_acts = []
|
|
1632
|
+
neg_acts = []
|
|
1633
|
+
|
|
1634
|
+
for pair in train_pairs.pairs:
|
|
1635
|
+
updated_pair = collector.collect_for_pair(
|
|
1636
|
+
pair,
|
|
1637
|
+
layers=[layer_str],
|
|
1638
|
+
aggregation=ActivationAggregationStrategy.MEAN_POOLING,
|
|
1639
|
+
return_full_sequence=False,
|
|
1640
|
+
normalize_layers=False,
|
|
1641
|
+
)
|
|
1642
|
+
|
|
1643
|
+
if (
|
|
1644
|
+
updated_pair.positive_response.layers_activations
|
|
1645
|
+
and layer_str in updated_pair.positive_response.layers_activations
|
|
1646
|
+
):
|
|
1647
|
+
act = updated_pair.positive_response.layers_activations[layer_str]
|
|
1648
|
+
if act is not None:
|
|
1649
|
+
pos_acts.append(act)
|
|
1650
|
+
|
|
1651
|
+
if (
|
|
1652
|
+
updated_pair.negative_response.layers_activations
|
|
1653
|
+
and layer_str in updated_pair.negative_response.layers_activations
|
|
1654
|
+
):
|
|
1655
|
+
act = updated_pair.negative_response.layers_activations[layer_str]
|
|
1656
|
+
if act is not None:
|
|
1657
|
+
neg_acts.append(act)
|
|
1658
|
+
|
|
1659
|
+
if len(pos_acts) == 0 or len(neg_acts) == 0:
|
|
1660
|
+
print("ā ļø No activations collected")
|
|
1661
|
+
continue
|
|
1662
|
+
|
|
1663
|
+
# Train steering vector using selected method
|
|
1664
|
+
steering_method = create_steering_method(args.method, args)
|
|
1665
|
+
steering_vector = steering_method.train_for_layer(pos_acts, neg_acts)
|
|
1666
|
+
if False: # Compatibility placeholder
|
|
1667
|
+
print(f"ā ļø Method {args.method} not supported")
|
|
1668
|
+
continue
|
|
1669
|
+
|
|
1670
|
+
# Create steering plan
|
|
1671
|
+
steering_vec = SteeringVector(vector=steering_vector, scale=args.strength)
|
|
1672
|
+
steering_plan = SteeringPlan(
|
|
1673
|
+
layers={layer_str: steering_vec}, layers_description=[f"{args.method} steering layer={layer}"]
|
|
1674
|
+
)
|
|
1675
|
+
|
|
1676
|
+
# Evaluate
|
|
1677
|
+
model.apply_steering(steering_plan)
|
|
1678
|
+
|
|
1679
|
+
test_scores = []
|
|
1680
|
+
detailed_results = []
|
|
1681
|
+
for pair in test_pairs.pairs:
|
|
1682
|
+
choices = [pair.negative_response.model_response, pair.positive_response.model_response]
|
|
1683
|
+
expected = pair.positive_response.model_response
|
|
1684
|
+
test_code = pair.metadata.get("test_code") if pair.metadata else None
|
|
1685
|
+
|
|
1686
|
+
eval_result = evaluator.evaluate(
|
|
1687
|
+
response="",
|
|
1688
|
+
expected=expected,
|
|
1689
|
+
model=model,
|
|
1690
|
+
question=pair.prompt,
|
|
1691
|
+
choices=choices,
|
|
1692
|
+
steering_plan=steering_plan,
|
|
1693
|
+
test_code=test_code,
|
|
1694
|
+
task_name=task_name,
|
|
1695
|
+
)
|
|
1696
|
+
|
|
1697
|
+
is_correct = eval_result.ground_truth == "TRUTHFUL"
|
|
1698
|
+
test_scores.append(1.0 if is_correct else 0.0)
|
|
1699
|
+
|
|
1700
|
+
# Save full evaluation details
|
|
1701
|
+
detailed_results.append(
|
|
1702
|
+
{
|
|
1703
|
+
"question": pair.prompt,
|
|
1704
|
+
"choices": choices,
|
|
1705
|
+
"expected": expected,
|
|
1706
|
+
"ground_truth": eval_result.ground_truth,
|
|
1707
|
+
"method_used": eval_result.method_used,
|
|
1708
|
+
"confidence": eval_result.confidence,
|
|
1709
|
+
"details": eval_result.details,
|
|
1710
|
+
"meta": dict(eval_result.meta) if eval_result.meta else {},
|
|
1711
|
+
"is_correct": is_correct,
|
|
1712
|
+
}
|
|
1713
|
+
)
|
|
1714
|
+
|
|
1715
|
+
model.clear_steering()
|
|
1716
|
+
|
|
1717
|
+
accuracy = np.mean(test_scores) if len(test_scores) > 0 else 0.0
|
|
1718
|
+
layer_results[layer] = {
|
|
1719
|
+
"accuracy": accuracy,
|
|
1720
|
+
"num_test_samples": len(test_scores),
|
|
1721
|
+
"detailed_results": detailed_results,
|
|
1722
|
+
}
|
|
1723
|
+
|
|
1724
|
+
print(f"accuracy={accuracy:.3f}")
|
|
1725
|
+
|
|
1726
|
+
if accuracy > best_accuracy:
|
|
1727
|
+
best_accuracy = accuracy
|
|
1728
|
+
best_layer = layer
|
|
1729
|
+
|
|
1730
|
+
except Exception as e:
|
|
1731
|
+
print(f"ā Error: {e}")
|
|
1732
|
+
if args.verbose:
|
|
1733
|
+
import traceback
|
|
1734
|
+
|
|
1735
|
+
traceback.print_exc()
|
|
1736
|
+
|
|
1737
|
+
# Results
|
|
1738
|
+
print(f"\n{'=' * 80}")
|
|
1739
|
+
print("š LAYER OPTIMIZATION COMPLETE")
|
|
1740
|
+
print(f"{'=' * 80}")
|
|
1741
|
+
print(f" Best layer: {best_layer}")
|
|
1742
|
+
print(f" Best accuracy: {best_accuracy:.4f}")
|
|
1743
|
+
print(f"{'=' * 80}\n")
|
|
1744
|
+
|
|
1745
|
+
# Save results
|
|
1746
|
+
results_file = f"./optimization_results/steering_optimize_layer_{args.task}_{args.model.replace('/', '_')}.json"
|
|
1747
|
+
import os
|
|
1748
|
+
|
|
1749
|
+
os.makedirs(os.path.dirname(results_file), exist_ok=True)
|
|
1750
|
+
|
|
1751
|
+
output_data = {
|
|
1752
|
+
"model": args.model,
|
|
1753
|
+
"task": args.task,
|
|
1754
|
+
"method": args.method,
|
|
1755
|
+
"strength": args.strength,
|
|
1756
|
+
"best_layer": best_layer,
|
|
1757
|
+
"best_accuracy": best_accuracy,
|
|
1758
|
+
"layer_results": {str(k): v for k, v in layer_results.items()},
|
|
1759
|
+
"limit": args.limit,
|
|
1760
|
+
}
|
|
1761
|
+
|
|
1762
|
+
with open(results_file, "w") as f:
|
|
1763
|
+
json.dump(output_data, f, indent=2)
|
|
1764
|
+
|
|
1765
|
+
print(f"ā
Results saved to: {results_file}\n")
|
|
1766
|
+
|
|
1767
|
+
# Create plot
|
|
1768
|
+
if args.save_plot and len(layer_results) > 0:
|
|
1769
|
+
plot_path_svg = f"steering_optimize_layer_{args.task}_{args.model.replace('/', '_')}.svg"
|
|
1770
|
+
plot_path_png = f"steering_optimize_layer_{args.task}_{args.model.replace('/', '_')}.png"
|
|
1771
|
+
|
|
1772
|
+
layers = sorted(layer_results.keys())
|
|
1773
|
+
accuracies = [layer_results[l]["accuracy"] for l in layers]
|
|
1774
|
+
|
|
1775
|
+
chart = LineChart(style=1, figsize=(10, 6), show_markers=True)
|
|
1776
|
+
fig, ax = plt.subplots(1, 1, figsize=(10, 6))
|
|
1777
|
+
|
|
1778
|
+
chart.plot_multiple(
|
|
1779
|
+
x=layers,
|
|
1780
|
+
y_series=[accuracies],
|
|
1781
|
+
labels=["Accuracy"],
|
|
1782
|
+
title=f"Layer Optimization\n{args.model} on {args.task}",
|
|
1783
|
+
xlabel="Layer",
|
|
1784
|
+
ylabel="Accuracy",
|
|
1785
|
+
fig=fig,
|
|
1786
|
+
ax=ax,
|
|
1787
|
+
output_format="png",
|
|
1788
|
+
)
|
|
1789
|
+
|
|
1790
|
+
# Add vertical line for optimal layer
|
|
1791
|
+
ax.axvline(
|
|
1792
|
+
x=best_layer, color="#2ecc71", linestyle="--", linewidth=2, label=f"Best: Layer {best_layer}", alpha=0.7
|
|
1793
|
+
)
|
|
1794
|
+
ax.legend()
|
|
1795
|
+
|
|
1796
|
+
fig.savefig(plot_path_svg, format="svg", bbox_inches="tight")
|
|
1797
|
+
fig.savefig(plot_path_png, dpi=150, bbox_inches="tight")
|
|
1798
|
+
plt.close(fig)
|
|
1799
|
+
|
|
1800
|
+
print("š¾ Layer optimization plot saved to:")
|
|
1801
|
+
print(f" SVG: {plot_path_svg}")
|
|
1802
|
+
print(f" PNG: {plot_path_png}\n")
|
|
1803
|
+
|
|
1804
|
+
# Store result in cache
|
|
1805
|
+
save_as_default = getattr(args, "save_as_default", False)
|
|
1806
|
+
if best_layer is not None and best_accuracy > 0:
|
|
1807
|
+
print("š¾ Storing result in optimization cache...")
|
|
1808
|
+
cache_key = store_optimization(
|
|
1809
|
+
model=args.model,
|
|
1810
|
+
task=args.task,
|
|
1811
|
+
layer=best_layer,
|
|
1812
|
+
strength=args.strength,
|
|
1813
|
+
method=args.method,
|
|
1814
|
+
strategy="constant",
|
|
1815
|
+
score=best_accuracy,
|
|
1816
|
+
metric="accuracy",
|
|
1817
|
+
metadata={"limit": args.limit},
|
|
1818
|
+
set_as_default=save_as_default,
|
|
1819
|
+
)
|
|
1820
|
+
print(f" ā Cached: {cache_key}")
|
|
1821
|
+
if save_as_default:
|
|
1822
|
+
print(" ā Set as default configuration")
|
|
1823
|
+
|
|
1824
|
+
return {
|
|
1825
|
+
"action": "optimize-layer",
|
|
1826
|
+
"task": args.task,
|
|
1827
|
+
"method": args.method,
|
|
1828
|
+
"best_layer": best_layer,
|
|
1829
|
+
"best_accuracy": best_accuracy,
|
|
1830
|
+
"results_file": results_file,
|
|
1831
|
+
}
|
|
1832
|
+
|
|
1833
|
+
|
|
1834
|
+
def execute_optimize_strength(args, model, loader):
|
|
1835
|
+
"""Execute strength optimization - find the best steering strength."""
|
|
1836
|
+
import matplotlib.pyplot as plt
|
|
1837
|
+
from wisent_plots import LineChart
|
|
1838
|
+
|
|
1839
|
+
from wisent.core.activations.activations_collector import ActivationCollector
|
|
1840
|
+
from wisent.core.activations.core.atoms import ActivationAggregationStrategy
|
|
1841
|
+
from wisent.core.models.core.atoms import SteeringPlan, SteeringVector
|
|
1842
|
+
from wisent.core.cli.steering_method_trainer import create_steering_method
|
|
1843
|
+
|
|
1844
|
+
# Check for cached results if --use-cached is specified
|
|
1845
|
+
use_cached = getattr(args, "use_cached", False)
|
|
1846
|
+
save_as_default = getattr(args, "save_as_default", False)
|
|
1847
|
+
|
|
1848
|
+
if use_cached:
|
|
1849
|
+
print(f"\nš¦ Checking optimization cache for {args.task}/{args.method}...")
|
|
1850
|
+
cached = get_cached_optimization(args.model, args.task, args.method)
|
|
1851
|
+
if cached:
|
|
1852
|
+
print(
|
|
1853
|
+
f" ā Found cached result: layer={cached.layer}, strength={cached.strength}, score={cached.score:.3f}"
|
|
1854
|
+
)
|
|
1855
|
+
return {
|
|
1856
|
+
"model": args.model,
|
|
1857
|
+
"action": "optimize-strength",
|
|
1858
|
+
"task": args.task,
|
|
1859
|
+
"method": args.method,
|
|
1860
|
+
"best_layer": cached.layer,
|
|
1861
|
+
"best_strength": cached.strength,
|
|
1862
|
+
"best_accuracy": cached.score,
|
|
1863
|
+
"from_cache": True,
|
|
1864
|
+
}
|
|
1865
|
+
print(" No cached results found. Running optimization...")
|
|
1866
|
+
|
|
1867
|
+
print(f"šŖ Optimizing steering strength for task: {args.task}\n")
|
|
1868
|
+
print(f" Method: {args.method}")
|
|
1869
|
+
print(f" Layer: {args.layer}")
|
|
1870
|
+
print(f" Strength range: {args.strength_range[0]} to {args.strength_range[1]}")
|
|
1871
|
+
print(f" Num steps: {args.num_strength_steps}")
|
|
1872
|
+
print(f" Limit: {args.limit} samples\n")
|
|
1873
|
+
|
|
1874
|
+
# Load task data
|
|
1875
|
+
print("š Loading task data...")
