webscout 8.2.6__py3-none-any.whl → 8.2.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of webscout might be problematic. Click here for more details.
- webscout/AIauto.py +1 -1
- webscout/AIutel.py +298 -239
- webscout/Extra/Act.md +309 -0
- webscout/Extra/GitToolkit/gitapi/README.md +110 -0
- webscout/Extra/YTToolkit/README.md +375 -0
- webscout/Extra/YTToolkit/ytapi/README.md +44 -0
- webscout/Extra/YTToolkit/ytapi/extras.py +92 -19
- webscout/Extra/autocoder/autocoder.py +309 -114
- webscout/Extra/autocoder/autocoder_utiles.py +15 -15
- webscout/Extra/gguf.md +430 -0
- webscout/Extra/tempmail/README.md +488 -0
- webscout/Extra/weather.md +281 -0
- webscout/Litlogger/Readme.md +175 -0
- webscout/Provider/AISEARCH/DeepFind.py +41 -37
- webscout/Provider/AISEARCH/README.md +279 -0
- webscout/Provider/AISEARCH/__init__.py +0 -1
- webscout/Provider/AISEARCH/genspark_search.py +228 -86
- webscout/Provider/AISEARCH/hika_search.py +11 -11
- webscout/Provider/AISEARCH/scira_search.py +324 -322
- webscout/Provider/AllenAI.py +7 -14
- webscout/Provider/Blackboxai.py +518 -74
- webscout/Provider/Cloudflare.py +0 -1
- webscout/Provider/Deepinfra.py +23 -21
- webscout/Provider/Flowith.py +217 -0
- webscout/Provider/FreeGemini.py +250 -0
- webscout/Provider/GizAI.py +15 -5
- webscout/Provider/Glider.py +11 -8
- webscout/Provider/HeckAI.py +80 -52
- webscout/Provider/Koboldai.py +7 -4
- webscout/Provider/LambdaChat.py +2 -2
- webscout/Provider/Marcus.py +10 -18
- webscout/Provider/OPENAI/BLACKBOXAI.py +735 -0
- webscout/Provider/OPENAI/Cloudflare.py +378 -0
- webscout/Provider/OPENAI/FreeGemini.py +282 -0
- webscout/Provider/OPENAI/NEMOTRON.py +244 -0
- webscout/Provider/OPENAI/README.md +1253 -0
- webscout/Provider/OPENAI/__init__.py +8 -0
- webscout/Provider/OPENAI/ai4chat.py +293 -286
- webscout/Provider/OPENAI/api.py +810 -0
- webscout/Provider/OPENAI/base.py +217 -14
- webscout/Provider/OPENAI/c4ai.py +373 -367
- webscout/Provider/OPENAI/chatgpt.py +7 -0
- webscout/Provider/OPENAI/chatgptclone.py +7 -0
- webscout/Provider/OPENAI/chatsandbox.py +172 -0
- webscout/Provider/OPENAI/deepinfra.py +30 -20
- webscout/Provider/OPENAI/e2b.py +6 -0
- webscout/Provider/OPENAI/exaai.py +7 -0
- webscout/Provider/OPENAI/exachat.py +6 -0
- webscout/Provider/OPENAI/flowith.py +162 -0
- webscout/Provider/OPENAI/freeaichat.py +359 -352
- webscout/Provider/OPENAI/glider.py +323 -316
- webscout/Provider/OPENAI/groq.py +361 -354
- webscout/Provider/OPENAI/heckai.py +30 -64
- webscout/Provider/OPENAI/llmchatco.py +8 -0
- webscout/Provider/OPENAI/mcpcore.py +7 -0
- webscout/Provider/OPENAI/multichat.py +8 -0
- webscout/Provider/OPENAI/netwrck.py +356 -350
- webscout/Provider/OPENAI/opkfc.py +8 -0
- webscout/Provider/OPENAI/scirachat.py +471 -462
- webscout/Provider/OPENAI/sonus.py +9 -0
- webscout/Provider/OPENAI/standardinput.py +9 -1
- webscout/Provider/OPENAI/textpollinations.py +339 -329
- webscout/Provider/OPENAI/toolbaz.py +7 -0
- webscout/Provider/OPENAI/typefully.py +355 -0
- webscout/Provider/OPENAI/typegpt.py +358 -346
- webscout/Provider/OPENAI/uncovrAI.py +7 -0
- webscout/Provider/OPENAI/utils.py +103 -7
- webscout/Provider/OPENAI/venice.py +12 -0
- webscout/Provider/OPENAI/wisecat.py +19 -19
- webscout/Provider/OPENAI/writecream.py +7 -0
- webscout/Provider/OPENAI/x0gpt.py +7 -0
- webscout/Provider/OPENAI/yep.py +50 -21
- webscout/Provider/OpenGPT.py +1 -1
- webscout/Provider/TTI/AiForce/README.md +159 -0
- webscout/Provider/TTI/FreeAIPlayground/README.md +99 -0
- webscout/Provider/TTI/ImgSys/README.md +174 -0
- webscout/Provider/TTI/MagicStudio/README.md +101 -0
- webscout/Provider/TTI/Nexra/README.md +155 -0
- webscout/Provider/TTI/PollinationsAI/README.md +146 -0
- webscout/Provider/TTI/README.md +128 -0
- webscout/Provider/TTI/aiarta/README.md +134 -0
- webscout/Provider/TTI/artbit/README.md +100 -0
- webscout/Provider/TTI/fastflux/README.md +129 -0
- webscout/Provider/TTI/huggingface/README.md +114 -0
- webscout/Provider/TTI/piclumen/README.md +161 -0
