webscout 8.2.6__py3-none-any.whl → 8.2.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of webscout might be problematic. Click here for more details.
- webscout/AIauto.py +1 -1
- webscout/AIutel.py +298 -239
- webscout/Extra/Act.md +309 -0
- webscout/Extra/GitToolkit/gitapi/README.md +110 -0
- webscout/Extra/YTToolkit/README.md +375 -0
- webscout/Extra/YTToolkit/ytapi/README.md +44 -0
- webscout/Extra/YTToolkit/ytapi/extras.py +92 -19
- webscout/Extra/autocoder/autocoder.py +309 -114
- webscout/Extra/autocoder/autocoder_utiles.py +15 -15
- webscout/Extra/gguf.md +430 -0
- webscout/Extra/tempmail/README.md +488 -0
- webscout/Extra/weather.md +281 -0
- webscout/Litlogger/Readme.md +175 -0
- webscout/Provider/AISEARCH/DeepFind.py +41 -37
- webscout/Provider/AISEARCH/README.md +279 -0
- webscout/Provider/AISEARCH/__init__.py +0 -1
- webscout/Provider/AISEARCH/genspark_search.py +228 -86
- webscout/Provider/AISEARCH/hika_search.py +11 -11
- webscout/Provider/AISEARCH/scira_search.py +324 -322
- webscout/Provider/AllenAI.py +7 -14
- webscout/Provider/Blackboxai.py +518 -74
- webscout/Provider/Cloudflare.py +0 -1
- webscout/Provider/Deepinfra.py +23 -21
- webscout/Provider/Flowith.py +217 -0
- webscout/Provider/FreeGemini.py +250 -0
- webscout/Provider/GizAI.py +15 -5
- webscout/Provider/Glider.py +11 -8
- webscout/Provider/HeckAI.py +80 -52
- webscout/Provider/Koboldai.py +7 -4
- webscout/Provider/LambdaChat.py +2 -2
- webscout/Provider/Marcus.py +10 -18
- webscout/Provider/OPENAI/BLACKBOXAI.py +735 -0
- webscout/Provider/OPENAI/Cloudflare.py +378 -0
- webscout/Provider/OPENAI/FreeGemini.py +282 -0
- webscout/Provider/OPENAI/NEMOTRON.py +244 -0
- webscout/Provider/OPENAI/README.md +1253 -0
- webscout/Provider/OPENAI/__init__.py +8 -0
- webscout/Provider/OPENAI/ai4chat.py +293 -286
- webscout/Provider/OPENAI/api.py +810 -0
- webscout/Provider/OPENAI/base.py +217 -14
- webscout/Provider/OPENAI/c4ai.py +373 -367
- webscout/Provider/OPENAI/chatgpt.py +7 -0
- webscout/Provider/OPENAI/chatgptclone.py +7 -0
- webscout/Provider/OPENAI/chatsandbox.py +172 -0
- webscout/Provider/OPENAI/deepinfra.py +30 -20
- webscout/Provider/OPENAI/e2b.py +6 -0
- webscout/Provider/OPENAI/exaai.py +7 -0
- webscout/Provider/OPENAI/exachat.py +6 -0
- webscout/Provider/OPENAI/flowith.py +162 -0
- webscout/Provider/OPENAI/freeaichat.py +359 -352
- webscout/Provider/OPENAI/glider.py +323 -316
- webscout/Provider/OPENAI/groq.py +361 -354
- webscout/Provider/OPENAI/heckai.py +30 -64
- webscout/Provider/OPENAI/llmchatco.py +8 -0
- webscout/Provider/OPENAI/mcpcore.py +7 -0
- webscout/Provider/OPENAI/multichat.py +8 -0
- webscout/Provider/OPENAI/netwrck.py +356 -350
- webscout/Provider/OPENAI/opkfc.py +8 -0
- webscout/Provider/OPENAI/scirachat.py +471 -462
- webscout/Provider/OPENAI/sonus.py +9 -0
- webscout/Provider/OPENAI/standardinput.py +9 -1
- webscout/Provider/OPENAI/textpollinations.py +339 -329
- webscout/Provider/OPENAI/toolbaz.py +7 -0
- webscout/Provider/OPENAI/typefully.py +355 -0
- webscout/Provider/OPENAI/typegpt.py +358 -346
- webscout/Provider/OPENAI/uncovrAI.py +7 -0
- webscout/Provider/OPENAI/utils.py +103 -7
- webscout/Provider/OPENAI/venice.py +12 -0
- webscout/Provider/OPENAI/wisecat.py +19 -19
- webscout/Provider/OPENAI/writecream.py +7 -0
- webscout/Provider/OPENAI/x0gpt.py +7 -0
- webscout/Provider/OPENAI/yep.py +50 -21
- webscout/Provider/OpenGPT.py +1 -1
- webscout/Provider/TTI/AiForce/README.md +159 -0