|
|
1876
|
+
result = loader._load_one_task(
|
|
1877
|
+
task_name=args.task, split_ratio=0.8, seed=42, limit=args.limit, training_limit=None, testing_limit=None
|
|
1878
|
+
)
|
|
1879
|
+
|
|
1880
|
+
train_pairs = result["train_qa_pairs"]
|
|
1881
|
+
test_pairs = result["test_qa_pairs"]
|
|
1882
|
+
print(f" ā Loaded {len(train_pairs.pairs)} train, {len(test_pairs.pairs)} test pairs\n")
|
|
1883
|
+
|
|
1884
|
+
# Initialize evaluator
|
|
1885
|
+
EvaluatorRotator.discover_evaluators("wisent.core.evaluators.benchmark_specific")
|
|
1886
|
+
evaluator = EvaluatorRotator(evaluator=None, task_name=args.task)
|
|
1887
|
+
print(f" ā Using evaluator: {evaluator._plugin.name}\n")
|
|
1888
|
+
|
|
1889
|
+
# Collect activations ONCE
|
|
1890
|
+
layer_str = str(args.layer)
|
|
1891
|
+
collector = ActivationCollector(model=model, store_device="cpu")
|
|
1892
|
+
|
|
1893
|
+
print("šÆ Collecting training activations (ONCE)...")
|
|
1894
|
+
pos_acts = []
|
|
1895
|
+
neg_acts = []
|
|
1896
|
+
|
|
1897
|
+
for i, pair in enumerate(train_pairs.pairs):
|
|
1898
|
+
if i % 10 == 0:
|
|
1899
|
+
print(f" Processing train pair {i + 1}/{len(train_pairs.pairs)}...", end="\r")
|
|
1900
|
+
|
|
1901
|
+
updated_pair = collector.collect_for_pair(
|
|
1902
|
+
pair,
|
|
1903
|
+
layers=[layer_str],
|
|
1904
|
+
aggregation=ActivationAggregationStrategy.MEAN_POOLING,
|
|
1905
|
+
return_full_sequence=False,
|
|
1906
|
+
normalize_layers=False,
|
|
1907
|
+
)
|
|
1908
|
+
|
|
1909
|
+
if (
|
|
1910
|
+
updated_pair.positive_response.layers_activations
|
|
1911
|
+
and layer_str in updated_pair.positive_response.layers_activations
|
|
1912
|
+
):
|
|
1913
|
+
act = updated_pair.positive_response.layers_activations[layer_str]
|
|
1914
|
+
if act is not None:
|
|
1915
|
+
pos_acts.append(act)
|
|
1916
|
+
|
|
1917
|
+
if (
|
|
1918
|
+
updated_pair.negative_response.layers_activations
|
|
1919
|
+
and layer_str in updated_pair.negative_response.layers_activations
|
|
1920
|
+
):
|
|
1921
|
+
act = updated_pair.negative_response.layers_activations[layer_str]
|
|
1922
|
+
if act is not None:
|
|
1923
|
+
neg_acts.append(act)
|
|
1924
|
+
|
|
1925
|
+
print(f" Processing train pair {len(train_pairs.pairs)}/{len(train_pairs.pairs)}... Done!")
|
|
1926
|
+
print(f" ā Collected {len(pos_acts)} positive, {len(neg_acts)} negative activations\n")
|
|
1927
|
+
|
|
1928
|
+
# Train steering vector using selected method
|
|
1929
|
+
steering_method = create_steering_method(args.method, args)
|
|
1930
|
+
steering_vector = steering_method.train_for_layer(pos_acts, neg_acts)
|
|
1931
|
+
if False: # Compatibility placeholder
|
|
1932
|
+
print(f"ā Method {args.method} not supported")
|
|
1933
|
+
return {
|
|
1934
|
+
"action": "optimize-strength",
|
|
1935
|
+
"task": args.task,
|
|
1936
|
+
"method": args.method,
|
|
1937
|
+
"status": "method_not_supported",
|
|
1938
|
+
}
|
|
1939
|
+
|
|
1940
|
+
# Generate strength values to test
|
|
1941
|
+
min_strength, max_strength = args.strength_range
|
|
1942
|
+
strengths_to_test = np.linspace(min_strength, max_strength, args.num_strength_steps)
|
|
1943
|
+
|
|
1944
|
+
print(
|
|
1945
|
+
f"š Testing {len(strengths_to_test)} strength values: {strengths_to_test[0]:.2f} to {strengths_to_test[-1]:.2f}\n"
|
|
1946
|
+
)
|
|
1947
|
+
|
|
1948
|
+
strength_results = {}
|
|
1949
|
+
best_strength = None
|
|
1950
|
+
best_accuracy = 0.0
|
|
1951
|
+
|
|
1952
|
+
for strength_idx, strength in enumerate(strengths_to_test, 1):
|
|
1953
|
+
print(f" [{strength_idx}/{len(strengths_to_test)}] Testing strength {strength:.2f}...", end=" ")
|
|
1954
|
+
|
|
1955
|
+
try:
|
|
1956
|
+
# Create steering plan with this strength
|
|
1957
|
+
steering_vec = SteeringVector(vector=steering_vector, scale=float(strength))
|
|
1958
|
+
steering_plan = SteeringPlan(
|
|
1959
|
+
layers={layer_str: steering_vec}, layers_description=[f"{args.method} steering strength={strength:.2f}"]
|
|
1960
|
+
)
|
|
1961
|
+
|
|
1962
|
+
# Evaluate
|
|
1963
|
+
model.apply_steering(steering_plan)
|
|
1964
|
+
|
|
1965
|
+
test_scores = []
|
|
1966
|
+
detailed_results = []
|
|
1967
|
+
for pair in test_pairs.pairs:
|
|
1968
|
+
choices = [pair.negative_response.model_response, pair.positive_response.model_response]
|
|
1969
|
+
expected = pair.positive_response.model_response
|
|
1970
|
+
test_code = pair.metadata.get("test_code") if pair.metadata else None
|
|
1971
|
+
|
|
1972
|
+
eval_result = evaluator.evaluate(
|
|
1973
|
+
response="",
|
|
1974
|
+
expected=expected,
|
|
1975
|
+
model=model,
|
|
1976
|
+
question=pair.prompt,
|
|
1977
|
+
choices=choices,
|
|
1978
|
+
steering_plan=steering_plan,
|
|
1979
|
+
test_code=test_code,
|
|
1980
|
+
task_name=task_name,
|
|
1981
|
+
)
|
|
1982
|
+
|
|
1983
|
+
is_correct = eval_result.ground_truth == "TRUTHFUL"
|
|
1984
|
+
test_scores.append(1.0 if is_correct else 0.0)
|
|
1985
|
+
|
|
1986
|
+
# Save full evaluation details
|
|
1987
|
+
detailed_results.append(
|
|
1988
|
+
{
|
|
1989
|
+
"question": pair.prompt,
|
|
1990
|
+
"choices": choices,
|
|
1991
|
+
"expected": expected,
|
|
1992
|
+
"ground_truth": eval_result.ground_truth,
|
|
1993
|
+
"method_used": eval_result.method_used,
|
|
1994
|
+
"confidence": eval_result.confidence,
|
|
1995
|
+
"details": eval_result.details,
|
|
1996
|
+
"meta": dict(eval_result.meta) if eval_result.meta else {},
|
|
1997
|
+
"is_correct": is_correct,
|
|
1998
|
+
}
|
|
1999
|
+
)
|
|
2000
|
+
|
|
2001
|
+
model.clear_steering()
|
|
2002
|
+
|
|
2003
|
+
accuracy = np.mean(test_scores) if len(test_scores) > 0 else 0.0
|
|
2004
|
+
strength_results[float(strength)] = {
|
|
2005
|
+
"accuracy": accuracy,
|
|
2006
|
+
"num_test_samples": len(test_scores),
|
|
2007
|
+
"detailed_results": detailed_results,
|
|
2008
|
+
}
|
|
2009
|
+
|
|
2010
|
+
print(f"accuracy={accuracy:.3f}")
|
|
2011
|
+
|
|
2012
|
+
if accuracy > best_accuracy:
|
|
2013
|
+
best_accuracy = accuracy
|
|
2014
|
+
best_strength = float(strength)
|
|
2015
|
+
|
|
2016
|
+
except Exception as e:
|
|
2017
|
+
print(f"ā Error: {e}")
|
|
2018
|
+
if args.verbose:
|
|
2019
|
+
import traceback
|
|
2020
|
+
|
|
2021
|
+
traceback.print_exc()
|
|
2022
|
+
|
|
2023
|
+
# Results
|
|
2024
|
+
print(f"\n{'=' * 80}")
|
|
2025
|
+
print("š STRENGTH OPTIMIZATION COMPLETE")
|
|
2026
|
+
print(f"{'=' * 80}")
|
|
2027
|
+
print(f" Best strength: {best_strength:.2f}")
|
|
2028
|
+
print(f" Best accuracy: {best_accuracy:.4f}")
|
|
2029
|
+
print(f"{'=' * 80}\n")
|
|
2030
|
+
|
|
2031
|
+
# Save results
|
|
2032
|
+
results_file = f"./optimization_results/steering_optimize_strength_{args.task}_{args.model.replace('/', '_')}.json"
|
|
2033
|
+
import os
|
|
2034
|
+
|
|
2035
|
+
os.makedirs(os.path.dirname(results_file), exist_ok=True)
|
|
2036
|
+
|
|
2037
|
+
output_data = {
|
|
2038
|
+
"model": args.model,
|
|
2039
|
+
"task": args.task,
|
|
2040
|
+
"method": args.method,
|
|
2041
|
+
"layer": args.layer,
|
|
2042
|
+
"best_strength": best_strength,
|
|
2043
|
+
"best_accuracy": best_accuracy,
|
|
2044
|
+
"strength_results": {str(k): v for k, v in strength_results.items()},
|
|
2045
|
+
"limit": args.limit,
|
|
2046
|
+
}
|
|
2047
|
+
|
|
2048
|
+
with open(results_file, "w") as f:
|
|
2049
|
+
json.dump(output_data, f, indent=2)
|
|
2050
|
+
|
|
2051
|
+
print(f"ā
Results saved to: {results_file}\n")
|
|
2052
|
+
|
|
2053
|
+
# Create plot
|
|
2054
|
+
if args.save_plot and len(strength_results) > 0:
|
|
2055
|
+
plot_path_svg = f"steering_optimize_strength_{args.task}_{args.model.replace('/', '_')}.svg"
|
|
2056
|
+
plot_path_png = f"steering_optimize_strength_{args.task}_{args.model.replace('/', '_')}.png"
|
|
2057
|
+
|
|
2058
|
+
strengths = sorted(strength_results.keys())
|
|
2059
|
+
accuracies = [strength_results[s]["accuracy"] for s in strengths]
|
|
2060
|
+
|
|
2061
|
+
chart = LineChart(style=1, figsize=(10, 6), show_markers=True)
|
|
2062
|
+
fig, ax = plt.subplots(1, 1, figsize=(10, 6))
|
|
2063
|
+
|
|
2064
|
+
chart.plot_multiple(
|
|
2065
|
+
x=strengths,
|
|
2066
|
+
y_series=[accuracies],
|
|
2067
|
+
labels=["Accuracy"],
|
|
2068
|
+
title=f"Strength Optimization\n{args.model} on {args.task}",
|
|
2069
|
+
xlabel="Steering Strength",
|
|
2070
|
+
ylabel="Accuracy",
|
|
2071
|
+
fig=fig,
|
|
2072
|
+
ax=ax,
|
|
2073
|
+
output_format="png",
|
|
2074
|
+
)
|
|
2075
|
+
|
|
2076
|
+
# Add vertical line for optimal strength
|
|
2077
|
+
ax.axvline(
|
|
2078
|
+
x=best_strength, color="#2ecc71", linestyle="--", linewidth=2, label=f"Best: {best_strength:.2f}", alpha=0.7
|
|
2079
|
+
)
|
|
2080
|
+
ax.legend()
|
|
2081
|
+
|
|
2082
|
+
fig.savefig(plot_path_svg, format="svg", bbox_inches="tight")
|
|
2083
|
+
fig.savefig(plot_path_png, dpi=150, bbox_inches="tight")
|
|
2084
|
+
plt.close(fig)
|
|
2085
|
+
|
|
2086
|
+
print("š¾ Strength optimization plot saved to:")
|
|
2087
|
+
print(f" SVG: {plot_path_svg}")
|
|
2088
|
+
print(f" PNG: {plot_path_png}\n")
|
|
2089
|
+
|
|
2090
|
+
# Store result in cache
|
|
2091
|
+
save_as_default = getattr(args, "save_as_default", False)
|
|
2092
|
+
if best_strength is not None and best_accuracy > 0:
|
|
2093
|
+
print("š¾ Storing result in optimization cache...")
|
|
2094
|
+
cache_key = store_optimization(
|
|
2095
|
+
model=args.model,
|
|
2096
|
+
task=args.task,
|
|
2097
|
+
layer=args.layer,
|
|
2098
|
+
strength=best_strength,
|
|
2099
|
+
method=args.method,
|
|
2100
|
+
strategy="constant",
|
|
2101
|
+
score=best_accuracy,
|
|
2102
|
+
metric="accuracy",
|
|
2103
|
+
metadata={"limit": args.limit, "strength_range": args.strength_range},
|
|
2104
|
+
set_as_default=save_as_default,
|
|
2105
|
+
)
|
|
2106
|
+
print(f" ā Cached: {cache_key}")
|
|
2107
|
+
if save_as_default:
|
|
2108
|
+
print(" ā Set as default configuration")
|
|
2109
|
+
|
|
2110
|
+
return {
|
|
2111
|
+
"action": "optimize-strength",
|
|
2112
|
+
"task": args.task,
|
|
2113
|
+
"method": args.method,
|
|
2114
|
+
"best_strength": best_strength,
|
|
2115
|
+
"best_accuracy": best_accuracy,
|
|
2116
|
+
"results_file": results_file,
|
|
2117
|
+
}
|
|
2118
|
+
|
|
2119
|
+
|
|
2120
|
+
def execute_auto(args, model, loader):
|
|
2121
|
+
"""Execute automatic optimization - optimizes layer AND strength together."""