- webscout/Provider/TTI/pixelmuse/README.md +79 -0
- webscout/Provider/TTI/talkai/README.md +139 -0
- webscout/Provider/TTS/README.md +192 -0
- webscout/Provider/TTS/__init__.py +2 -1
- webscout/Provider/TTS/speechma.py +500 -100
- webscout/Provider/TTS/sthir.py +94 -0
- webscout/Provider/TeachAnything.py +3 -7
- webscout/Provider/TextPollinationsAI.py +4 -2
- webscout/Provider/{aimathgpt.py → UNFINISHED/ChatHub.py} +88 -68
- webscout/Provider/UNFINISHED/liner_api_request.py +263 -0
- webscout/Provider/UNFINISHED/oivscode.py +351 -0
- webscout/Provider/UNFINISHED/test_lmarena.py +119 -0
- webscout/Provider/Writecream.py +11 -2
- webscout/Provider/__init__.py +8 -14
- webscout/Provider/ai4chat.py +4 -58
- webscout/Provider/asksteve.py +17 -9
- webscout/Provider/cerebras.py +3 -1
- webscout/Provider/koala.py +170 -268
- webscout/Provider/llmchat.py +3 -0
- webscout/Provider/lmarena.py +198 -0
- webscout/Provider/meta.py +7 -4
- webscout/Provider/samurai.py +223 -0
- webscout/Provider/scira_chat.py +4 -2
- webscout/Provider/typefully.py +23 -151
- webscout/__init__.py +4 -2
- webscout/cli.py +3 -28
- webscout/conversation.py +35 -35
- webscout/litagent/Readme.md +276 -0
- webscout/scout/README.md +402 -0
- webscout/swiftcli/Readme.md +323 -0
- webscout/version.py +1 -1
- webscout/webscout_search.py +2 -182
- webscout/webscout_search_async.py +1 -179
- webscout/zeroart/README.md +89 -0
- webscout/zeroart/__init__.py +134 -54
- webscout/zeroart/base.py +19 -13
- webscout/zeroart/effects.py +101 -99
- webscout/zeroart/fonts.py +1239 -816
- {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/METADATA +116 -74
- {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/RECORD +130 -103
- {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/WHEEL +1 -1
- webscout-8.2.8.dist-info/entry_points.txt +3 -0
- webscout-8.2.8.dist-info/top_level.txt +1 -0
- webscout/Provider/AISEARCH/ISou.py +0 -256
- webscout/Provider/ElectronHub.py +0 -773
- webscout/Provider/Free2GPT.py +0 -241
- webscout/Provider/GPTWeb.py +0 -249
- webscout/Provider/bagoodex.py +0 -145
- webscout/Provider/geminiprorealtime.py +0 -160
- webscout/scout/core.py +0 -881
- webscout-8.2.6.dist-info/entry_points.txt +0 -3
- webscout-8.2.6.dist-info/top_level.txt +0 -2
- webstoken/__init__.py +0 -30
- webstoken/classifier.py +0 -189
- webstoken/keywords.py +0 -216
- webstoken/language.py +0 -128
- webstoken/ner.py +0 -164
- webstoken/normalizer.py +0 -35
- webstoken/processor.py +0 -77
- webstoken/sentiment.py +0 -206
- webstoken/stemmer.py +0 -73
- webstoken/tagger.py +0 -60
- webstoken/tokenizer.py +0 -158
- /webscout/Provider/{Youchat.py → UNFINISHED/Youchat.py} +0 -0
- {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/licenses/LICENSE.md +0 -0
webstoken/__init__.py
DELETED
|
@@ -1,30 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Webstoken - A pure Python NLP toolkit for text processing
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
from .tokenizer import SentenceTokenizer, WordTokenizer
|
|
6
|
-
from .tagger import POSTagger
|
|
7
|
-
from .stemmer import Stemmer
|
|
8
|
-
from .normalizer import TextNormalizer
|
|
9
|
-
from .processor import process_text
|
|
10
|
-
from .ner import NamedEntityRecognizer
|
|
11
|
-
from .classifier import TextClassifier, TopicClassifier
|
|
12
|
-
from .language import LanguageDetector
|
|
13
|
-
from .sentiment import SentimentAnalyzer
|
|
14
|
-
from .keywords import KeywordExtractor
|
|
15
|
-
|
|
16
|
-
__version__ = '0.1.0'
|
|
17
|
-
__all__ = [
|
|
18
|
-
'SentenceTokenizer',
|
|
19
|
-
'WordTokenizer',
|
|
20
|
-
'POSTagger',
|
|
21
|
-
'Stemmer',
|
|
22
|
-
'TextNormalizer',
|
|
23
|
-
'process_text',
|
|
24
|
-
'NamedEntityRecognizer',
|
|
25
|
-
'TextClassifier',
|
|
26
|
-
'TopicClassifier',
|
|
27
|
-
'LanguageDetector',
|
|
28
|
-
'SentimentAnalyzer',
|
|
29
|
-
'KeywordExtractor'
|
|
30
|
-
]
|
webstoken/classifier.py
DELETED
|
@@ -1,189 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Text classification module using rule-based and statistical approaches.