- webscout/Provider/TTI/FreeAIPlayground/README.md +99 -0
- webscout/Provider/TTI/ImgSys/README.md +174 -0
- webscout/Provider/TTI/MagicStudio/README.md +101 -0
- webscout/Provider/TTI/Nexra/README.md +155 -0
- webscout/Provider/TTI/PollinationsAI/README.md +146 -0
- webscout/Provider/TTI/README.md +128 -0
- webscout/Provider/TTI/aiarta/README.md +134 -0
- webscout/Provider/TTI/artbit/README.md +100 -0
- webscout/Provider/TTI/fastflux/README.md +129 -0
- webscout/Provider/TTI/huggingface/README.md +114 -0
- webscout/Provider/TTI/piclumen/README.md +161 -0
- webscout/Provider/TTI/pixelmuse/README.md +79 -0
- webscout/Provider/TTI/talkai/README.md +139 -0
- webscout/Provider/TTS/README.md +192 -0
- webscout/Provider/TTS/__init__.py +2 -1
- webscout/Provider/TTS/speechma.py +500 -100
- webscout/Provider/TTS/sthir.py +94 -0
- webscout/Provider/TeachAnything.py +3 -7
- webscout/Provider/TextPollinationsAI.py +4 -2
- webscout/Provider/{aimathgpt.py → UNFINISHED/ChatHub.py} +88 -68
- webscout/Provider/UNFINISHED/liner_api_request.py +263 -0
- webscout/Provider/UNFINISHED/oivscode.py +351 -0
- webscout/Provider/UNFINISHED/test_lmarena.py +119 -0
- webscout/Provider/Writecream.py +11 -2
- webscout/Provider/__init__.py +8 -14
- webscout/Provider/ai4chat.py +4 -58
- webscout/Provider/asksteve.py +17 -9
- webscout/Provider/cerebras.py +3 -1
- webscout/Provider/koala.py +170 -268
- webscout/Provider/llmchat.py +3 -0
- webscout/Provider/lmarena.py +198 -0
- webscout/Provider/meta.py +7 -4
- webscout/Provider/samurai.py +223 -0
- webscout/Provider/scira_chat.py +4 -2
- webscout/Provider/typefully.py +23 -151
- webscout/__init__.py +4 -2
- webscout/cli.py +3 -28
- webscout/conversation.py +35 -35
- webscout/litagent/Readme.md +276 -0
- webscout/scout/README.md +402 -0
- webscout/swiftcli/Readme.md +323 -0
- webscout/version.py +1 -1
- webscout/webscout_search.py +2 -182
- webscout/webscout_search_async.py +1 -179
- webscout/zeroart/README.md +89 -0
- webscout/zeroart/__init__.py +134 -54
- webscout/zeroart/base.py +19 -13
- webscout/zeroart/effects.py +101 -99
- webscout/zeroart/fonts.py +1239 -816
- {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/METADATA +116 -74
- {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/RECORD +130 -103
- {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/WHEEL +1 -1
- webscout-8.2.8.dist-info/entry_points.txt +3 -0
- webscout-8.2.8.dist-info/top_level.txt +1 -0
- webscout/Provider/AISEARCH/ISou.py +0 -256
- webscout/Provider/ElectronHub.py +0 -773
- webscout/Provider/Free2GPT.py +0 -241
- webscout/Provider/GPTWeb.py +0 -249
- webscout/Provider/bagoodex.py +0 -145
- webscout/Provider/geminiprorealtime.py +0 -160
- webscout/scout/core.py +0 -881
- webscout-8.2.6.dist-info/entry_points.txt +0 -3
- webscout-8.2.6.dist-info/top_level.txt +0 -2
- webstoken/__init__.py +0 -30
- webstoken/classifier.py +0 -189
- webstoken/keywords.py +0 -216
- webstoken/language.py +0 -128
- webstoken/ner.py +0 -164
- webstoken/normalizer.py +0 -35
- webstoken/processor.py +0 -77
- webstoken/sentiment.py +0 -206
- webstoken/stemmer.py +0 -73
- webstoken/tagger.py +0 -60
- webstoken/tokenizer.py +0 -158
- /webscout/Provider/{Youchat.py → UNFINISHED/Youchat.py} +0 -0
- {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/licenses/LICENSE.md +0 -0
|
@@ -89,14 +89,14 @@ def get_intro_prompt(name: str = "Vortex") -> str:
|
|
|
89
89
|
A typical interaction unfolds as follows:
|
|
90
90
|
1. The user provides a natural language PROMPT.
|
|
91
91
|
2. You:
|
|
92
|
-
i. Analyze the PROMPT to determine required actions.
|
|
93
|
-
ii.
|
|
94
|
-
iii. Provide clear and concise feedback to the user by printing to the console
|
|
92
|
+
i. Analyze the PROMPT to determine the required actions.
|
|
93
|
+
ii. Craft a SCRIPT to execute those actions. This SCRIPT may contain Python code for logic, data processing, and interacting with Python libraries. However, for any direct shell/command-line (CLI) operations, the SCRIPT MUST use the `!` prefix (e.g., `!ls -la`, `!pip install requests`).
|
|
94
|
+
iii. Provide clear and concise feedback to the user by printing to the console, either from Python code or by observing the output of `!` commands.
|
|
95
95
|
3. The compiler will then:
|
|
96
|
-
i. Extract
|
|
97
|
-
ii. Handle any exceptions that arise during script execution. Exceptions are returned to you starting with "PREVIOUS SCRIPT EXCEPTION:".
|
|
96
|
+
i. Extract the SCRIPT. Python parts of the script are executed (e.g., via `exec()`), and `!` prefixed commands are handled as direct shell executions.
|
|
97
|
+
ii. Handle any exceptions that arise during Python script execution. Exceptions are returned to you starting with "PREVIOUS SCRIPT EXCEPTION:". Errors from `!` commands might also be reported.
|
|
98
98
|
4. In cases of exceptions, ensure that you regenerate the script and return one that has no errors.
|
|
99
|
-
|
|
99
|
+
|
|
100
100
|
<continue_process>
|
|
101
101
|
If you need to review script outputs before task completion, include the word "CONTINUE" at the end of your SCRIPT.
|
|
102
102
|
This allows multi-step reasoning for tasks like summarizing documents, reviewing instructions, or performing other multi-part operations.
|
|
@@ -105,7 +105,7 @@ def get_intro_prompt(name: str = "Vortex") -> str:
|
|
|
105
105
|
2. You:
|
|
106
106
|
i. Determine what needs to be done.
|
|
107
107
|
ii. Determine that you need to see the output of some subprocess call to complete the task
|
|
108
|
-
iii. Write a
|
|
108
|
+
iii. Write a SCRIPT to perform the action and print its output (if necessary), then print the word "CONTINUE".
|
|
109
109
|
3. The compiler will:
|
|
110
110
|
i. Check and run your SCRIPT.
|
|
111
111
|
ii. Capture the output and append it to the conversation as "LAST SCRIPT OUTPUT:".
|
|
@@ -113,7 +113,7 @@ def get_intro_prompt(name: str = "Vortex") -> str:
|
|
|
113
113
|
4. You will then:
|
|
114
114
|
i. Review the original PROMPT + the "LAST SCRIPT OUTPUT:" to determine what to do
|
|
115
115
|
ii. Write a short Python SCRIPT to complete the task.
|
|
116
|
-
iii.
|
|
116
|
+
iii. Communicate back to the user by printing to the console in that SCRIPT, or by ensuring the `!` command output is relevant.
|
|
117
117
|
5. The compiler repeats the above process...
|
|
118
118
|
</continue_process>
|
|
119
119
|
|
|
@@ -121,6 +121,7 @@ def get_intro_prompt(name: str = "Vortex") -> str:
|
|
|
121
121
|
|
|
122
122
|
<conventions>
|
|
123
123
|
- Decline any tasks that seem dangerous, irreversible, or that you don't understand.