|
|
2122
|
+
import matplotlib.pyplot as plt
|
|
2123
|
+
|
|
2124
|
+
from wisent.core.activations.activations_collector import ActivationCollector
|
|
2125
|
+
from wisent.core.activations.core.atoms import ActivationAggregationStrategy
|
|
2126
|
+
from wisent.core.models.core.atoms import SteeringPlan, SteeringVector
|
|
2127
|
+
from wisent.core.cli.steering_method_trainer import create_steering_method
|
|
2128
|
+
|
|
2129
|
+
# Check for cached results if --use-cached is specified
|
|
2130
|
+
use_cached = getattr(args, "use_cached", False)
|
|
2131
|
+
save_as_default = getattr(args, "save_as_default", False)
|
|
2132
|
+
task_name = args.task or "default"
|
|
2133
|
+
|
|
2134
|
+
if use_cached:
|
|
2135
|
+
print(f"\nš¦ Checking optimization cache for {task_name}...")
|
|
2136
|
+
for method in args.methods:
|
|
2137
|
+
cached = get_cached_optimization(args.model, task_name, method)
|
|
2138
|
+
if cached:
|
|
2139
|
+
print(
|
|
2140
|
+
f" ā Found cached result for {method}: layer={cached.layer}, strength={cached.strength}, score={cached.score:.3f}"
|
|
2141
|
+
)
|
|
2142
|
+
return {
|
|
2143
|
+
"model": args.model,
|
|
2144
|
+
"action": "auto",
|
|
2145
|
+
"task": task_name,
|
|
2146
|
+
"best_method": method,
|
|
2147
|
+
"best_layer": cached.layer,
|
|
2148
|
+
"best_strength": cached.strength,
|
|
2149
|
+
"best_accuracy": cached.score,
|
|
2150
|
+
"from_cache": True,
|
|
2151
|
+
}
|
|
2152
|
+
print(" No cached results found. Running optimization...")
|
|
2153
|
+
|
|
2154
|
+
print("š¤ Running automatic steering optimization...\n")
|
|
2155
|
+
print(f" Task: {args.task}")
|
|
2156
|
+
print(f" Methods: {', '.join(args.methods)}")
|
|
2157
|
+
print(f" Strength range: {args.strength_range}")
|
|
2158
|
+
print(f" Limit: {args.limit} samples\n")
|
|
2159
|
+
|
|
2160
|
+
# Load task data
|
|
2161
|
+
print("š Loading task data...")
|
|
2162
|
+
result = loader._load_one_task(
|
|
2163
|
+
task_name=args.task, split_ratio=0.8, seed=42, limit=args.limit, training_limit=None, testing_limit=None
|
|
2164
|
+
)
|
|
2165
|
+
|
|
2166
|
+
train_pairs = result["train_qa_pairs"]
|
|
2167
|
+
test_pairs = result["test_qa_pairs"]
|
|
2168
|
+
print(f" ā Loaded {len(train_pairs.pairs)} train, {len(test_pairs.pairs)} test pairs\n")
|
|
2169
|
+
|
|
2170
|
+
# Initialize evaluator
|
|
2171
|
+
EvaluatorRotator.discover_evaluators("wisent.core.evaluators.benchmark_specific")
|
|
2172
|
+
evaluator = EvaluatorRotator(evaluator=None, task_name=args.task)
|
|
2173
|
+
print(f" ā Using evaluator: {evaluator._plugin.name}\n")
|
|
2174
|
+
|
|
2175
|
+
# Define search space
|
|
2176
|
+
layers_to_test = list(
|
|
2177
|
+
range(max(0, model.num_layers // 2 - 2), min(model.num_layers, model.num_layers // 2 + 3))
|
|
2178
|
+
) # Test 5 layers around middle
|
|
2179
|
+
min_strength, max_strength = args.strength_range
|
|
2180
|
+
strengths_to_test = np.linspace(min_strength, max_strength, 5) # 5 strength values
|
|
2181
|
+
|
|
2182
|
+
print("š Auto-optimizing layer and strength...")
|
|
2183
|
+
print(f" Testing {len(layers_to_test)} layers: {layers_to_test}")
|
|
2184
|
+
print(f" Testing {len(strengths_to_test)} strengths: {strengths_to_test[0]:.2f} to {strengths_to_test[-1]:.2f}")
|
|
2185
|
+
print(f" Total configurations: {len(layers_to_test) * len(strengths_to_test)}\n")
|
|
2186
|
+
|
|
2187
|
+
collector = ActivationCollector(model=model, store_device="cpu")
|
|
2188
|
+
all_results = {}
|
|
2189
|
+
best_config = None
|
|
2190
|
+
best_accuracy = 0.0
|
|
2191
|
+
|
|
2192
|
+
config_count = 0
|
|
2193
|
+
total_configs = len(layers_to_test) * len(strengths_to_test)
|
|
2194
|
+
|
|
2195
|
+
for layer in layers_to_test:
|
|
2196
|
+
layer_str = str(layer)
|
|
2197
|
+
|
|
2198
|
+
# Collect activations for this layer
|
|
2199
|
+
print(f" Collecting activations for layer {layer}...")
|
|
2200
|
+
pos_acts = []
|
|
2201
|
+
neg_acts = []
|
|
2202
|
+
|
|
2203
|
+
for pair in train_pairs.pairs:
|
|
2204
|
+
updated_pair = collector.collect_for_pair(
|
|
2205
|
+
pair,
|
|
2206
|
+
layers=[layer_str],
|
|
2207
|
+
aggregation=ActivationAggregationStrategy.MEAN_POOLING,
|
|
2208
|
+
return_full_sequence=False,
|
|
2209
|
+
normalize_layers=False,
|
|
2210
|
+
)
|
|
2211
|
+
|
|
2212
|
+
if (
|
|
2213
|
+
updated_pair.positive_response.layers_activations
|
|
2214
|
+
and layer_str in updated_pair.positive_response.layers_activations
|
|
2215
|
+
):
|
|
2216
|
+
act = updated_pair.positive_response.layers_activations[layer_str]
|
|
2217
|
+
if act is not None:
|
|
2218
|
+
pos_acts.append(act)
|
|
2219
|
+
|
|
2220
|
+
if (
|
|
2221
|
+
updated_pair.negative_response.layers_activations
|
|
2222
|
+
and layer_str in updated_pair.negative_response.layers_activations
|
|
2223
|
+
):
|
|
2224
|
+
act = updated_pair.negative_response.layers_activations[layer_str]
|
|
2225
|
+
if act is not None:
|
|
2226
|
+
neg_acts.append(act)
|
|
2227
|
+
|
|
2228
|
+
if len(pos_acts) == 0 or len(neg_acts) == 0:
|
|
2229
|
+
print(f" ā ļø No activations collected for layer {layer}")
|
|
2230
|
+
continue
|
|
2231
|
+
|
|
2232
|
+
# Train steering vector for this layer using selected method
|
|
2233
|
+
method_name = args.methods[0] if args.methods else "CAA"
|
|
2234
|
+
steering_method = create_steering_method(method_name, args)
|
|
2235
|
+
steering_vector = steering_method.train_for_layer(pos_acts, neg_acts)
|
|
2236
|
+
if False: # Compatibility placeholder
|
|
2237
|
+
print(" ā ļø Only CAA method is supported")
|
|
2238
|
+
continue
|
|
2239
|
+
|
|
2240
|
+
# Test different strengths for this layer
|
|
2241
|
+
for strength in strengths_to_test:
|
|
2242
|
+
config_count += 1
|
|
2243
|
+
print(f" [{config_count}/{total_configs}] Layer {layer}, Strength {strength:.2f}...", end=" ")
|
|
2244
|
+
|
|
2245
|
+
try:
|
|
2246
|
+
# Create steering plan
|
|
2247
|
+
steering_vec = SteeringVector(vector=steering_vector, scale=float(strength))
|
|
2248
|
+
steering_plan = SteeringPlan(
|
|
2249
|
+
layers={layer_str: steering_vec}, layers_description=[f"CAA layer={layer}, strength={strength:.2f}"]
|
|
2250
|
+
)
|
|
2251
|
+
|
|
2252
|
+
# Evaluate
|
|
2253
|
+
model.apply_steering(steering_plan)
|
|
2254
|
+
|
|
2255
|
+
test_scores = []
|
|
2256
|
+
detailed_results = []
|
|
2257
|
+
for pair in test_pairs.pairs:
|
|
2258
|
+
choices = [pair.negative_response.model_response, pair.positive_response.model_response]
|
|
2259
|
+
expected = pair.positive_response.model_response
|
|
2260
|
+
test_code = pair.metadata.get("test_code") if pair.metadata else None
|
|
2261
|
+
|
|
2262
|
+
eval_result = evaluator.evaluate(
|
|
2263
|
+
response="",
|
|
2264
|
+
expected=expected,
|
|
2265
|
+
model=model,
|
|
2266
|
+
question=pair.prompt,
|
|
2267
|
+
choices=choices,
|
|
2268
|
+
steering_plan=steering_plan,
|
|
2269
|
+
test_code=test_code,
|
|
2270
|
+
task_name=task_name,
|
|
2271
|
+
)
|
|
2272
|
+
|
|
2273
|
+
is_correct = eval_result.ground_truth == "TRUTHFUL"
|
|
2274
|
+
test_scores.append(1.0 if is_correct else 0.0)
|
|
2275
|
+
|
|
2276
|
+
# Save full evaluation details
|
|
2277
|
+
detailed_results.append(
|
|
2278
|
+
{
|
|
2279
|
+
"question": pair.prompt,
|
|
2280
|
+
"choices": choices,
|
|
2281
|
+
"expected": expected,
|
|
2282
|
+
"ground_truth": eval_result.ground_truth,
|
|
2283
|
+
"method_used": eval_result.method_used,
|
|
2284
|
+
"confidence": eval_result.confidence,
|
|
2285
|
+
"details": eval_result.details,
|
|
2286
|
+
"meta": dict(eval_result.meta) if eval_result.meta else {},
|
|
2287
|
+
"is_correct": is_correct,
|
|
2288
|
+
}
|
|
2289
|
+
)
|
|
2290
|
+
|
|
2291
|
+
model.clear_steering()
|
|
2292
|
+
|
|
2293
|
+
accuracy = np.mean(test_scores) if len(test_scores) > 0 else 0.0
|
|
2294
|
+
all_results[(layer, float(strength))] = {
|
|
2295
|
+
"accuracy": accuracy,
|
|
2296
|
+
"num_test_samples": len(test_scores),
|
|
2297
|
+
"detailed_results": detailed_results,
|
|
2298
|
+
}
|
|
2299
|
+
|
|
2300
|
+
print(f"accuracy={accuracy:.3f}")
|
|
2301
|
+
|
|
2302
|
+
if accuracy > best_accuracy:
|
|
2303
|
+
best_accuracy = accuracy
|
|
2304
|
+
best_config = {"layer": layer, "strength": float(strength), "accuracy": accuracy}
|
|
2305
|
+
|
|
2306
|
+
except Exception as e:
|
|
2307
|
+
print(f"ā Error: {e}")
|
|
2308
|
+
if args.verbose:
|
|
2309
|
+
import traceback
|
|
2310
|
+
|
|
2311
|
+
traceback.print_exc()
|
|
2312
|
+
|
|
2313
|
+
# Results
|
|
2314
|
+
print(f"\n{'=' * 80}")
|
|
2315
|
+
print("š AUTO OPTIMIZATION COMPLETE")
|
|
2316
|
+
print(f"{'=' * 80}")
|
|
2317
|
+
if best_config:
|
|
2318
|
+
print(f" Best layer: {best_config['layer']}")
|
|
2319
|
+
print(f" Best strength: {best_config['strength']:.2f}")
|
|
2320
|
+
print(f" Best accuracy: {best_config['accuracy']:.4f}")
|
|
2321
|
+
else:
|
|
2322
|
+
print(" ā ļø No valid configuration found")
|
|
2323
|
+
print(f"{'=' * 80}\n")
|
|
2324
|
+
|
|
2325
|
+
# Save results
|
|
2326
|
+
results_file = f"./optimization_results/steering_auto_{args.task}_{args.model.replace('/', '_')}.json"
|
|
2327
|
+
import os
|
|
2328
|
+
|
|
2329
|
+
os.makedirs(os.path.dirname(results_file), exist_ok=True)
|
|
2330
|
+
|
|
2331
|
+
output_data = {
|
|
2332
|
+
"model": args.model,
|
|
2333
|
+
"task": args.task,
|
|
2334
|
+
"methods": args.methods,
|
|
2335
|
+
"best_config": best_config,
|
|
2336
|
+
"all_results": {f"layer{k[0]}_strength{k[1]:.2f}": v for k, v in all_results.items()},
|
|
2337
|
+
"limit": args.limit,
|
|
2338
|
+
}
|
|
2339
|
+
|
|
2340
|
+
with open(results_file, "w") as f:
|
|
2341
|
+
json.dump(output_data, f, indent=2)
|
|
2342
|
+
|
|
2343
|
+
print(f"ā
Results saved to: {results_file}\n")
|
|
2344
|
+
|
|
2345
|
+
# Create heatmap plot
|
|
2346
|
+
if args.save_plot and len(all_results) > 0 and best_config:
|
|
2347
|
+
plot_path_svg = f"steering_auto_{args.task}_{args.model.replace('/', '_')}.svg"
|
|
2348
|
+
plot_path_png = f"steering_auto_{args.task}_{args.model.replace('/', '_')}.png"
|
|
2349
|
+
|
|
2350
|
+
# Prepare data for heatmap
|
|
2351
|
+
layers = sorted(set(k[0] for k in all_results))
|
|
2352
|
+
strengths = sorted(set(k[1] for k in all_results))
|
|
2353
|
+
|
|
2354
|
+
# Create accuracy matrix
|
|
2355
|
+
accuracy_matrix = np.zeros((len(strengths), len(layers)))
|
|
2356
|
+
for i, strength in enumerate(strengths):
|
|
2357
|
+
for j, layer in enumerate(layers):
|
|
2358
|
+
if (layer, strength) in all_results:
|
|
2359
|
+
accuracy_matrix[i, j] = all_results[(layer, strength)]["accuracy"]
|
|
2360
|
+
|
|
2361
|
+
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
|
|
2362
|
+
|
|
2363
|
+
im = ax.imshow(accuracy_matrix, cmap="viridis", aspect="auto")
|
|
2364
|
+
|
|
2365
|
+
# Set ticks and labels
|
|
2366
|
+
ax.set_xticks(np.arange(len(layers)))
|
|
2367
|
+
ax.set_yticks(np.arange(len(strengths)))
|
|
2368
|
+
ax.set_xticklabels(layers)
|
|
2369
|
+
ax.set_yticklabels([f"{s:.2f}" for s in strengths])
|
|
2370
|
+
|
|
2371
|
+
# Labels
|
|
2372
|
+
ax.set_xlabel("Layer")
|
|
2373
|
+
ax.set_ylabel("Strength")
|
|
2374
|
+
ax.set_title(f"Auto Optimization Heatmap\n{args.model} on {args.task}")
|
|
2375
|
+
|
|
2376
|
+
# Colorbar
|
|
2377
|
+
cbar = plt.colorbar(im, ax=ax)
|
|
2378
|
+
cbar.set_label("Accuracy", rotation=270, labelpad=15)
|
|
2379
|
+
|
|
2380
|
+
# Mark best configuration
|
|
2381
|
+
best_layer_idx = layers.index(best_config["layer"])
|
|
2382
|
+
best_strength_idx = strengths.index(best_config["strength"])
|
|
2383
|
+
ax.plot(
|
|
2384
|
+
best_layer_idx,
|
|
2385
|
+
best_strength_idx,
|
|
2386
|
+
"r*",
|
|
2387
|
+
markersize=20,
|
|
2388
|
+
label=f"Best: L{best_config['layer']}, S{best_config['strength']:.2f}",
|
|
2389
|
+
)
|
|
2390
|
+
ax.legend()
|
|
2391
|
+
|
|
2392
|
+
fig.savefig(plot_path_svg, format="svg", bbox_inches="tight")
|
|
2393
|
+
fig.savefig(plot_path_png, dpi=150, bbox_inches="tight")
|
|
2394
|
+
plt.close(fig)
|
|
2395
|
+
|
|
2396
|
+
print("š¾ Auto optimization heatmap saved to:")
|
|
2397
|
+
print(f" SVG: {plot_path_svg}")
|
|
2398
|
+
print(f" PNG: {plot_path_png}\n")
|
|
2399
|
+
|
|
2400
|
+
# Store result in cache
|
|
2401
|
+
save_as_default = getattr(args, "save_as_default", False)
|
|
2402
|
+
if best_config and best_config.get("accuracy", 0) > 0:
|
|
2403
|
+
print("š¾ Storing result in optimization cache...")