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
from typing import Dict, List, Set, Tuple
|
|
6
|
-
from collections import Counter
|
|
7
|
-
import math
|
|
8
|
-
import re
|
|
9
|
-
|
|
10
|
-
from .normalizer import TextNormalizer
|
|
11
|
-
from .tokenizer import WordTokenizer
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
class TextClassifier:
|
|
15
|
-
"""Simple text classifier using TF-IDF and cosine similarity."""
|
|
16
|
-
|
|
17
|
-
def __init__(self):
|
|
18
|
-
self.word_tokenizer = WordTokenizer()
|
|
19
|
-
self.normalizer = TextNormalizer()
|
|
20
|
-
self.documents: Dict[str, List[str]] = {} # category -> list of documents
|
|
21
|
-
self.vocabulary: Set[str] = set()
|
|
22
|
-
self.idf_scores: Dict[str, float] = {}
|
|
23
|
-
self.category_vectors: Dict[str, Dict[str, float]] = {}
|
|
24
|
-
|
|
25
|
-
def train(self, documents: Dict[str, List[str]]) -> None:
|
|
26
|
-
"""
|
|
27
|
-
Train the classifier on labeled documents.
|
|
28
|
-
|
|
29
|
-
Args:
|
|
30
|
-
documents: Dict mapping categories to lists of documents
|
|
31
|
-
"""
|
|
32
|
-
self.documents = documents
|
|
33
|
-
|
|
34
|
-
# Build vocabulary and document frequencies
|
|
35
|
-
doc_frequencies: Dict[str, int] = Counter()
|
|
36
|
-
total_docs = sum(len(docs) for docs in documents.values())
|
|
37
|
-
|
|
38
|
-
for category, docs in documents.items():
|
|
39
|
-
for doc in docs:
|
|
40
|
-
# Normalize and tokenize
|
|
41
|
-
doc = self.normalizer.normalize(doc)
|
|
42
|
-
tokens = self.word_tokenizer.tokenize(doc)
|
|
43
|
-
|
|
44
|
-
# Update vocabulary and document frequencies
|
|
45
|
-
unique_tokens = set(tokens)
|
|
46
|
-
self.vocabulary.update(unique_tokens)
|
|
47
|
-
doc_frequencies.update(unique_tokens)
|
|
48
|
-
|
|
49
|
-
# Calculate IDF scores
|
|
50
|
-
self.idf_scores = {
|
|
51
|
-
word: math.log(total_docs / (freq + 1))
|
|
52
|
-
for word, freq in doc_frequencies.items()
|
|
53
|
-
}
|
|
54
|
-
|
|
55
|
-
# Calculate TF-IDF vectors for each category
|
|
56
|
-
for category, docs in documents.items():
|
|
57
|
-
category_vector: Dict[str, float] = {word: 0.0 for word in self.vocabulary}
|
|
58
|
-
|
|
59
|
-
for doc in docs:
|
|
60
|
-
# Get term frequencies
|
|
61
|
-
doc = self.normalizer.normalize(doc)
|
|
62
|
-
tokens = self.word_tokenizer.tokenize(doc)
|
|
63
|
-
term_freqs = Counter(tokens)
|
|
64
|
-
|
|
65
|
-
# Update category vector with TF-IDF scores
|
|
66
|
-
for word, tf in term_freqs.items():
|
|
67
|
-
if word in self.idf_scores:
|
|
68
|
-
category_vector[word] += tf * self.idf_scores[word]
|
|
69
|
-
|
|
70
|
-
# Average the scores
|
|
71
|
-
for word in category_vector:
|
|
72
|
-
category_vector[word] /= len(docs)
|
|
73
|
-
|
|
74
|
-
self.category_vectors[category] = category_vector
|
|
75
|
-
|
|
76
|
-
def _calculate_vector(self, text: str) -> Dict[str, float]:
|
|
77
|
-
"""Calculate TF-IDF vector for input text."""
|
|
78
|
-
# Normalize and tokenize
|
|
79
|
-
text = self.normalizer.normalize(text)
|
|
80
|
-
tokens = self.word_tokenizer.tokenize(text)
|
|
81
|
-
term_freqs = Counter(tokens)
|
|
82
|
-
|
|
83
|
-
# Calculate TF-IDF scores
|
|
84
|
-
vector = {word: 0.0 for word in self.vocabulary}
|
|
85
|
-
for word, tf in term_freqs.items():
|
|
86
|
-
if word in self.idf_scores:
|
|
87
|
-
vector[word] = tf * self.idf_scores[word]
|
|
88
|
-
|
|
89
|
-
return vector
|
|
90
|
-
|
|
91
|
-
def _cosine_similarity(self, vec1: Dict[str, float], vec2: Dict[str, float]) -> float:
|
|
92
|
-
"""Calculate cosine similarity between two vectors."""