|
|
124
|
+
- **Shell/CLI Command Execution**: This is a critical instruction. For ALL shell, terminal, or command-line interface (CLI) tasks (e.g., listing files with `ls` or `dir`, managing packages with `pip` or `npm`, using `git`, running system utilities), you MUST use the `!` prefix followed directly by the command. For example: `!ls -l`, `!pip install SomePackage`, `!git status`. You MUST NEVER use Python modules such as `os.system()`, `subprocess.run()`, `subprocess.Popen()`, or any other Python code constructs to execute these types of commands. The SCRIPT you generate should contain these `!` commands directly when a shell/CLI operation is needed. Python code should still be used for other logic, data manipulation, or when interacting with Python-specific libraries and their functions.
|
|
124
125
|
- Always review the full conversation prior to answering and maintain continuity.
|
|
125
126
|
- If asked for information, just print the information clearly and concisely.
|
|
126
127
|
- If asked to do something, print a concise summary of what you've done as confirmation.
|
|
@@ -129,18 +130,17 @@ def get_intro_prompt(name: str = "Vortex") -> str:
|
|
|
129
130
|
- Assume the user would like something concise. For example rather than printing a massive table, filter or summarize it to what's likely of interest.
|
|
130
131
|
- Actively clean up any temporary processes or files you use.
|
|
131
132
|
- When looking through files, use git as available to skip files, and skip hidden files (.env, .git, etc) by default.
|
|
132
|
-
- You can plot anything with matplotlib.
|
|
133
|
-
-
|
|
133
|
+
- You can plot anything with matplotlib using Python code.
|
|
134
|
+
- **IMPORTANT**: ALWAYS Return your SCRIPT inside of a single pair of \`\`\` delimiters. This SCRIPT can be a mix of Python code and `!`-prefixed shell commands. Only the console output from this SCRIPT (Python prints or `!` command stdout/stderr) is visible to the user, so ensure it's complete.
|
|
134
135
|
</conventions>
|
|
135
136
|
|
|
136
137
|
<examples>
|
|
137
138
|
<example>
|
|
138
|
-
<user_request>Kill the process running on port 3000
|
|
139
|
+
<user_request>Kill the process running on port 3000 and then list installed pip packages.</user_request>
|
|
139
140
|
<rawdog_response>
|
|
140
|
-
```
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
print("Process killed")
|
|
141
|
+
```
|
|
142
|
+
!kill $(lsof -t -i:3000)
|
|
143
|
+
!pip list
|
|
144
144
|
```
|
|
145
145
|
</rawdog_response>
|
|
146
146
|
</example>
|
webscout/Extra/gguf.md
ADDED
|
@@ -0,0 +1,430 @@
|
|
|
1
|
+
<div align="center">
|
|
2
|
+
<a href="https://github.com/OEvortex/Webscout">
|
|
3
|
+
<img src="https://img.shields.io/badge/WebScout-GGUF%20Converter-blue?style=for-the-badge&logo=python&logoColor=white" alt="GGUF Converter Logo">
|
|
4
|
+
</a>
|
|
5
|
+
|
|
6
|
+
<h1>GGUF Converter</h1>
|
|
7
|
+
|
|
8
|
+
<p><strong>Convert Hugging Face models to GGUF format with advanced quantization options</strong></p>
|
|
9
|
+
|
|
10
|
+
<p>
|
|
11
|
+
Transform large language models from Hugging Face into optimized GGUF format for efficient inference on consumer hardware.
|
|
12
|
+
Balance size, speed, and quality with multiple quantization methods.