|
|
2404
|
+
cache_key = store_optimization(
|
|
2405
|
+
model=args.model,
|
|
2406
|
+
task=args.task or "auto",
|
|
2407
|
+
layer=best_config["layer"],
|
|
2408
|
+
strength=best_config["strength"],
|
|
2409
|
+
method=best_config.get("method", "CAA"),
|
|
2410
|
+
strategy=best_config.get("strategy", "constant"),
|
|
2411
|
+
score=best_config["accuracy"],
|
|
2412
|
+
metric="accuracy",
|
|
2413
|
+
metadata={"limit": args.limit, "strength_range": list(args.strength_range)},
|
|
2414
|
+
set_as_default=save_as_default,
|
|
2415
|
+
)
|
|
2416
|
+
print(f" ā Cached: {cache_key}")
|
|
2417
|
+
if save_as_default:
|
|
2418
|
+
print(" ā Set as default configuration")
|
|
2419
|
+
|
|
2420
|
+
return {
|
|
2421
|
+
"action": "auto",
|
|
2422
|
+
"task": args.task,
|
|
2423
|
+
"methods": args.methods,
|
|
2424
|
+
"best_config": best_config,
|
|
2425
|
+
"results_file": results_file,
|
|
2426
|
+
}
|
|
2427
|
+
|
|
2428
|
+
|
|
2429
|
+
def execute_personalization(args, model):
|
|
2430
|
+
"""
|
|
2431
|
+
Execute personalization optimization - find optimal parameters for trait steering.
|
|
2432
|
+
|
|
2433
|
+
This optimizes ALL steering parameters for personality/trait vectors by:
|
|
2434
|
+
1. Generating synthetic contrastive pairs for the trait
|
|
2435
|
+
2. Testing all combinations of:
|
|
2436
|
+
- Layers (where to apply steering)
|
|
2437
|
+
- Strengths (how strong the steering signal is)
|
|
2438
|
+
- Token aggregation strategies (LAST_TOKEN, MEAN_POOLING, FIRST_TOKEN)
|
|
2439
|
+
- Prompt construction strategies (CHAT_TEMPLATE, DIRECT_COMPLETION)
|
|
2440
|
+
3. Evaluating each configuration using personalization metrics:
|
|
2441
|
+
- Difference: Is the steered response different from baseline?
|
|
2442
|
+
- Quality: Is the response coherent (not lobotomized)?
|
|
2443
|
+
- Alignment: Does the response match the intended trait?
|
|
2444
|
+
4. Selecting the configuration with the highest overall score
|
|
2445
|
+
"""
|
|
2446
|
+
import os
|
|
2447
|
+
|
|
2448
|
+
import torch
|
|
2449
|
+
|
|
2450
|
+
from wisent.core.activations.activations_collector import ActivationCollector
|
|
2451
|
+
from wisent.core.activations.core.atoms import ActivationAggregationStrategy
|
|
2452
|
+
from wisent.core.activations.prompt_construction_strategy import PromptConstructionStrategy
|
|
2453
|
+
from wisent.core.evaluators.steering_evaluators import PersonalizationEvaluator
|
|
2454
|
+
from wisent.core.models.core.atoms import SteeringPlan, SteeringVector
|
|
2455
|
+
from wisent.core.cli.steering_method_trainer import create_steering_method
|
|
2456
|
+
from wisent.core.synthetic.cleaners.pairs_cleaner import PairsCleaner
|
|
2457
|
+
from wisent.core.synthetic.db_instructions.mini_dp import Default_DB_Instructions
|
|
2458
|
+
from wisent.core.synthetic.generators.diversities.methods.fast_diversity import FastDiversity
|
|
2459
|
+
from wisent.core.synthetic.generators.pairs_generator import SyntheticContrastivePairsGenerator
|
|
2460
|
+
|
|
2461
|
+
trait = args.trait
|
|
2462
|
+
trait_name = args.trait_name or trait.split()[0].lower()
|
|
2463
|
+
|
|
2464
|
+
print(f"\n{'=' * 80}", flush=True)
|
|
2465
|
+
print("š PERSONALIZATION OPTIMIZATION (COMPREHENSIVE)", flush=True)
|
|
2466
|
+
print(f"{'=' * 80}", flush=True)
|
|
2467
|
+
print(f" Trait: {trait}", flush=True)
|
|
2468
|
+
print(f" Trait Name: {trait_name}", flush=True)
|
|
2469
|
+
print(f" Model: {args.model}", flush=True)
|
|
2470
|
+
print(f" Num Pairs: {args.num_pairs}", flush=True)
|
|
2471
|
+
print(f" Num Test Prompts: {args.num_test_prompts}", flush=True)
|
|
2472
|
+
print(f" Output Directory: {args.output_dir}", flush=True)
|
|
2473
|
+
print(f"{'=' * 80}\n", flush=True)
|
|
2474
|
+
|
|
2475
|
+
# Create output directory
|
|
2476
|
+
os.makedirs(args.output_dir, exist_ok=True)
|
|
2477
|
+
os.makedirs(os.path.join(args.output_dir, "vectors"), exist_ok=True)
|
|
2478
|
+
|
|
2479
|
+
# Determine layers to test - ALL layers by default
|
|
2480
|
+
if args.layers:
|
|
2481
|
+
layers_to_test = args.layers
|
|
2482
|
+
else:
|
|
2483
|
+
# Test ALL layers (1-indexed, since activation collector uses 1-based indexing)
|
|
2484
|
+
num_layers = model.num_layers
|
|
2485
|
+
layers_to_test = list(range(1, num_layers + 1))
|
|
2486
|
+
|
|
2487
|
+
# Determine strengths to test
|
|
2488
|
+
min_strength, max_strength = args.strength_range
|
|
2489
|
+
strengths_to_test = np.linspace(min_strength, max_strength, args.num_strength_steps)
|
|
2490
|
+
|
|
2491
|
+
# Token aggregation strategies to test - ALL strategies
|
|
2492
|
+
token_aggregations_to_test = [
|
|
2493
|
+
ActivationAggregationStrategy.LAST_TOKEN,
|
|
2494
|
+
ActivationAggregationStrategy.MEAN_POOLING,
|
|
2495
|
+
ActivationAggregationStrategy.FIRST_TOKEN,
|
|
2496
|
+
ActivationAggregationStrategy.MAX_POOLING,
|
|
2497
|
+
]
|
|
2498
|
+
|
|
2499
|
+
# Prompt construction strategies to test - ALL strategies
|
|
2500
|
+
prompt_constructions_to_test = [
|
|
2501
|
+
PromptConstructionStrategy.CHAT_TEMPLATE,
|
|
2502
|
+
PromptConstructionStrategy.DIRECT_COMPLETION,
|
|
2503
|
+
PromptConstructionStrategy.INSTRUCTION_FOLLOWING,
|
|
2504
|
+
PromptConstructionStrategy.ROLE_PLAYING,
|
|
2505
|
+
PromptConstructionStrategy.MULTIPLE_CHOICE,
|
|
2506
|
+
]
|
|
2507
|
+
|
|
2508
|
+
# Steering application strategies to test - ALL strategies
|
|
2509
|
+
steering_strategies_to_test = ["constant", "initial_only", "diminishing", "all_equal"]
|
|
2510
|
+
|
|
2511
|
+
total_configs = (
|
|
2512
|
+
len(layers_to_test)
|
|
2513
|
+
* len(strengths_to_test)
|
|
2514
|
+
* len(steering_strategies_to_test)
|
|
2515
|
+
* len(token_aggregations_to_test)
|
|
2516
|
+
* len(prompt_constructions_to_test)
|
|
2517
|
+
)
|
|
2518
|
+
|
|
2519
|
+
print("š Search Space:", flush=True)
|
|
2520
|
+
print(f" Layers: {layers_to_test} ({len(layers_to_test)} total)", flush=True)
|
|
2521
|
+
print(f" Strengths: {[f'{s:.2f}' for s in strengths_to_test]}", flush=True)
|
|
2522
|
+
print(f" Steering Strategies: {steering_strategies_to_test}", flush=True)
|
|
2523
|
+
print(f" Token Aggregations: {[t.value for t in token_aggregations_to_test]}", flush=True)
|
|
2524
|
+
print(f" Prompt Constructions: {[p.value for p in prompt_constructions_to_test]}", flush=True)
|
|
2525
|
+
print(f" Total configurations: {total_configs}\n", flush=True)
|
|
2526
|
+
|
|
2527
|
+
# Step 1: Generate synthetic contrastive pairs
|
|
2528
|
+
print(f"š§ Step 1: Generating {args.num_pairs} synthetic contrastive pairs...", flush=True)
|
|
2529
|
+
|
|
2530
|
+
# Create the pair generator with required components
|
|
2531
|
+
cleaner = PairsCleaner(steps=[]) # Minimal cleaning
|
|
2532
|
+
diversity = FastDiversity()
|
|
2533
|
+
db_instructions = Default_DB_Instructions()
|
|
2534
|
+
|
|
2535
|
+
pair_generator = SyntheticContrastivePairsGenerator(
|
|
2536
|
+
model=model,
|
|
2537
|
+
generation_config=get_generate_kwargs(max_new_tokens=150),
|
|
2538
|
+
contrastive_set_name=f"{trait_name}_pairs",
|
|
2539
|
+
trait_description=trait,
|
|
2540
|
+
trait_label=trait_name,
|
|
2541
|
+
db_instructions=db_instructions,
|
|
2542
|
+
cleaner=cleaner,
|
|
2543
|
+
diversity=diversity,
|
|
2544
|
+
)
|
|
2545
|
+
|
|
2546
|
+
pair_set, generation_report = pair_generator.generate(num_pairs=args.num_pairs)
|
|
2547
|
+
pairs = pair_set.pairs
|
|
2548
|
+
|
|
2549
|
+
# Extract positive and negative examples for alignment evaluation
|
|
2550
|
+
positive_examples = [p.positive_response.model_response for p in pairs]
|
|
2551
|
+
negative_examples = [p.negative_response.model_response for p in pairs]
|
|
2552
|
+
|
|
2553
|
+
print(f" ā Generated {len(pairs)} contrastive pairs\n", flush=True)
|
|
2554
|
+
|
|
2555
|
+
# Generate test prompts for evaluation
|
|
2556
|
+
test_prompts = [
|
|
2557
|
+
"What's your favorite food?",
|
|
2558
|
+
"How do you spend your weekends?",
|
|
2559
|
+
"What motivates you in life?",
|
|
2560
|
+
"How do you handle setbacks?",
|
|
2561
|
+
"What's your opinion on teamwork?",
|
|
2562
|
+
][: args.num_test_prompts]
|
|
2563
|
+
|
|
2564
|
+
print("š Test prompts for evaluation:", flush=True)
|
|
2565
|
+
for i, prompt in enumerate(test_prompts, 1):
|
|
2566
|
+
print(f" {i}. {prompt}", flush=True)
|
|
2567
|
+
print(flush=True)
|
|
2568
|
+
|
|
2569
|
+
# Initialize activation collector
|
|
2570
|
+
collector = ActivationCollector(model=model, store_device="cpu")
|
|
2571
|
+
|
|
2572
|
+
# Track results for all configurations
|
|
2573
|
+
all_results = {}
|
|
2574
|
+
best_config = None
|
|
2575
|
+
best_score = -1.0
|
|
2576
|
+
best_steering_vector = None
|
|
2577
|
+
|
|
2578
|
+
# Cache for steering vectors per (layer, token_agg, prompt_const) combination
|
|
2579
|
+
# to avoid recomputing activations unnecessarily
|
|
2580
|
+
steering_vector_cache = {}
|
|
2581
|
+
|
|
2582
|
+
# Checkpoint file for resuming interrupted runs
|
|
2583
|
+