|
|
93
|
-
dot_product = sum(vec1[word] * vec2[word] for word in vec1)
|
|
94
|
-
norm1 = math.sqrt(sum(score * score for score in vec1.values()))
|
|
95
|
-
norm2 = math.sqrt(sum(score * score for score in vec2.values()))
|
|
96
|
-
|
|
97
|
-
if norm1 == 0 or norm2 == 0:
|
|
98
|
-
return 0.0
|
|
99
|
-
return dot_product / (norm1 * norm2)
|
|
100
|
-
|
|
101
|
-
def classify(self, text: str) -> List[Tuple[str, float]]:
|
|
102
|
-
"""
|
|
103
|
-
Classify text into categories with confidence scores.
|
|
104
|
-
|
|
105
|
-
Returns:
|
|
106
|
-
List of (category, confidence) tuples, sorted by confidence
|
|
107
|
-
"""
|
|
108
|
-
if not self.category_vectors:
|
|
109
|
-
raise ValueError("Classifier must be trained before classification")
|
|
110
|
-
|
|
111
|
-
# Calculate vector for input text
|
|
112
|
-
text_vector = self._calculate_vector(text)
|
|
113
|
-
|
|
114
|
-
# Calculate similarity with each category
|
|
115
|
-
similarities = [
|
|
116
|
-
(category, self._cosine_similarity(text_vector, category_vec))
|
|
117
|
-
for category, category_vec in self.category_vectors.items()
|
|
118
|
-
]
|
|
119
|
-
|
|
120
|
-
# Sort by similarity score
|
|
121
|
-
return sorted(similarities, key=lambda x: x[1], reverse=True)
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
class TopicClassifier:
|
|
125
|
-
"""Rule-based topic classifier using keyword matching."""
|
|
126
|
-
|
|
127
|
-
def __init__(self):
|
|
128
|
-
# Define topic keywords
|
|
129
|
-
self.topic_keywords = {
|
|
130
|
-
'TECHNOLOGY': {
|
|
131
|
-
'computer', 'software', 'hardware', 'internet', 'programming',
|
|
132
|
-
'digital', 'data', 'algorithm', 'code', 'web', 'app', 'mobile',
|
|
133
|
-
'cyber', 'robot', 'ai', 'artificial intelligence', 'machine learning'
|
|
134
|
-
},
|
|
135
|
-
'SCIENCE': {
|
|
136
|
-
'research', 'experiment', 'laboratory', 'scientific', 'physics',
|
|
137
|
-
'chemistry', 'biology', 'mathematics', 'theory', 'hypothesis',
|
|
138
|
-
'study', 'discovery', 'innovation', 'analysis', 'observation'
|
|
139
|
-
},
|
|
140
|
-
'BUSINESS': {
|
|
141
|
-
'company', 'market', 'finance', 'investment', 'stock', 'trade',
|
|
142
|
-
'economy', 'business', 'corporate', 'startup', 'entrepreneur',
|
|
143
|
-
'profit', 'revenue', 'management', 'strategy', 'commercial'
|
|
144
|
-
},
|
|
145
|
-
'POLITICS': {
|
|
146
|
-
'government', 'policy', 'election', 'political', 'democracy',
|
|
147
|
-
'parliament', 'congress', 'law', 'legislation', 'party',
|
|
148
|
-
'vote', 'campaign', 'president', 'minister', 'diplomatic'
|
|
149
|
-
},
|
|
150
|
-
'SPORTS': {
|
|
151
|
-
'game', 'team', 'player', 'competition', 'tournament',
|
|
152
|
-
'championship', 'score', 'match', 'athlete', 'sport',
|
|
153
|
-
'win', 'lose', 'victory', 'defeat', 'coach', 'training'
|
|
154
|
-
},
|
|
155
|
-
'ENTERTAINMENT': {
|
|
156
|
-
'movie', 'film', 'music', 'song', 'concert', 'actor',
|
|
157
|
-
'actress', 'celebrity', 'show', 'performance', 'art',
|
|
158
|
-
'entertainment', 'theater', 'dance', 'festival', 'media'
|
|
159
|
-
}
|
|
160
|
-
}
|
|
161
|
-
|
|
162
|
-
# Compile regex patterns for each topic
|
|
163
|
-
self.topic_patterns = {
|
|
164
|
-
topic: re.compile(r'\b(' + '|'.join(re.escape(kw) for kw in keywords) + r')\b', re.IGNORECASE)
|
|
165
|
-
for topic, keywords in self.topic_keywords.items()
|
|
166
|
-
}
|
|
167
|
-
|
|
168
|
-
def classify(self, text: str) -> List[Tuple[str, float]]:
|
|
169
|
-
"""
|
|
170
|
-
Classify text into topics with confidence scores.
|
|
171
|
-
|
|
172
|
-
Returns:
|
|
173
|
-
List of (topic, confidence) tuples, sorted by confidence
|
|
174
|
-
"""
|
|
175
|
-
# Count keyword matches for each topic
|
|
176
|
-
topic_matches = {
|
|
177
|
-
topic: len(pattern.findall(text))
|
|
178
|
-
for topic, pattern in self.topic_patterns.items()
|
|
179
|
-
}
|
|
180
|
-
|
|
181
|
-
# Calculate confidence scores
|
|
182
|
-
total_matches = sum(topic_matches.values()) or 1 # Avoid division by zero
|
|
183
|
-
topic_scores = [
|
|
184
|
-
(topic, count / total_matches)
|
|
185
|
-
for topic, count in topic_matches.items()
|
|
186
|
-
]
|
|
187
|
-
|
|
188
|
-
# Sort by score
|
|
189
|
-
return sorted(topic_scores, key=lambda x: x[1], reverse=True)
|
webstoken/keywords.py
DELETED
|
@@ -1,216 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Keyword extraction module using statistical and graph-based approaches.