|
|
13
|
+
</p>
|
|
14
|
+
|
|
15
|
+
<!-- Badges -->
|
|
16
|
+
<p>
|
|
17
|
+
<a href="https://github.com/ggerganov/llama.cpp"><img src="https://img.shields.io/badge/Powered%20by-llama.cpp-orange?style=flat-square" alt="Powered by llama.cpp"></a>
|
|
18
|
+
<a href="https://huggingface.co/"><img src="https://img.shields.io/badge/Hugging%20Face-compatible-yellow?style=flat-square" alt="Hugging Face compatible"></a>
|
|
19
|
+
<a href="#"><img src="https://img.shields.io/badge/GPU-acceleration-green?style=flat-square" alt="GPU acceleration"></a>
|
|
20
|
+
</p>
|
|
21
|
+
</div>
|
|
22
|
+
|
|
23
|
+
<hr/>
|
|
24
|
+
|
|
25
|
+
## 📋 Table of Contents
|
|
26
|
+
|
|
27
|
+
- [🌟 Features](#-features)
|
|
28
|
+
- [⚙️ Installation](#️-installation)
|
|
29
|
+
- [🛠️ Basic Usage](#️-basic-usage)
|
|
30
|
+
- [🧩 Advanced Options](#-advanced-options)
|
|
31
|
+
- [📊 Quantization Methods](#-quantization-methods)
|
|
32
|
+
- [📏 Size & Quality Comparison](#-size--quality-comparison)
|
|
33
|
+
- [📦 Hardware Requirements](#-hardware-requirements)
|
|
34
|
+
- [⚡ Examples](#-examples)
|
|
35
|
+
- [🔍 Troubleshooting](#-troubleshooting)
|
|
36
|
+
- [🧠 Technical Details](#-technical-details)
|
|
37
|
+
|
|
38
|
+
<hr/>
|
|
39
|
+
|
|
40
|
+
## 🌟 Features
|
|
41
|
+
|
|
42
|
+
<details open>
|
|
43
|
+
<summary><b>Core Capabilities</b></summary>
|
|
44
|
+
<p>
|
|
45
|
+
|
|
46
|
+
* **Multiple Quantization Methods**: Support for various precision levels from 2-bit to 16-bit floating point
|
|
47
|
+
* **Importance Matrix Quantization**: Enhanced precision by focusing bits on the most important weights
|
|
48
|
+
* **Model Splitting**: Split large models into manageable chunks for easier distribution
|
|
49
|
+
* **Hardware Acceleration Detection**: Automatically detects and utilizes CUDA, Metal, OpenCL, Vulkan, and ROCm
|
|
50
|
+
* **Hugging Face Integration**: Direct download from and upload to Hugging Face repositories
|
|
51
|
+
* **README Generation**: Automatically creates documentation for your quantized models
|
|
52
|
+
</p>
|
|
53
|
+
</details>
|
|
54
|
+
|
|
55
|
+
<hr/>
|
|
56
|
+
|
|
57
|
+
## ⚙️ Installation
|
|
58
|
+
|
|
59
|
+
<div class="installation-box">
|
|
60
|
+
<p>The GGUF Converter is included with the WebScout package:</p>
|
|
61
|
+
|
|
62
|
+
```bash
|
|
63
|
+
pip install -U webscout
|
|
64
|
+
```
|
|
65
|
+
</div>
|
|
66
|
+
|
|
67
|
+
<hr/>
|
|
68
|
+
|
|
69
|
+
## 🛠️ Basic Usage
|
|
70
|
+
|
|
71
|
+
The simplest way to convert a model is with the default settings:
|
|
72
|
+
|
|
73
|
+
```bash
|
|
74
|
+
python -m webscout.Extra.gguf convert -m "organization/model-name"
|
|
75
|
+
```
|
|
76
|
+
|
|
77
|
+
This will:
|
|
78
|
+
1. Download the model from Hugging Face
|
|
79
|
+
2. Convert it to GGUF format with q4_k_m quantization (a good balance of size and quality)
|
|
80
|
+
3. Save the converted model in your current directory
|
|
81
|
+
|
|
82
|
+
<hr/>
|
|
83
|
+
|
|
84
|
+
## 🧩 Advanced Options
|
|
85
|
+
|
|
86
|
+
<details open>
|
|
87
|
+
<summary><b>Command Reference</b></summary>
|
|
88
|
+
<p>
|
|
89
|
+
|
|
90
|
+
The full command syntax is:
|
|
91
|
+
|
|
92
|
+
```
|
|
93
|
+
python -m webscout.Extra.gguf convert [OPTIONS]
|
|
94
|
+
```
|
|
95
|
+
|
|
96
|
+
| Option | Description | Default |
|
|
97
|
+
|--------|-------------|---------|
|
|
98
|
+
| `-m, --model-id` | The HuggingFace model ID (e.g., 'OEvortex/HelpingAI-Lite-1.5T') | **Required** |
|
|
99
|
+
| `-u, --username` | Your HuggingFace username for uploads | None |
|
|
100
|
+
| `-t, --token` | Your HuggingFace API token for uploads | None |
|
|
101
|
+
| `-q, --quantization` | Comma-separated quantization methods | "q4_k_m" |
|
|
102
|
+
| `-i, --use-imatrix` | Use importance matrix for quantization | False |
|
|
103
|
+
| `--train-data` | Training data file for imatrix quantization | None |
|
|
104
|
+
| `-s, --split-model` | Split the model into smaller chunks | False |
|
|
105
|
+
| `--split-max-tensors` | Maximum number of tensors per file when splitting | 256 |
|
|
106
|
+
| `--split-max-size` | Maximum file size when splitting (e.g., '256M', '5G') | None |
|
|
107
|
+
</p>
|
|
108
|
+
</details>
|
|
109
|
+
|
|
110
|
+
<details>
|
|
111
|
+
<summary><b>Multiple Quantization Methods</b></summary>
|
|
112
|
+
<p>
|
|
113
|
+
|
|
114
|
+
Apply multiple quantization methods at once:
|
|
115
|
+
|
|
116
|
+
```bash
|
|
117
|
+
python -m webscout.Extra.gguf convert -m "organization/model-name" -q "q4_k_m,q5_k_m"
|
|
118
|
+
```
|
|
119
|
+
|
|
120
|
+
This will create two versions of the model with different quantization methods.