checkpoint_file = os.path.join(args.output_dir, f"{trait_name}_checkpoint.json")
|
|
2584
|
+
completed_configs = set()
|
|
2585
|
+
|
|
2586
|
+
# Load checkpoint if it exists (resume mode) - check local first, then S3
|
|
2587
|
+
if not os.path.exists(checkpoint_file):
|
|
2588
|
+
# Try to download from S3
|
|
2589
|
+
try:
|
|
2590
|
+
import subprocess
|
|
2591
|
+
s3_checkpoint_path = f"s3://wisent-bucket/checkpoints/{trait_name}_checkpoint.json"
|
|
2592
|
+
print(f"\nš Checking S3 for checkpoint: {s3_checkpoint_path}", flush=True)
|
|
2593
|
+
result = subprocess.run(
|
|
2594
|
+
["aws", "s3", "cp", s3_checkpoint_path, checkpoint_file],
|
|
2595
|
+
capture_output=True,
|
|
2596
|
+
timeout=60
|
|
2597
|
+
)
|
|
2598
|
+
if result.returncode == 0:
|
|
2599
|
+
print(f" ā Downloaded checkpoint from S3", flush=True)
|
|
2600
|
+
except Exception:
|
|
2601
|
+
pass # No S3 checkpoint available
|
|
2602
|
+
|
|
2603
|
+
if os.path.exists(checkpoint_file):
|
|
2604
|
+
print(f"\nš Found checkpoint file: {checkpoint_file}", flush=True)
|
|
2605
|
+
try:
|
|
2606
|
+
with open(checkpoint_file, "r") as f:
|
|
2607
|
+
checkpoint_data = json.load(f)
|
|
2608
|
+
all_results = checkpoint_data.get("all_results", {})
|
|
2609
|
+
completed_configs = set(all_results.keys())
|
|
2610
|
+
best_config = checkpoint_data.get("best_config")
|
|
2611
|
+
best_score = checkpoint_data.get("best_score", -1.0)
|
|
2612
|
+
print(f" ā Loaded {len(completed_configs)} completed configurations", flush=True)
|
|
2613
|
+
print(f" ā Current best score: {best_score:.4f}", flush=True)
|
|
2614
|
+
if best_config:
|
|
2615
|
+
print(f" ā Current best config: L{best_config['layer']} S{best_config['strength']:.2f}", flush=True)
|
|
2616
|
+
except Exception as e:
|
|
2617
|
+
print(f" ā ļø Failed to load checkpoint: {e}", flush=True)
|
|
2618
|
+
completed_configs = set()
|
|
2619
|
+
|
|
2620
|
+
# Step 2: Test all configurations
|
|
2621
|
+
print(f"\nšÆ Step 2: Testing {total_configs} configurations...", flush=True)
|
|
2622
|
+
if completed_configs:
|
|
2623
|
+
print(f" ā¹ļø Resuming from checkpoint - {len(completed_configs)} already done, {total_configs - len(completed_configs)} remaining", flush=True)
|
|
2624
|
+
|
|
2625
|
+
config_count = 0
|
|
2626
|
+
|
|
2627
|
+
# Initialize file for saving generation examples if requested
|
|
2628
|
+
examples_file_path = None
|
|
2629
|
+
if args.save_all_generation_examples:
|
|
2630
|
+
os.makedirs(args.output_dir, exist_ok=True)
|
|
2631
|
+
examples_file_path = os.path.join(args.output_dir, f"{trait_name}_all_generation_examples.jsonl")
|
|
2632
|
+
# Write header line with metadata
|
|
2633
|
+
with open(examples_file_path, "w") as f:
|
|
2634
|
+
f.write(json.dumps({"_header": True, "trait": trait, "trait_name": trait_name, "model": args.model}) + "\n")
|
|
2635
|
+
print(f" š Will save generation examples to: {examples_file_path}", flush=True)
|
|
2636
|
+
|
|
2637
|
+
# Pre-generate baseline responses ONCE (they don't depend on any loop variables)
|
|
2638
|
+
print(" š Pre-generating baseline responses for test prompts...", flush=True)
|
|
2639
|
+
baseline_responses_cache = {}
|
|
2640
|
+
for prompt in test_prompts:
|
|
2641
|
+
baseline = model.generate(
|
|
2642
|
+
[[{"role": "user", "content": prompt}]],
|
|
2643
|
+
**get_generate_kwargs(max_new_tokens=args.max_new_tokens),
|
|
2644
|
+
use_steering=False,
|
|
2645
|
+
)[0]
|
|
2646
|
+
baseline_responses_cache[prompt] = baseline
|
|
2647
|
+
print(f" ā Generated {len(baseline_responses_cache)} baseline responses", flush=True)
|
|
2648
|
+
|
|
2649
|
+
for token_agg in token_aggregations_to_test:
|
|
2650
|
+
for prompt_const in prompt_constructions_to_test:
|
|
2651
|
+
print(
|
|
2652
|
+
f"\n š Token Aggregation: {token_agg.value}, Prompt Construction: {prompt_const.value}", flush=True
|
|
2653
|
+
)
|
|
2654
|
+
|
|
2655
|
+
for layer in layers_to_test:
|
|
2656
|
+
layer_str = str(layer)
|
|
2657
|
+
|
|
2658
|
+
# Check if we already have activations for this (layer, token_agg) combo
|
|
2659
|
+
cache_key = (layer, token_agg.value, prompt_const.value)
|
|
2660
|
+
|
|
2661
|
+
if cache_key not in steering_vector_cache:
|
|
2662
|
+
print(f"\n š Layer {layer}: Collecting activations...", flush=True)
|
|
2663
|
+
|
|
2664
|
+
# Collect activations for this layer with current token_agg and prompt_const
|
|
2665
|
+
pos_acts = []
|
|
2666
|
+
neg_acts = []
|
|
2667
|
+
|
|
2668
|
+
for pair in pairs:
|
|
2669
|
+
updated_pair = collector.collect_for_pair(
|
|
2670
|
+
pair,
|
|
2671
|
+
layers=[layer_str],
|
|
2672
|
+
aggregation=token_agg,
|
|
2673
|
+
prompt_strategy=prompt_const,
|
|
2674
|
+
return_full_sequence=False,
|
|
2675
|
+
normalize_layers=False,
|
|
2676
|
+
)
|
|
2677
|
+
|
|
2678
|
+
if (
|
|
2679
|
+
updated_pair.positive_response.layers_activations
|
|
2680
|
+
and layer_str in updated_pair.positive_response.layers_activations
|
|
2681
|
+
):
|
|
2682
|
+
act = updated_pair.positive_response.layers_activations[layer_str]
|
|
2683
|
+
if act is not None:
|
|
2684
|
+
pos_acts.append(act)
|
|
2685
|
+
|
|
2686
|
+
if (
|
|
2687
|
+
updated_pair.negative_response.layers_activations
|
|
2688
|
+
and layer_str in updated_pair.negative_response.layers_activations
|
|
2689
|
+
):
|
|
2690
|
+
act = updated_pair.negative_response.layers_activations[layer_str]
|
|
2691
|
+
if act is not None:
|
|
2692
|
+
neg_acts.append(act)
|
|
2693
|
+
|
|
2694
|
+
if len(pos_acts) == 0 or len(neg_acts) == 0:
|
|
2695
|
+
print(f" ā ļø No activations collected for layer {layer}", flush=True)
|
|
2696
|
+
steering_vector_cache[cache_key] = None
|
|
2697
|
+
continue
|
|
2698
|
+
|
|
2699
|
+
print(
|
|
2700
|
+
f" ā Collected {len(pos_acts)} positive, {len(neg_acts)} negative activations",
|
|
2701
|
+
flush=True,
|
|
2702
|
+
)
|
|
2703
|
+
|
|
2704
|
+
# Create steering vector using selected method
|
|
2705
|
+
steering_method = create_steering_method("CAA", args)
|
|
2706
|
+
steering_vector = steering_method.train_for_layer(pos_acts, neg_acts)
|
|
2707
|
+
steering_vector_cache[cache_key] = steering_vector
|
|
2708
|
+
|
|
2709
|
+
print(
|
|
2710
|
+
f" ā Created steering vector (norm: {torch.norm(steering_vector).item():.4f})",
|
|
2711
|
+
flush=True,
|
|
2712
|
+
)
|
|
2713
|
+
else:
|
|
2714
|
+
steering_vector = steering_vector_cache[cache_key]
|
|
2715
|
+
if steering_vector is None:
|
|
2716
|
+
continue
|
|
2717
|
+
|
|
2718
|
+
# Test different strengths and steering strategies
|
|
2719
|
+
for strength in strengths_to_test:
|
|
2720
|
+
for steering_strategy in steering_strategies_to_test:
|
|
2721
|
+
config_count += 1
|
|
2722
|
+
config_key = f"L{layer}_S{strength:.2f}_St:{steering_strategy}_T:{token_agg.value}_P:{prompt_const.value}"
|
|
2723
|
+
|
|
2724
|
+
# Skip if already completed (checkpoint resume)
|
|
2725
|
+
if config_key in completed_configs:
|
|
2726
|
+
print(f" [{config_count}/{total_configs}] Skipping {config_key} (already done)", flush=True)
|
|
2727
|
+
continue
|
|
2728
|
+
|
|
2729
|
+
config_desc = f"L{layer} S{strength:.2f} St:{steering_strategy} T:{token_agg.value} P:{prompt_const.value}"
|
|
2730
|
+
print(f" [{config_count}/{total_configs}] Testing {config_desc}...", end=" ")
|
|
2731
|
+
|
|
2732
|
+
# Create steering plan
|
|
2733
|
+
steering_vec = SteeringVector(vector=steering_vector, scale=float(strength))
|
|
2734
|
+
steering_plan = SteeringPlan(
|
|
2735
|
+
layers={layer_str: steering_vec}, layers_description=[f"Personalization {config_desc}"]
|
|
2736
|
+
)
|
|
2737
|
+
|
|
2738
|
+
# Get baseline from cache and generate steered responses
|
|
2739
|
+
baseline_responses = [baseline_responses_cache[prompt] for prompt in test_prompts]
|
|
2740
|
+
steered_responses = []
|
|
2741
|
+
|
|
2742
|
+
for prompt in test_prompts:
|
|
2743
|
+
# Generate steered response
|
|
2744
|
+
model.apply_steering(steering_plan)
|
|
2745
|
+
steered = model.generate(
|
|
2746
|
+
[[{"role": "user", "content": prompt}]],
|
|
2747
|
+
**get_generate_kwargs(max_new_tokens=args.max_new_tokens),
|
|
2748
|
+
use_steering=True,
|
|
2749
|
+
steering_plan=steering_plan,
|
|
2750
|
+
)[0]
|
|
2751
|
+
model.clear_steering()
|
|
2752
|
+
steered_responses.append(steered)
|
|
2753
|
+
|
|
2754
|
+
# Evaluate using personalization metrics (static methods)
|
|
2755
|
+
# Calculate difference score
|
|
2756
|
+
difference_score = PersonalizationEvaluator._evaluate_difference(baseline_responses, steered_responses)
|
|
2757
|
+
|
|
2758
|
+
# Calculate quality score
|
|
2759
|
+
quality_score = PersonalizationEvaluator._evaluate_quality(steered_responses)
|
|
2760
|
+
|
|
2761
|
+
# Calculate alignment score using contrastive examples
|
|
2762
|
+
alignment_score = PersonalizationEvaluator.estimate_alignment(
|
|
2763
|
+
steered_responses, trait, positive_examples, negative_examples
|
|
2764
|
+
)
|
|
2765
|
+
|
|
2766
|
+
# Calculate overall score (weighted average)
|
|
2767
|
+
# Only count if difference > 0.3 (steering is actually doing something)
|