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
from typing import Dict, List, Set, Tuple
|
|
6
|
-
from collections import Counter, defaultdict
|
|
7
|
-
import math
|
|
8
|
-
import re
|
|
9
|
-
|
|
10
|
-
from .tokenizer import WordTokenizer
|
|
11
|
-
from .normalizer import TextNormalizer
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
class KeywordExtractor:
|
|
15
|
-
"""Keyword extraction using TF-IDF and TextRank-inspired algorithms."""
|
|
16
|
-
|
|
17
|
-
def __init__(self):
|
|
18
|
-
self.word_tokenizer = WordTokenizer()
|
|
19
|
-
self.normalizer = TextNormalizer()
|
|
20
|
-
|
|
21
|
-
# Common words to filter out beyond basic stop words
|
|
22
|
-
self.filter_words: Set[str] = {
|
|
23
|
-
'would', 'could', 'should', 'said', 'also', 'may', 'might',
|
|
24
|
-
'must', 'need', 'shall', 'want', 'way', 'time', 'just',
|
|
25
|
-
'now', 'like', 'make', 'made', 'well', 'back', 'even',
|
|
26
|
-
'still', 'way', 'take', 'took', 'get', 'got', 'go', 'went'
|
|
27
|
-
}
|
|
28
|
-
|
|
29
|
-
def _split_into_sentences(self, text: str) -> List[str]:
|
|
30
|
-
"""Split text into sentences using simple rules."""
|
|
31
|
-
text = re.sub(r'\s+', ' ', text)
|
|
32
|
-
sentences = re.split(r'[.!?]+', text)
|
|
33
|
-
return [s.strip() for s in sentences if s.strip()]
|
|
34
|
-
|
|
35
|
-
def _calculate_word_scores(self, text: str) -> Dict[str, float]:
|
|
36
|
-
"""Calculate word importance scores using frequency and position."""
|
|
37
|
-
# Normalize and tokenize text
|
|
38
|
-
text = self.normalizer.normalize(text)
|
|
39
|
-
sentences = self._split_into_sentences(text)
|
|
40
|
-
|
|
41
|
-
word_scores: Dict[str, float] = defaultdict(float)
|
|
42
|
-
word_positions: Dict[str, List[int]] = defaultdict(list)
|
|
43
|
-
|
|
44
|
-
# Calculate word frequencies and positions
|
|
45
|
-
for i, sentence in enumerate(sentences):
|
|
46
|
-
words = self.word_tokenizer.tokenize(sentence)
|
|
47
|
-
for j, word in enumerate(words):
|
|
48
|
-
word = word.lower()
|
|
49
|
-
if (word.isalnum() and
|
|
50
|
-
len(word) > 2 and
|
|
51
|
-
word not in self.filter_words and
|
|
52
|
-
word not in self.normalizer.stop_words):
|
|
53
|
-
word_scores[word] += 1
|
|
54
|
-
word_positions[word].append(i)
|
|
55
|
-
|
|
56
|
-
# Adjust scores based on position
|
|
57
|
-
num_sentences = len(sentences)
|
|
58
|
-
for word, positions in word_positions.items():
|
|
59
|
-
# Words appearing in first or last sentences get bonus
|
|
60
|
-
if 0 in positions:
|
|
61
|
-
word_scores[word] *= 1.2
|
|
62
|
-
if num_sentences - 1 in positions:
|
|
63
|
-
word_scores[word] *= 1.1
|
|
64
|
-
|
|
65
|
-
# Words appearing throughout text get bonus
|
|
66
|
-
coverage = len(set(positions)) / num_sentences
|
|
67
|
-
word_scores[word] *= (1 + coverage)
|
|
68
|
-
|
|
69
|
-
return word_scores
|
|
70
|
-
|
|
71
|
-
def _calculate_word_cooccurrence(self, text: str, window_size: int = 3) -> Dict[str, Dict[str, int]]:
|
|
72
|
-
"""Calculate word co-occurrence matrix."""