|
|
121
|
+
</p>
|
|
122
|
+
</details>
|
|
123
|
+
|
|
124
|
+
<details>
|
|
125
|
+
<summary><b>Uploading to Hugging Face</b></summary>
|
|
126
|
+
<p>
|
|
127
|
+
|
|
128
|
+
Convert and upload the model to your Hugging Face account:
|
|
129
|
+
|
|
130
|
+
```bash
|
|
131
|
+
python -m webscout.Extra.gguf convert -m "organization/model-name" -u "your-username" -t "your-token"
|
|
132
|
+
```
|
|
133
|
+
|
|
134
|
+
This will create a new repository in your account named `model-name-GGUF` containing the converted model.
|
|
135
|
+
</p>
|
|
136
|
+
</details>
|
|
137
|
+
|
|
138
|
+
<details>
|
|
139
|
+
<summary><b>Importance Matrix Quantization</b></summary>
|
|
140
|
+
<p>
|
|
141
|
+
|
|
142
|
+
Use importance matrix for more efficient quantization:
|
|
143
|
+
|
|
144
|
+
```bash
|
|
145
|
+
python -m webscout.Extra.gguf convert -m "organization/model-name" -i --train-data "train_data.txt"
|
|
146
|
+
```
|
|
147
|
+
|
|
148
|
+
Importance matrix helps focus more bits on weights that matter most for the model's performance.
|
|
149
|
+
</p>
|
|
150
|
+
</details>
|
|
151
|
+
|
|
152
|
+
<details>
|
|
153
|
+
<summary><b>Model Splitting</b></summary>
|
|
154
|
+
<p>
|
|
155
|
+
|
|
156
|
+
Split large models for easier distribution:
|
|
157
|
+
|
|
158
|
+
```bash
|
|
159
|
+
# Split by number of tensors
|
|
160
|
+
python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-tensors 256
|
|
161
|
+
|
|
162
|
+
# Split by file size
|
|
163
|
+
python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-size "2G"
|
|
164
|
+
```
|
|
165
|
+
|
|
166
|
+
This is useful for very large models that may be difficult to distribute as a single file.