|
2768
|
+
if difference_score < 0.3:
|
|
2769
|
+
overall_score = 0.0
|
|
2770
|
+
else:
|
|
2771
|
+
overall_score = 0.2 * difference_score + 0.3 * quality_score + 0.5 * alignment_score
|
|
2772
|
+
|
|
2773
|
+
print(
|
|
2774
|
+
f"diff={difference_score:.2f} qual={quality_score:.2f} align={alignment_score:.2f} overall={overall_score:.2f}"
|
|
2775
|
+
)
|
|
2776
|
+
|
|
2777
|
+
# Store results with full config key (config_key already defined above)
|
|
2778
|
+
all_results[config_key] = {
|
|
2779
|
+
"layer": layer,
|
|
2780
|
+
"strength": float(strength),
|
|
2781
|
+
"steering_strategy": steering_strategy,
|
|
2782
|
+
"token_aggregation": token_agg.value,
|
|
2783
|
+
"prompt_construction": prompt_const.value,
|
|
2784
|
+
"difference_score": float(difference_score),
|
|
2785
|
+
"quality_score": float(quality_score),
|
|
2786
|
+
"alignment_score": float(alignment_score),
|
|
2787
|
+
"overall_score": float(overall_score),
|
|
2788
|
+
"sample_baseline": baseline_responses[0][:200] if baseline_responses else "",
|
|
2789
|
+
"sample_steered": steered_responses[0][:200] if steered_responses else "",
|
|
2790
|
+
}
|
|
2791
|
+
|
|
2792
|
+
# Save generation examples if requested
|
|
2793
|
+
if args.save_all_generation_examples and examples_file_path:
|
|
2794
|
+
example_record = {
|
|
2795
|
+
"layer": layer,
|
|
2796
|
+
"strength": float(strength),
|
|
2797
|
+
"steering_strategy": steering_strategy,
|
|
2798
|
+
"token_aggregation": token_agg.value,
|
|
2799
|
+
"prompt_construction": prompt_const.value,
|
|
2800
|
+
"overall_score": float(overall_score),
|
|
2801
|
+
"difference_score": float(difference_score),
|
|
2802
|
+
"quality_score": float(quality_score),
|
|
2803
|
+
"alignment_score": float(alignment_score),
|
|
2804
|
+
"examples": [
|
|
2805
|
+
{
|
|
2806
|
+
"prompt": test_prompts[i],
|
|
2807
|
+
"baseline_response": baseline_responses[i],
|
|
2808
|
+
"steered_response": steered_responses[i],
|
|
2809
|
+
}
|
|
2810
|
+
for i in range(len(test_prompts))
|
|
2811
|
+
],
|
|
2812
|
+
}
|
|
2813
|
+
with open(examples_file_path, "a") as f:
|
|
2814
|
+
f.write(json.dumps(example_record) + "\n")
|
|
2815
|
+
|
|
2816
|
+
# Track best configuration
|
|
2817
|
+
if overall_score > best_score:
|
|
2818
|
+
best_score = overall_score
|
|
2819
|
+
best_config = {
|
|
2820
|
+
"layer": layer,
|
|
2821
|
+
"strength": float(strength),
|
|
2822
|
+
"steering_strategy": steering_strategy,
|
|
2823
|
+
"token_aggregation": token_agg.value,
|
|
2824
|
+
"prompt_construction": prompt_const.value,
|
|
2825
|
+
"difference_score": float(difference_score),
|
|
2826
|
+
"quality_score": float(quality_score),
|
|
2827
|
+
"alignment_score": float(alignment_score),
|
|
2828
|
+
"overall_score": float(overall_score),
|
|
2829
|
+
}
|
|
2830
|
+
best_steering_vector = steering_vector
|
|
2831
|
+
print(f" š New best! L{layer} S{strength:.2f} score={overall_score:.4f}", flush=True)
|
|
2832
|
+
|
|
2833
|
+
# Save checkpoint after each configuration (for resume capability)
|
|
2834
|
+
checkpoint_data = {
|
|
2835
|
+
"all_results": all_results,
|
|
2836
|
+
"best_config": best_config,
|
|
2837
|
+
"best_score": best_score,
|
|
2838
|
+
"config_count": config_count,
|
|
2839
|
+
"total_configs": total_configs,
|
|
2840
|
+
"trait": trait,
|
|
2841
|
+
"trait_name": trait_name,
|
|
2842
|
+
"model": args.model,
|
|
2843
|
+
}
|
|
2844
|
+
with open(checkpoint_file, "w") as f:
|
|
2845
|
+
json.dump(checkpoint_data, f)
|
|
2846
|
+
|
|
2847
|
+
# Sync checkpoint to S3 every 100 configs for recovery
|
|
2848
|
+
if config_count % 100 == 0:
|
|
2849
|
+
try:
|
|
2850
|
+
import subprocess
|
|
2851
|
+
s3_checkpoint_path = f"s3://wisent-bucket/checkpoints/{trait_name}_checkpoint.json"
|
|
2852
|
+
subprocess.run(
|
|
2853
|
+
["aws", "s3", "cp", checkpoint_file, s3_checkpoint_path],
|
|
2854
|
+
capture_output=True,
|
|
2855
|
+
timeout=30
|
|
2856
|
+
)
|
|
2857
|
+
except Exception:
|
|
2858
|
+
pass # Don't fail if S3 sync fails
|
|
2859
|
+
|
|
2860
|
+
# Step 3: Save results
|
|
2861
|
+
print(f"\n{'=' * 80}")
|
|
2862
|
+
print("š OPTIMIZATION COMPLETE")
|
|
2863
|
+
print(f"{'=' * 80}")
|
|
2864
|
+
|
|
2865
|
+
vector_path = None
|
|
2866
|
+
if best_config:
|
|
2867
|
+
print("\nā
Best Configuration:")
|
|
2868
|
+
print(f" Layer: {best_config['layer']}")
|
|
2869
|
+
print(f" Strength: {best_config['strength']:.2f}")
|
|
2870
|
+
print(f" Steering Strategy: {best_config['steering_strategy']}")
|
|
2871
|
+
print(f" Token Aggregation: {best_config['token_aggregation']}")
|
|
2872
|
+
print(f" Prompt Construction: {best_config['prompt_construction']}")
|
|
2873
|
+
print(f" Difference Score: {best_config['difference_score']:.3f}")
|
|
2874
|
+
print(f" Quality Score: {best_config['quality_score']:.3f}")
|
|
2875
|
+
print(f" Alignment Score: {best_config['alignment_score']:.3f}")
|
|
2876
|
+
print(f" Overall Score: {best_config['overall_score']:.3f}")
|
|
2877
|
+
|
|
2878
|
+
# Save best steering vector
|
|
2879
|
+
vector_path = os.path.join(args.output_dir, "vectors", f"{trait_name}_optimal.pt")
|
|
2880
|
+
torch.save(
|
|
2881
|
+
{
|
|
2882
|
+
"steering_vector": best_steering_vector,
|
|
2883
|
+
"layer": best_config["layer"],
|
|
2884
|
+
"layer_index": best_config["layer"],
|
|
2885
|
+
"strength": best_config["strength"],
|
|
2886
|
+
"steering_strategy": best_config["steering_strategy"],
|
|
2887
|
+
"token_aggregation": best_config["token_aggregation"],
|
|
2888
|
+
"prompt_construction": best_config["prompt_construction"],
|
|
2889
|
+
"trait": trait,
|
|
2890
|
+
"trait_name": trait_name,
|
|
2891
|
+
"model": args.model,
|
|
2892
|
+
"method": "CAA",
|
|
2893
|
+
"optimization_scores": {
|
|
2894
|
+
"difference": best_config["difference_score"],
|
|
2895
|
+
"quality": best_config["quality_score"],
|
|
2896
|
+
"alignment": best_config["alignment_score"],
|
|
2897
|
+
"overall": best_config["overall_score"],
|
|
2898
|
+
},
|
|
2899
|
+
},
|
|
2900
|
+
vector_path,
|
|
2901
|
+
)
|
|
2902
|
+
print(f"\nš¾ Saved optimal steering vector to: {vector_path}")
|
|
2903
|
+
else:
|
|
2904
|
+
print("\nā ļø No valid configuration found")
|
|
2905
|
+
|
|
2906
|
+
# Save full results to JSON
|
|
2907
|
+
results_file = os.path.join(args.output_dir, f"{trait_name}_optimization_results.json")
|
|
2908
|
+
|
|
2909
|
+
# best_config doesn't have steering_vector anymore (it's in best_steering_vector)
|
|
2910
|
+
best_config_json = best_config
|
|
2911
|
+
|
|
2912
|
+
output_data = {
|
|
2913
|
+
"model": args.model,
|
|
2914
|
+
"trait": trait,
|
|
2915
|
+
"trait_name": trait_name,
|
|
2916
|
+
"num_pairs": args.num_pairs,
|
|
2917
|
+
"num_test_prompts": args.num_test_prompts,
|
|
2918
|
+
"layers_tested": layers_to_test,
|
|
2919
|
+
"strengths_tested": [float(s) for s in strengths_to_test],
|
|
2920
|
+
"steering_strategies_tested": steering_strategies_to_test,
|
|
2921
|
+
"token_aggregations_tested": [t.value for t in token_aggregations_to_test],
|
|
2922
|
+
"prompt_constructions_tested": [p.value for p in prompt_constructions_to_test],
|
|
2923
|
+
"best_config": best_config_json,
|
|
2924
|
+
"all_results": all_results,
|
|
2925
|
+
}
|
|
2926
|
+
|
|
2927
|
+
with open(results_file, "w") as f:
|
|
2928
|
+
json.dump(output_data, f, indent=2)
|
|
2929
|
+
|
|
2930
|
+
print(f"š¾ Saved full results to: {results_file}")
|
|
2931
|
+
|
|
2932
|
+
# Remove checkpoint file after successful completion
|
|
2933
|
+
if os.path.exists(checkpoint_file):
|
|
2934
|
+
os.remove(checkpoint_file)
|
|
2935
|
+
print(f"š§¹ Removed checkpoint file: {checkpoint_file}")
|
|
2936
|
+
|
|
2937
|
+
if args.save_all_generation_examples and examples_file_path:
|
|
2938
|
+
print(f"š¾ Generation examples saved iteratively to: {examples_file_path}")
|
|
2939
|
+
|
|
2940
|
+
# Print usage example
|
|
2941
|
+
print("\nš Usage Example:")
|
|
2942
|
+
if best_config:
|
|
2943
|
+
print(" python -m wisent.core.main multi-steer \\")
|
|
2944
|
+
print(f" --vector {vector_path}:{best_config['strength']:.1f} \\")
|
|
2945
|
+
print(f" --model {args.model} \\")
|
|
2946
|
+
print(f" --layer {best_config['layer']} \\")
|
|
2947
|
+
print(' --prompt "Your prompt here"')
|
|
2948
|
+
|
|
2949
|
+
print(f"\n{'=' * 80}\n")
|
|
2950
|
+
|
|
2951
|
+
return {
|
|
2952
|
+
"action": "personalization",
|
|
2953
|
+
"trait": trait,
|
|
2954
|
+
"trait_name": trait_name,
|
|
2955
|
+
"best_config": best_config_json,
|
|
2956
|
+
"results_file": results_file,
|
|
2957
|
+
"vector_path": vector_path if best_config else None,
|
|
2958
|
+
}
|
|
2959
|
+
|
|
2960
|
+
|
|
2961
|
+
def execute_multi_personalization(args, model):
|
|
2962
|
+
"""
|
|
2963
|
+
Execute multi-trait joint personalization optimization.
|
|
2964
|
+
|
|
2965
|
+
This finds a SINGLE optimal configuration (layer, token_aggregation, prompt_construction)
|
|
2966
|
+
that works well for ALL traits, then optimizes strength per-trait individually.