|
|
73
|
-
# Normalize and tokenize text
|
|
74
|
-
text = self.normalizer.normalize(text)
|
|
75
|
-
words = self.word_tokenizer.tokenize(text)
|
|
76
|
-
|
|
77
|
-
# Filter words
|
|
78
|
-
filtered_words = [
|
|
79
|
-
word.lower() for word in words
|
|
80
|
-
if (word.isalnum() and
|
|
81
|
-
len(word) > 2 and
|
|
82
|
-
word.lower() not in self.filter_words and
|
|
83
|
-
word.lower() not in self.normalizer.stop_words)
|
|
84
|
-
]
|
|
85
|
-
|
|
86
|
-
# Build co-occurrence matrix
|
|
87
|
-
cooccurrence: Dict[str, Dict[str, int]] = defaultdict(lambda: defaultdict(int))
|
|
88
|
-
|
|
89
|
-
for i, word in enumerate(filtered_words):
|
|
90
|
-
for j in range(max(0, i - window_size), min(len(filtered_words), i + window_size + 1)):
|
|
91
|
-
if i != j:
|
|
92
|
-
cooccurrence[word][filtered_words[j]] += 1
|
|
93
|
-
cooccurrence[filtered_words[j]][word] += 1
|
|
94
|
-
|
|
95
|
-
return cooccurrence
|
|
96
|
-
|
|
97
|
-
def _textrank_scores(self, cooccurrence: Dict[str, Dict[str, int]], damping: float = 0.85,
|
|
98
|
-
iterations: int = 30) -> Dict[str, float]:
|
|
99
|
-
"""Calculate TextRank scores from co-occurrence matrix."""
|
|
100
|
-
scores = {word: 1.0 for word in cooccurrence}
|
|
101
|
-
|
|
102
|
-
for _ in range(iterations):
|
|
103
|
-
new_scores = {}
|
|
104
|
-
for word in scores:
|
|
105
|
-
if not cooccurrence[word]:
|
|
106
|
-
continue
|
|
107
|
-
|
|
108
|
-
incoming_score = sum(
|
|
109
|
-
scores[other] * cooccurrence[word][other] / sum(cooccurrence[other].values())
|
|
110
|
-
for other in cooccurrence[word]
|
|
111
|
-
)
|
|
112
|
-
new_scores[word] = (1 - damping) + damping * incoming_score
|
|
113
|
-
|
|
114
|
-
# Check convergence
|
|
115
|
-
score_diff = sum(abs(new_scores[w] - scores[w]) for w in scores)
|
|
116
|
-
scores = new_scores
|
|
117
|
-
if score_diff < 0.0001:
|
|
118
|
-
break
|
|
119
|
-
|
|
120
|
-
return scores
|
|
121
|
-
|
|
122
|
-
def extract_keywords(self, text: str, num_keywords: int = 10,
|
|
123
|
-
use_textrank: bool = True) -> List[Tuple[str, float]]:
|
|
124
|
-
"""
|
|
125
|
-
Extract keywords from text using combined frequency and graph-based approach.
|
|
126
|
-
|
|
127
|
-
Args:
|
|
128
|
-
text: Input text
|
|
129
|
-
num_keywords: Number of keywords to return
|
|
130
|
-
use_textrank: Whether to use TextRank algorithm
|
|
131
|
-
|
|
132
|
-
Returns:
|
|
133
|
-
List of (keyword, score) tuples, sorted by score
|
|
134
|
-
"""
|
|
135
|
-
if not text:
|
|
136
|
-
return []
|
|
137
|
-
|
|
138
|
-
# Get frequency-based scores
|
|
139
|
-
freq_scores = self._calculate_word_scores(text)
|
|
140
|
-
|
|
141
|
-
if use_textrank:
|
|
142
|
-
# Get TextRank scores
|
|
143
|
-
cooccurrence = self._calculate_word_cooccurrence(text)
|
|
144
|
-
textrank_scores = self._textrank_scores(cooccurrence)
|
|
145
|
-
|
|
146
|
-
# Combine scores
|
|
147
|
-
combined_scores = {
|
|
148
|
-
word: freq_scores[word] * textrank_scores.get(word, 0)
|
|
149
|
-
for word in freq_scores
|
|
150
|
-
}
|
|
151
|
-
else:
|
|
152
|
-
combined_scores = freq_scores
|
|
153
|
-
|
|
154
|
-
# Sort and return top keywords
|
|
155
|
-
sorted_words = sorted(
|
|
156
|
-
combined_scores.items(),
|
|
157
|
-
key=lambda x: x[1],
|
|
158
|
-
reverse=True
|
|
159
|
-
)
|
|
160
|
-
|
|
161
|
-
return sorted_words[:num_keywords]
|
|
162
|
-
|
|
163
|
-
def extract_keyphrases(self, text: str, num_phrases: int = 5,
|
|
164
|
-
min_words: int = 2, max_words: int = 4) -> List[Tuple[str, float]]:
|
|
165
|
-
"""
|
|
166
|
-
Extract key phrases from text.
|
|
167
|
-
|
|
168
|
-
Args:
|
|
169
|
-
text: Input text
|
|
170
|
-
num_phrases: Number of phrases to return
|
|
171
|
-
min_words: Minimum words in phrase
|
|
172
|
-
max_words: Maximum words in phrase
|
|
173
|
-
|
|
174
|
-
Returns:
|
|
175
|
-
List of (phrase, score) tuples, sorted by score
|
|
176
|
-
"""
|
|
177
|
-
# Normalize and split into sentences
|
|
178
|
-
text = self.normalizer.normalize(text)
|
|
179
|
-
sentences = self._split_into_sentences(text)
|
|
180
|
-
|
|
181
|
-
# Get word importance scores
|
|
182
|
-
word_scores = self._calculate_word_scores(text)
|
|
183
|
-
|
|
184
|
-
# Extract candidate phrases
|
|
185
|
-
phrases: Dict[str, float] = {}
|
|
186
|
-
|
|
187
|
-
for sentence in sentences:
|
|
188
|
-
words = self.word_tokenizer.tokenize(sentence)
|
|
189
|
-
|
|
190
|
-
# Generate phrases of different lengths
|
|
191
|
-
for i in range(len(words)):
|
|
192
|
-
for length in range(min_words, min(max_words + 1, len(words) - i + 1)):
|
|
193
|
-
phrase_words = words[i:i+length]
|
|
194
|
-
|
|
195
|
-
# Filter phrases
|
|
196
|
-
if all(
|
|
197
|
-
word.isalnum() and
|
|
198
|
-
len(word) > 2 and
|
|
199
|
-
word.lower() not in self.filter_words and
|
|
200
|
-
word.lower() not in self.normalizer.stop_words
|
|
201
|
-
for word in phrase_words
|
|
202
|
-
):
|
|
203
|
-
phrase = ' '.join(phrase_words)
|
|
204
|
-
# Score is average of word scores
|
|
205
|
-
score = sum(word_scores.get(word.lower(), 0) for word in phrase_words)
|
|
206
|
-
score /= len(phrase_words)
|
|
207
|
-
phrases[phrase] = score
|
|
208
|
-
|
|
209
|
-
# Sort and return top phrases
|
|
210
|
-
sorted_phrases = sorted(
|
|
211
|
-
phrases.items(),
|
|
212
|
-
key=lambda x: x[1],
|
|
213
|
-
reverse=True
|
|
214
|
-
)
|
|
215
|
-
|
|
216
|
-
return sorted_phrases[:num_phrases]
|
webstoken/language.py
DELETED
|
@@ -1,128 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Language detection module using character and word frequency analysis.
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
from typing import Dict, List, Set, Tuple
|
|
6
|
-
from collections import Counter
|
|
7
|
-
import re
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
class LanguageDetector:
|
|
11
|
-
"""Language detection using character n-gram frequencies."""
|
|
12
|
-
|
|
13
|
-
def __init__(self):
|
|
14
|
-
# Language profiles based on common character sequences
|
|
15
|
-
self.language_profiles = {
|
|
16
|
-
'ENGLISH': {
|
|
17
|
-
'chars': 'etaoinshrdlcumwfgypbvkjxqz',
|
|
18
|
-
'ngrams': {'th', 'he', 'in', 'er', 'an', 're', 'on', 'at', 'en', 'nd',
|
|
19
|
-
'ti', 'es', 'or', 'te', 'of', 'ed', 'is', 'it', 'al', 'ar',
|
|
20
|
-
'st', 'to', 'nt', 'ng', 'se', 'ha', 'as', 'ou', 'io', 'le'},
|
|
21
|
-
'words': {'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have',
|
|
22
|
-
'i', 'it', 'for', 'not', 'on', 'with', 'he', 'as', 'you',
|
|
23
|
-
'do', 'at'}
|
|
24
|
-
},
|
|
25
|
-
'SPANISH': {
|
|
26
|
-
'chars': 'eaosrnidlctumpbgvyqhfzjñxwk',
|
|
27
|
-
'ngrams': {'de', 'en', 'el', 'la', 'os', 'es', 'as', 'ar', 'er', 'ra',
|
|
28
|
-
'al', 'an', 'do', 'or', 'ta', 'ue', 'io', 'on', 'ro', 'ad',
|
|
29
|
-
'te', 'co', 'st', 'ci', 'nt', 'to', 'lo', 'no', 'po', 'ac'},
|
|
30
|
-
'words': {'de', 'la', 'que', 'el', 'en', 'y', 'a', 'los', 'se', 'del',
|
|
31
|
-
'las', 'un', 'por', 'con', 'no', 'una', 'su', 'para', 'es',
|
|
32
|
-
'al'}
|
|
33
|
-
},
|
|
34
|
-
'FRENCH': {
|
|
35
|
-
'chars': 'esaitnrulodcpmévqfbghàjxèêyçwzùâîôûëïüœ',
|
|
36
|
-
'ngrams': {'es', 'le', 'en', 'de', 'nt', 'on', 're', 'er', 'ai', 'te',
|
|
37
|
-
'la', 'an', 'ou', 'it', 'ur', 'et', 'el', 'se', 'qu', 'me',
|
|
38
|
-
'is', 'ar', 'ce', 'ns', 'us', 'ue', 'ss', 'ie', 'em', 'tr'},
|
|
39
|
-
'words': {'le', 'de', 'un', 'être', 'et', 'à', 'il', 'avoir', 'ne',
|
|
40
|
-
'je', 'son', 'que', 'se', 'qui', 'ce', 'dans', 'en', 'du',
|
|
41
|
-
'elle', 'au'}
|
|
42
|
-
},
|
|
43
|
-
'GERMAN': {
|
|
44
|
-
'chars': 'enisratdhulcgmobwfkzvüpäößjyqxéèêëàáâãåāăąćčĉċďđ',
|
|
45
|
-
'ngrams': {'en', 'er', 'ch', 'de', 'ei', 'in', 'te', 'nd', 'ie', 'ge',
|
|
46
|
-
'st', 'ne', 'be', 'es', 'un', 'zu', 'an', 'ng', 'au', 'it',
|
|
47
|
-
'is', 'he', 'ht', 'se', 'ck', 'ic', 're', 'ns', 'sc', 'tz'},
|
|
48
|
-
'words': {'der', 'die', 'und', 'in', 'den', 'von', 'zu', 'das', 'mit',
|
|
49
|
-
'sich', 'des', 'auf', 'für', 'ist', 'im', 'dem', 'nicht',
|
|
50
|
-
'ein', 'eine', 'als'}
|
|
51
|
-
}
|
|
52
|
-
}
|
|
53
|
-
|
|
54
|
-
# Compile word patterns
|
|
55
|
-
self.word_pattern = re.compile(r'\b\w+\b')
|
|
56
|
-
|
|
57
|
-
def _extract_ngrams(self, text: str, n: int = 2) -> List[str]:
|
|
58
|
-
"""Extract character n-grams from text."""