|
|
2967
|
+
|
|
2968
|
+
The approach:
|
|
2969
|
+
1. Generate synthetic contrastive pairs for each trait
|
|
2970
|
+
2. For each (layer, token_agg, prompt_const) configuration:
|
|
2971
|
+
- Compute steering vectors for ALL traits
|
|
2972
|
+
- Find optimal strength for each trait individually
|
|
2973
|
+
- Compute combined score = mean(trait_scores)
|
|
2974
|
+
3. Select the configuration with highest combined score
|
|
2975
|
+
4. Return: shared (layer, token_agg, prompt_const) + per-trait strength
|
|
2976
|
+
"""
|
|
2977
|
+
import os
|
|
2978
|
+
|
|
2979
|
+
import torch
|
|
2980
|
+
|
|
2981
|
+
from wisent.core.activations.activations_collector import ActivationCollector
|
|
2982
|
+
from wisent.core.activations.core.atoms import ActivationAggregationStrategy
|
|
2983
|
+
from wisent.core.activations.prompt_construction_strategy import PromptConstructionStrategy
|
|
2984
|
+
from wisent.core.evaluators.steering_evaluators import PersonalizationEvaluator
|
|
2985
|
+
from wisent.core.models.core.atoms import SteeringPlan, SteeringVector
|
|
2986
|
+
from wisent.core.cli.steering_method_trainer import create_steering_method
|
|
2987
|
+
from wisent.core.synthetic.cleaners.pairs_cleaner import PairsCleaner
|
|
2988
|
+
from wisent.core.synthetic.db_instructions.mini_dp import Default_DB_Instructions
|
|
2989
|
+
from wisent.core.synthetic.generators.diversities.methods.fast_diversity import FastDiversity
|
|
2990
|
+
from wisent.core.synthetic.generators.pairs_generator import SyntheticContrastivePairsGenerator
|
|
2991
|
+
|
|
2992
|
+
traits = args.traits
|
|
2993
|
+
trait_names = args.trait_names or [t.split()[0].lower() for t in traits]
|
|
2994
|
+
|
|
2995
|
+
if len(trait_names) != len(traits):
|
|
2996
|
+
print(f"Error: Number of --trait-name args ({len(trait_names)}) must match --trait args ({len(traits)})")
|
|
2997
|
+
return None
|
|
2998
|
+
|
|
2999
|
+
print(f"\n{'=' * 80}", flush=True)
|
|
3000
|
+
print("š MULTI-TRAIT JOINT PERSONALIZATION OPTIMIZATION", flush=True)
|
|
3001
|
+
print(f"{'=' * 80}", flush=True)
|
|
3002
|
+
print(f" Model: {args.model}", flush=True)
|
|
3003
|
+
print(f" Traits: {len(traits)}", flush=True)
|
|
3004
|
+
for i, (trait, name) in enumerate(zip(traits, trait_names)):
|
|
3005
|
+
print(f" {i + 1}. {name}: {trait[:50]}...", flush=True)
|
|
3006
|
+
print(f" Num Pairs per trait: {args.num_pairs}", flush=True)
|
|
3007
|
+
print(f" Num Test Prompts: {args.num_test_prompts}", flush=True)
|
|
3008
|
+
print(f" Output Directory: {args.output_dir}", flush=True)
|
|
3009
|
+
print(f"{'=' * 80}\n", flush=True)
|
|
3010
|
+
|
|
3011
|
+
# Create output directory
|
|
3012
|
+
os.makedirs(args.output_dir, exist_ok=True)
|
|
3013
|
+
os.makedirs(os.path.join(args.output_dir, "vectors"), exist_ok=True)
|
|
3014
|
+
|
|
3015
|
+
# Determine layers to test - default to middle 50% of layers where steering works best
|
|
3016
|
+
if args.layers:
|
|
3017
|
+
layers_to_test = args.layers
|
|
3018
|
+
else:
|
|
3019
|
+
num_layers = model.num_layers
|
|
3020
|
+
# Test middle 50% of layers (e.g., layers 8-20 for a 28-layer model)
|
|
3021
|
+
start_layer = max(1, num_layers // 4)
|
|
3022
|
+
end_layer = min(num_layers, 3 * num_layers // 4)
|
|
3023
|
+
layers_to_test = list(range(start_layer, end_layer + 1))
|
|
3024
|
+
|
|
3025
|
+
# Determine strengths to test
|
|
3026
|
+
min_strength, max_strength = args.strength_range
|
|
3027
|
+
strengths_to_test = np.linspace(min_strength, max_strength, args.num_strength_steps)
|
|
3028
|
+
|
|
3029
|
+
# Token aggregation strategies to test
|
|
3030
|
+
token_aggregations_to_test = [
|
|
3031
|
+
ActivationAggregationStrategy.LAST_TOKEN,
|
|
3032
|
+
ActivationAggregationStrategy.MEAN_POOLING,
|
|
3033
|
+
ActivationAggregationStrategy.FIRST_TOKEN,
|
|
3034
|
+
ActivationAggregationStrategy.MAX_POOLING,
|
|
3035
|
+
]
|
|
3036
|
+
|
|
3037
|
+
# Prompt construction strategies to test
|
|
3038
|
+
prompt_constructions_to_test = [
|
|
3039
|
+
PromptConstructionStrategy.CHAT_TEMPLATE,
|
|
3040
|
+
PromptConstructionStrategy.DIRECT_COMPLETION,
|
|
3041
|
+
PromptConstructionStrategy.INSTRUCTION_FOLLOWING,
|
|
3042
|
+
PromptConstructionStrategy.ROLE_PLAYING,
|
|
3043
|
+
PromptConstructionStrategy.MULTIPLE_CHOICE,
|
|
3044
|
+
]
|
|
3045
|
+
|
|
3046
|
+
# Use a fixed steering strategy (initial_only works well for multi-trait)
|
|
3047
|
+
steering_strategy = "initial_only"
|
|
3048
|
+
|
|
3049
|
+
total_shared_configs = len(layers_to_test) * len(token_aggregations_to_test) * len(prompt_constructions_to_test)
|
|
3050
|
+
|
|
3051
|
+
print("š Search Space:", flush=True)
|
|
3052
|
+
print(f" Shared configs (layer Ć token_agg Ć prompt_const): {total_shared_configs}", flush=True)
|
|
3053
|
+
print(f" Strengths per trait: {len(strengths_to_test)}", flush=True)
|
|
3054
|
+
print(f" Steering strategy: {steering_strategy} (fixed)", flush=True)
|
|
3055
|
+
print("\n", flush=True)
|
|
3056
|
+
|
|
3057
|
+
# Step 1: Generate synthetic contrastive pairs for each trait
|
|
3058
|
+
print(f"š§ Step 1: Generating synthetic pairs for {len(traits)} traits...", flush=True)
|
|
3059
|
+
|
|
3060
|
+
trait_pairs = {}
|
|
3061
|
+
for trait, name in zip(traits, trait_names):
|
|
3062
|
+
print(f"\n Generating pairs for '{name}'...", flush=True)
|
|
3063
|
+
|
|
3064
|
+
cleaner = PairsCleaner(steps=[])
|
|
3065
|
+
diversity = FastDiversity()
|
|
3066
|
+
db_instructions = Default_DB_Instructions()
|
|
3067
|
+
|
|
3068
|
+
pair_generator = SyntheticContrastivePairsGenerator(
|
|
3069
|
+
model=model,
|
|
3070
|
+
generation_config=get_generate_kwargs(max_new_tokens=150),
|
|
3071
|
+
contrastive_set_name=f"{name}_pairs",
|
|
3072
|
+
trait_description=trait,
|
|
3073
|
+
trait_label=name,
|
|
3074
|
+
db_instructions=db_instructions,
|
|
3075
|
+
cleaner=cleaner,
|
|
3076
|
+
diversity=diversity,
|
|
3077
|
+
)
|
|
3078
|
+
|
|
3079
|
+
pair_set, _ = pair_generator.generate(num_pairs=args.num_pairs)
|
|
3080
|
+
trait_pairs[name] = {"trait": trait, "pairs": pair_set.pairs}
|
|
3081
|
+
print(f" ā Generated {len(pair_set.pairs)} pairs for '{name}'", flush=True)
|
|
3082
|
+
|
|
3083
|
+
# Test prompts for evaluation
|
|
3084
|
+
test_prompts = [
|
|
3085
|
+
"What's your favorite food?",
|
|
3086
|
+
"How do you spend your weekends?",
|
|
3087
|
+
"What motivates you in life?",
|
|
3088
|
+
"How do you handle setbacks?",
|
|
3089
|
+
"What's your opinion on teamwork?",
|
|
3090
|
+
][: args.num_test_prompts]
|
|
3091
|
+
|
|
3092
|
+
print(f"\nš Test prompts: {test_prompts}", flush=True)
|
|
3093
|
+
|
|
3094
|
+
# Initialize collector
|
|
3095
|
+
collector = ActivationCollector(model=model, store_device="cpu")
|
|
3096
|
+
|
|
3097
|
+
# Track results
|
|
3098
|
+
all_results = {}
|
|
3099
|
+
best_shared_config = None
|
|
3100
|
+
best_combined_score = -1.0
|
|
3101
|
+
best_per_trait_strengths = {}
|
|
3102
|
+
best_steering_vectors = {}
|
|
3103
|
+
best_overall_sample_responses = []
|
|
3104
|
+
|
|
3105
|
+
# Step 2: Test each shared configuration
|
|
3106
|
+
print(f"\nšÆ Step 2: Testing {total_shared_configs} shared configurations...", flush=True)
|
|
3107
|
+
|
|
3108
|
+
config_count = 0
|
|
3109
|
+
|
|
3110
|
+
for token_agg in token_aggregations_to_test:
|
|
3111
|
+
for prompt_const in prompt_constructions_to_test:
|
|
3112
|
+
for layer in layers_to_test:
|
|
3113
|
+
config_count += 1
|
|
3114
|
+
layer_str = str(layer)
|
|
3115
|
+
shared_config_key = f"L{layer}_T:{token_agg.value}_P:{prompt_const.value}"
|
|
3116
|
+
|
|
3117
|
+
print(f"\n[{config_count}/{total_shared_configs}] {shared_config_key}", flush=True)
|
|
3118
|
+
|
|
3119
|
+
# Compute steering vectors for each trait with this config
|
|
3120
|
+
trait_vectors = {}
|
|
3121
|
+
for name, data in trait_pairs.items():
|
|
3122
|
+
pairs = data["pairs"]
|
|
3123
|
+
|
|
3124
|
+
pos_acts = []
|
|
3125
|
+
neg_acts = []
|
|
3126
|
+
|
|
3127
|
+
for pair in pairs:
|
|
3128
|
+
updated_pair = collector.collect_for_pair(
|
|
3129
|
+
pair,
|
|
3130
|
+
layers=[layer_str],
|
|
3131
|
+
aggregation=token_agg,
|
|
3132
|
+
prompt_strategy=prompt_const,
|
|
3133
|
+
return_full_sequence=False,
|
|
3134
|
+
normalize_layers=False,
|
|
3135
|
+
)
|
|
3136
|
+
|
|
3137
|
+
if (
|
|
3138
|
+
updated_pair.positive_response.layers_activations
|
|
3139
|
+
and layer_str in updated_pair.positive_response.layers_activations
|
|
3140
|
+
):
|
|
3141
|
+
act = updated_pair.positive_response.layers_activations[layer_str]
|
|
3142
|
+
if act is not None:
|
|
3143
|
+
pos_acts.append(act)
|
|
3144
|
+
|
|
3145
|
+
if (
|
|
3146
|
+
updated_pair.negative_response.layers_activations
|
|
3147
|
+
and layer_str in updated_pair.negative_response.layers_activations
|
|
3148
|
+
):
|
|
3149
|
+
act = updated_pair.negative_response.layers_activations[layer_str]
|
|
3150
|
+
if act is not None:
|
|
3151
|
+
neg_acts.append(act)
|
|
3152
|
+
|
|
3153
|
+
if len(pos_acts) == 0 or len(neg_acts) == 0:
|
|
3154
|
+
print(f" ā ļø No activations for '{name}' - skipping config", flush=True)
|
|
3155
|
+
trait_vectors = None
|
|
3156
|
+
break
|
|
3157
|
+
|
|
3158
|
+
steering_method = create_steering_method("CAA", args)
|
|
3159
|
+
steering_vector = steering_method.train_for_layer(pos_acts, neg_acts)
|
|
3160
|
+
trait_vectors[name] = steering_vector
|
|
3161
|
+
|
|
3162
|
+
if trait_vectors is None:
|
|
3163
|
+
continue
|
|
3164
|
+
|
|
3165
|
+
# Use Latin Hypercube Sampling to efficiently explore strength space
|
|
3166
|
+
# Instead of testing all N^T combinations, sample ~20 representative points
|
|
3167
|
+
import random
|
|
3168
|
+
from itertools import product
|
|
3169
|
+
|
|
3170
|
+
best_combined_score_for_config = -1.0
|
|
3171
|
+
best_strengths_for_config = dict.fromkeys(trait_names, strengths_to_test[0])
|
|
3172
|
+
best_sample_responses = []
|
|
3173
|
+
|
|
3174
|
+
# Generate strength combinations - use sampling to reduce search space
|
|
3175
|
+
all_strength_combos = list(product(strengths_to_test, repeat=len(trait_names)))
|
|
3176
|
+
|
|
3177
|
+
# If too many combinations, sample a subset that includes edges and random middle points
|
|
3178
|
+
max_samples = 25 # Test at most 25 combinations per config
|
|
3179
|
+
if len(all_strength_combos) > max_samples:
|
|
3180
|
+
# Always include corner cases (min, max for each trait)
|
|
3181
|
+
corners = [
|
|
3182
|
+
tuple([strengths_to_test[0]] * len(trait_names)), # All min
|
|
3183
|
+
tuple([strengths_to_test[-1]] * len(trait_names)), # All max
|
|
3184
|
+
tuple([strengths_to_test[len(strengths_to_test) // 2]] * len(trait_names)), # All mid
|
|
3185
|
+
]
|
|
3186
|
+
# Add some diagonal samples
|
|
3187
|
+
for i in range(len(strengths_to_test)):
|
|
3188
|
+
corners.append(tuple([strengths_to_test[i]] * len(trait_names)))
|
|
3189
|
+
|
|
3190
|
+
# Randomly sample the rest
|
|
3191
|
+
remaining = max_samples - len(set(corners))
|
|
3192
|
+
random.seed(42) # For reproducibility
|
|
3193
|
+
other_combos = [c for c in all_strength_combos if c not in corners]
|
|
3194
|
+
sampled = random.sample(other_combos, min(remaining, len(other_combos)))
|
|
3195
|
+
|
|
3196
|
+
strength_combos = list(set(corners)) + sampled
|
|
3197
|
+
else:
|
|
3198
|
+
strength_combos = all_strength_combos
|
|
3199
|
+
|
|
3200
|
+
# Pre-generate baseline responses ONCE per config (they don't depend on steering)
|
|
3201
|
+
baseline_responses = []
|
|
3202
|
+
for prompt in test_prompts:
|
|
3203
|
+
baseline = model.generate(
|
|
3204
|
+
[[{"role": "user", "content": prompt}]],
|
|
3205
|
+
**get_generate_kwargs(max_new_tokens=args.max_new_tokens),
|
|
3206
|
+
use_steering=False,
|
|
3207
|
+
)[0]
|
|
3208
|
+
baseline_responses.append(baseline)
|
|
3209
|
+
|
|
3210
|
+
num_strength_combos = len(strength_combos)
|
|
3211
|
+
for combo_idx, strength_combo in enumerate(strength_combos):
|
|
3212
|
+
if args.verbose and combo_idx % 5 == 0:
|
|
3213
|
+
import sys
|
|
3214
|
+
|
|
3215
|
+
sys.stdout.write(f"\r Testing strength {combo_idx + 1}/{num_strength_combos}...")