|
|
59
|
-
text = text.lower()
|
|
60
|
-
return [text[i:i+n] for i in range(len(text)-n+1)]
|
|
61
|
-
|
|
62
|
-
def _calculate_char_frequencies(self, text: str) -> Dict[str, float]:
|
|
63
|
-
"""Calculate character frequencies in text."""
|
|
64
|
-
text = text.lower()
|
|
65
|
-
char_count = Counter(c for c in text if c.isalpha())
|
|
66
|
-
total = sum(char_count.values()) or 1
|
|
67
|
-
return {char: count/total for char, count in char_count.items()}
|
|
68
|
-
|
|
69
|
-
def _calculate_ngram_frequencies(self, text: str) -> Dict[str, float]:
|
|
70
|
-
"""Calculate n-gram frequencies in text."""
|
|
71
|
-
ngrams = self._extract_ngrams(text)
|
|
72
|
-
ngram_count = Counter(ngrams)
|
|
73
|
-
total = sum(ngram_count.values()) or 1
|
|
74
|
-
return {ngram: count/total for ngram, count in ngram_count.items()}
|
|
75
|
-
|
|
76
|
-
def _calculate_word_frequencies(self, text: str) -> Dict[str, float]:
|
|
77
|
-
"""Calculate word frequencies in text."""
|
|
78
|
-
words = self.word_pattern.findall(text.lower())
|
|
79
|
-
word_count = Counter(words)
|
|
80
|
-
total = sum(word_count.values()) or 1
|
|
81
|
-
return {word: count/total for word, count in word_count.items()}
|
|
82
|
-
|
|
83
|
-
def _calculate_similarity(self, freq1: Dict[str, float], freq2: Dict[str, float]) -> float:
|
|
84
|
-
"""Calculate similarity between two frequency distributions."""
|
|
85
|
-
common_keys = set(freq1.keys()) & set(freq2.keys())
|
|
86
|
-
if not common_keys:
|
|
87
|
-
return 0.0
|
|
88
|
-
|
|
89
|
-
similarity = sum(min(freq1.get(k, 0), freq2.get(k, 0)) for k in common_keys)
|
|
90
|
-
return similarity
|
|
91
|
-
|
|
92
|
-
def detect(self, text: str) -> List[Tuple[str, float]]:
|
|
93
|
-
"""
|
|
94
|
-
Detect the language of text with confidence scores.
|
|
95
|
-
|
|
96
|
-
Returns:
|
|
97
|
-
List of (language, confidence) tuples, sorted by confidence
|
|
98
|
-
"""
|
|
99
|
-
if not text:
|
|
100
|
-
return []
|
|
101
|
-
|
|
102
|
-
# Calculate frequencies for input text
|
|
103
|
-
char_freqs = self._calculate_char_frequencies(text)
|
|
104
|
-
ngram_freqs = self._calculate_ngram_frequencies(text)
|
|
105
|
-
word_freqs = self._calculate_word_frequencies(text)
|
|
106
|
-
|
|
107
|
-
# Calculate similarity scores for each language
|
|
108
|
-
scores = []
|
|
109
|
-
for lang, profile in self.language_profiles.items():
|
|
110
|
-
# Character similarity
|
|
111
|
-
char_sim = sum(char_freqs.get(c, 0) for c in profile['chars'])
|
|
112
|
-
|
|
113
|
-
# N-gram similarity
|
|
114
|
-
ngram_sim = sum(ngram_freqs.get(ng, 0) for ng in profile['ngrams'])
|
|
115
|
-
|
|
116
|
-
# Word similarity
|
|
117
|
-
word_sim = sum(word_freqs.get(w, 0) for w in profile['words'])
|
|
118
|
-
|
|
119
|
-
# Combined score (weighted average)
|
|
120
|
-
total_score = (0.3 * char_sim + 0.4 * ngram_sim + 0.3 * word_sim)
|
|
121
|
-
scores.append((lang, total_score))
|
|
122
|
-
|
|
123
|
-
# Normalize scores
|
|
124
|
-
total = sum(score for _, score in scores) or 1
|
|
125
|
-
normalized_scores = [(lang, score/total) for lang, score in scores]
|
|
126
|
-
|
|
127
|
-
# Sort by confidence
|
|
128
|
-
return sorted(normalized_scores, key=lambda x: x[1], reverse=True)
|