|
|
3216
|
+
sys.stdout.flush()
|
|
3217
|
+
current_strengths = dict(zip(trait_names, strength_combo))
|
|
3218
|
+
|
|
3219
|
+
# Create COMBINED steering plan with ALL vectors at once
|
|
3220
|
+
combined_vector = None
|
|
3221
|
+
for name, strength in current_strengths.items():
|
|
3222
|
+
scaled_vector = trait_vectors[name] * float(strength)
|
|
3223
|
+
if combined_vector is None:
|
|
3224
|
+
combined_vector = scaled_vector.clone()
|
|
3225
|
+
else:
|
|
3226
|
+
combined_vector = combined_vector + scaled_vector
|
|
3227
|
+
|
|
3228
|
+
steering_vec = SteeringVector(vector=combined_vector, scale=1.0)
|
|
3229
|
+
steering_plan = SteeringPlan(
|
|
3230
|
+
layers={layer_str: steering_vec},
|
|
3231
|
+
layers_description=[f"Multi-trait combined: {'+'.join(trait_names)}"],
|
|
3232
|
+
)
|
|
3233
|
+
|
|
3234
|
+
# Generate only steered responses (baselines were pre-generated)
|
|
3235
|
+
steered_responses = []
|
|
3236
|
+
for prompt in test_prompts:
|
|
3237
|
+
model.apply_steering(steering_plan)
|
|
3238
|
+
steered = model.generate(
|
|
3239
|
+
[[{"role": "user", "content": prompt}]],
|
|
3240
|
+
**get_generate_kwargs(max_new_tokens=args.max_new_tokens),
|
|
3241
|
+
use_steering=True,
|
|
3242
|
+
steering_plan=steering_plan,
|
|
3243
|
+
)[0]
|
|
3244
|
+
model.clear_steering()
|
|
3245
|
+
steered_responses.append(steered)
|
|
3246
|
+
|
|
3247
|
+
# Evaluate combined output against ALL traits together (static methods)
|
|
3248
|
+
difference_score = PersonalizationEvaluator._evaluate_difference(baseline_responses, steered_responses)
|
|
3249
|
+
quality_score = PersonalizationEvaluator._evaluate_quality(steered_responses)
|
|
3250
|
+
|
|
3251
|
+
# Compute alignment score against COMBINED trait description
|
|
3252
|
+
# For multi-trait, combine positive/negative examples from all traits
|
|
3253
|
+
combined_trait_description = " AND ".join([trait_pairs[name]["trait"] for name in trait_names])
|
|
3254
|
+
all_positive_examples = []
|
|
3255
|
+
all_negative_examples = []
|
|
3256
|
+
for name in trait_names:
|
|
3257
|
+
all_positive_examples.extend([p.positive_response.model_response for p in trait_pairs[name]["pairs"]])
|
|
3258
|
+
all_negative_examples.extend([p.negative_response.model_response for p in trait_pairs[name]["pairs"]])
|
|
3259
|
+
alignment_score = PersonalizationEvaluator.estimate_alignment(
|
|
3260
|
+
steered_responses, combined_trait_description, all_positive_examples, all_negative_examples
|
|
3261
|
+
)
|
|
3262
|
+
|
|
3263
|
+
if difference_score < 0.3:
|
|
3264
|
+
overall_score = 0.0
|
|
3265
|
+
else:
|
|
3266
|
+
overall_score = 0.2 * difference_score + 0.3 * quality_score + 0.5 * alignment_score
|
|
3267
|
+
|
|
3268
|
+
if overall_score > best_combined_score_for_config:
|
|
3269
|
+
best_combined_score_for_config = overall_score
|
|
3270
|
+
best_strengths_for_config = current_strengths.copy()
|
|
3271
|
+
best_sample_responses = list(zip(test_prompts, baseline_responses, steered_responses))
|
|
3272
|
+
|
|
3273
|
+
# Store per-trait strengths from best combo
|
|
3274
|
+
trait_best_strengths = best_strengths_for_config
|
|
3275
|
+
combined_score = best_combined_score_for_config
|
|
3276
|
+
|
|
3277
|
+
print(
|
|
3278
|
+
f" Strengths: {', '.join([f'{n}={s:.2f}' for n, s in trait_best_strengths.items()])}",
|
|
3279
|
+
flush=True,
|
|
3280
|
+
)
|
|
3281
|
+
print(f" ā Combined score (all traits at once): {combined_score:.3f}", flush=True)
|
|
3282
|
+
|
|
3283
|
+
# Show sample responses for this config
|
|
3284
|
+
if best_sample_responses and args.verbose:
|
|
3285
|
+
print("\n š Sample responses:", flush=True)
|
|
3286
|
+
for prompt, baseline, steered in best_sample_responses[:2]:
|
|
3287
|
+
print(f" Prompt: {prompt}", flush=True)
|
|
3288
|
+
print(f" Baseline: {baseline[:100]}...", flush=True)
|
|
3289
|
+
print(f" Steered: {steered[:100]}...", flush=True)
|
|
3290
|
+
|
|
3291
|
+
# Store result
|
|
3292
|
+
all_results[shared_config_key] = {
|
|
3293
|
+
"layer": layer,
|
|
3294
|
+
"token_aggregation": token_agg.value,
|
|
3295
|
+
"prompt_construction": prompt_const.value,
|
|
3296
|
+
"steering_strategy": steering_strategy,
|
|
3297
|
+
"per_trait_strengths": trait_best_strengths,
|
|
3298
|
+
"combined_score": float(combined_score),
|
|
3299
|
+
"sample_responses": [
|
|
3300
|
+
{"prompt": p, "baseline": b, "steered": s} for p, b, s in best_sample_responses
|
|
3301
|
+
]
|
|
3302
|
+
if best_sample_responses
|
|
3303
|
+
else [],
|
|
3304
|
+
}
|
|
3305
|
+
|
|
3306
|
+
if combined_score > best_combined_score:
|
|
3307
|
+
best_combined_score = combined_score
|
|
3308
|
+
best_shared_config = {
|
|
3309
|
+
"layer": layer,
|
|
3310
|
+
"token_aggregation": token_agg.value,
|
|
3311
|
+
"prompt_construction": prompt_const.value,
|
|
3312
|
+
"steering_strategy": steering_strategy,
|
|
3313
|
+
}
|
|
3314
|
+
best_per_trait_strengths = trait_best_strengths.copy()
|
|
3315
|
+
best_steering_vectors = {name: v.clone() for name, v in trait_vectors.items()}
|
|
3316
|
+
best_overall_sample_responses = best_sample_responses.copy() if best_sample_responses else []
|
|
3317
|
+
|
|
3318
|
+
# Step 3: Save results
|
|
3319
|
+
print(f"\n{'=' * 80}", flush=True)
|
|
3320
|
+
print("š MULTI-TRAIT OPTIMIZATION COMPLETE", flush=True)
|
|
3321
|
+
print(f"{'=' * 80}", flush=True)
|
|
3322
|
+
|
|
3323
|
+
vector_paths = {}
|
|
3324
|
+
if best_shared_config:
|
|
3325
|
+
print("\nā
Best Shared Configuration:", flush=True)
|
|
3326
|
+
print(f" Layer: {best_shared_config['layer']}", flush=True)
|
|
3327
|
+
print(f" Token Aggregation: {best_shared_config['token_aggregation']}", flush=True)
|
|
3328
|
+
print(f" Prompt Construction: {best_shared_config['prompt_construction']}", flush=True)
|
|
3329
|
+
print(f" Steering Strategy: {best_shared_config['steering_strategy']}", flush=True)
|
|
3330
|
+
print("\nā
Per-Trait Optimal Strengths:", flush=True)
|
|
3331
|
+
for name, strength in best_per_trait_strengths.items():
|
|
3332
|
+
print(f" {name}: {strength:.2f}", flush=True)
|
|
3333
|
+
print(f"\n Combined Score: {best_combined_score:.3f}", flush=True)
|
|
3334
|
+
|
|
3335
|
+
# Print sample responses from the best configuration
|
|
3336
|
+
if best_overall_sample_responses:
|
|
3337
|
+
print(f"\n{'=' * 80}", flush=True)
|
|
3338
|
+
print("š SAMPLE RESPONSES (Best Configuration)", flush=True)
|
|
3339
|
+
print(f"{'=' * 80}", flush=True)
|
|
3340
|
+
for prompt, baseline, steered in best_overall_sample_responses:
|
|
3341
|
+
print(f"\n š£ļø Prompt: {prompt}", flush=True)
|
|
3342
|
+
print("\n š Baseline Response:", flush=True)
|
|
3343
|
+
print(f" {baseline}", flush=True)
|
|
3344
|
+
print("\n šÆ Steered Response (evil + italian):", flush=True)
|
|
3345
|
+
print(f" {steered}", flush=True)
|
|
3346
|
+
print(f"\n {'-' * 70}", flush=True)
|
|
3347
|
+
|
|
3348
|
+
# Save steering vectors for each trait
|
|
3349
|
+
for name in trait_names:
|
|
3350
|
+
vector_path = os.path.join(args.output_dir, "vectors", f"{name}_optimal.pt")
|
|
3351
|
+
torch.save(
|
|
3352
|
+
{
|
|
3353
|
+
"steering_vector": best_steering_vectors[name],
|
|
3354
|
+
"layer": best_shared_config["layer"],
|
|
3355
|
+
"layer_index": best_shared_config["layer"],
|
|
3356
|
+
"strength": best_per_trait_strengths[name],
|
|
3357
|
+
"steering_strategy": best_shared_config["steering_strategy"],
|
|
3358
|
+
"token_aggregation": best_shared_config["token_aggregation"],
|
|
3359
|
+
"prompt_construction": best_shared_config["prompt_construction"],
|
|
3360
|
+
"trait": trait_pairs[name]["trait"],
|
|
3361
|
+
"trait_name": name,
|
|
3362
|
+
"model": args.model,
|
|
3363
|
+
"method": "CAA",
|
|
3364
|
+
"multi_trait_optimization": True,
|
|
3365
|
+
},
|
|
3366
|
+
vector_path,
|
|
3367
|
+
)
|
|
3368
|
+
vector_paths[name] = vector_path
|
|
3369
|
+
print(f"\nš¾ Saved {name} vector to: {vector_path}", flush=True)
|
|
3370
|
+
else:
|
|
3371
|
+
print("\nā ļø No valid configuration found", flush=True)
|
|
3372
|
+
|
|
3373
|
+
# Save full results
|
|
3374
|
+
results_file = os.path.join(args.output_dir, "multi_trait_optimization_results.json")
|
|
3375
|
+
|
|
3376
|
+
output_data = {
|
|
3377
|
+
"model": args.model,
|
|
3378
|
+
"traits": {name: trait_pairs[name]["trait"] for name in trait_names},
|
|
3379
|
+
"num_pairs_per_trait": args.num_pairs,
|
|
3380
|
+
"num_test_prompts": args.num_test_prompts,
|
|
3381
|
+
"layers_tested": layers_to_test,
|
|
3382
|
+
"strengths_tested": [float(s) for s in strengths_to_test],
|
|
3383
|
+
"token_aggregations_tested": [t.value for t in token_aggregations_to_test],
|
|
3384
|
+
"prompt_constructions_tested": [p.value for p in prompt_constructions_to_test],
|
|
3385
|
+
"best_shared_config": best_shared_config,
|
|
3386
|
+
"best_per_trait_strengths": best_per_trait_strengths,
|
|
3387
|
+
"best_combined_score": best_combined_score,
|
|
3388
|
+
"best_sample_responses": [
|
|
3389
|
+
{"prompt": p, "baseline": b, "steered": s} for p, b, s in best_overall_sample_responses
|
|
3390
|
+
]
|
|
3391
|
+
if best_overall_sample_responses
|
|
3392
|
+
else [],
|
|
3393
|
+
"all_results": all_results,
|
|
3394
|
+
}
|
|
3395
|
+
|
|
3396
|
+
with open(results_file, "w") as f:
|
|
3397
|
+
json.dump(output_data, f, indent=2)
|
|
3398
|
+
|
|
3399
|
+
print(f"\nš¾ Saved full results to: {results_file}", flush=True)
|
|
3400
|
+
|
|
3401
|
+
# Print usage example
|
|
3402
|
+
if best_shared_config and vector_paths:
|
|
3403
|
+
print("\nš Usage Example:", flush=True)
|
|
3404
|
+
print(" python -m wisent.core.main multi-steer \\", flush=True)
|
|
3405
|
+
for name in trait_names:
|
|
3406
|
+
print(f" --vector {vector_paths[name]}:{best_per_trait_strengths[name]:.1f} \\", flush=True)
|
|
3407
|
+
print(f" --model {args.model} \\", flush=True)
|
|
3408
|
+
print(f" --layer {best_shared_config['layer']} \\", flush=True)
|
|
3409
|
+
print(' --prompt "Your prompt here"', flush=True)
|
|
3410
|
+
|
|
3411
|
+
print(f"\n{'=' * 80}\n", flush=True)
|
|
3412
|
+
|
|
3413
|
+
return {
|
|
3414
|
+
"action": "multi-personalization",
|
|
3415
|
+
"traits": trait_names,
|
|
3416
|
+
"best_shared_config": best_shared_config,
|
|
3417
|
+
"best_per_trait_strengths": best_per_trait_strengths,
|
|
3418
|
+
"best_combined_score": best_combined_score,
|
|
3419
|
+
"results_file": results_file,
|
|
3420
|
+
"vector_paths": vector_paths,
|
|
3421
|
+
}
|