|
|
167
|
+
</p>
|
|
168
|
+
</details>
|
|
169
|
+
|
|
170
|
+
<hr/>
|
|
171
|
+
|
|
172
|
+
## 📊 Quantization Methods
|
|
173
|
+
|
|
174
|
+
<details open>
|
|
175
|
+
<summary><b>Standard Methods</b></summary>
|
|
176
|
+
<p>
|
|
177
|
+
|
|
178
|
+
| Method | Description |
|
|
179
|
+
|--------|-------------|
|
|
180
|
+
| `fp16` | 16-bit floating point - maximum accuracy, largest size |
|
|
181
|
+
| `q2_k` | 2-bit quantization (smallest size, lowest accuracy) |
|
|
182
|
+
| `q3_k_l` | 3-bit quantization (large) - balanced for size/accuracy |
|
|
183
|
+
| `q3_k_m` | 3-bit quantization (medium) - good balance for most use cases |
|
|
184
|
+
| `q3_k_s` | 3-bit quantization (small) - optimized for speed |
|
|
185
|
+
| `q4_0` | 4-bit quantization (version 0) - standard 4-bit compression |
|
|
186
|
+
| `q4_1` | 4-bit quantization (version 1) - improved accuracy over q4_0 |
|
|
187
|
+
| `q4_k_m` | 4-bit quantization (medium) - balanced for most models |
|
|
188
|
+
| `q4_k_s` | 4-bit quantization (small) - optimized for speed |
|
|
189
|
+
| `q5_0` | 5-bit quantization (version 0) - high accuracy, larger size |
|
|
190
|
+
| `q5_1` | 5-bit quantization (version 1) - improved accuracy over q5_0 |
|
|
191
|
+
| `q5_k_m` | 5-bit quantization (medium) - best balance for quality/size |
|
|
192
|
+
| `q5_k_s` | 5-bit quantization (small) - optimized for speed |
|
|
193
|
+
| `q6_k` | 6-bit quantization - highest accuracy, larger size |
|
|
194
|
+
| `q8_0` | 8-bit quantization - maximum accuracy, largest size |
|
|
195
|
+
</p>
|
|
196
|
+
</details>
|
|
197
|
+
|
|
198
|
+
<details>
|
|
199
|
+
<summary><b>Importance Matrix Methods</b></summary>
|
|
200
|
+
<p>
|
|
201
|
+
|
|
202
|
+
| Method | Description |
|
|
203
|
+
|--------|-------------|
|
|
204
|
+
| `iq3_m` | 3-bit imatrix quantization (medium) - balanced importance-based |
|
|
205
|
+
| `iq3_xxs` | 3-bit imatrix quantization (extra extra small) - maximum compression |
|
|
206
|
+
| `q4_k_m` | 4-bit imatrix quantization (medium) - balanced importance-based |
|
|
207
|
+
| `q4_k_s` | 4-bit imatrix quantization (small) - optimized for speed |
|
|
208
|
+
| `iq4_nl` | 4-bit imatrix quantization (non-linear) - best accuracy for 4-bit |
|
|
209
|
+
| `iq4_xs` | 4-bit imatrix quantization (extra small) - maximum compression |
|
|
210
|
+
| `q5_k_m` | 5-bit imatrix quantization (medium) - balanced importance-based |
|
|
211
|
+
| `q5_k_s` | 5-bit imatrix quantization (small) - optimized for speed |
|
|
212
|
+
</p>
|
|
213
|
+
</details>
|
|
214
|
+
|
|
215
|
+
<hr/>
|
|
216
|
+
|
|
217
|
+
## 📏 Size & Quality Comparison
|
|
218
|
+
|
|
219
|
+
> **TIP:**
|
|
220
|
+
> When choosing a quantization method, consider the tradeoff between model size and quality. Here's a quick guide:
|
|
221
|
+
|
|
222
|
+
<div class="comparison-table">
|
|
223
|
+
|
|
224
|
+
### 1. Maximum Quality (largest size)
|
|
225
|
+
- **fp16**: 100% of original size, best quality
|
|
226
|
+
- **q8_0**: 50% of original size, nearly identical to fp16
|
|
227
|
+
|
|
228
|
+
### 2. Balanced Quality/Size
|
|
229
|
+
- **q5_k_m with imatrix**: 31% of original size, excellent quality
|
|
230
|
+
- **q4_k_m with imatrix**: 25% of original size, good quality for most use cases
|
|
231
|
+
|
|
232
|
+
### 3. Minimum Size (reduced quality)
|
|
233
|
+
- **q3_k_s**: 18% of original size, acceptable for some tasks
|
|
234
|
+
- **q2_k**: 12% of original size, significantly reduced quality
|
|
235
|
+
</div>
|
|
236
|
+
|
|
237
|
+
<hr/>
|
|
238
|
+
|
|
239
|
+
## 📦 Hardware Requirements
|
|
240
|
+
|
|
241
|
+
Hardware requirements vary based on quantization method and model size:
|
|
242
|
+
|
|
243
|
+
<details open>
|
|
244
|
+
<summary><b>Memory Requirements</b></summary>
|
|
245
|
+
<p>
|
|
246
|
+
|
|
247
|
+
| Quantization | RAM Required |
|
|
248
|
+
|--------------|--------------|
|
|
249
|
+
| fp16 | ~2x model size |
|
|
250
|
+
| q8_0 | ~1x model size |
|
|
251
|
+
| q4_k_m | ~0.5x model size |
|
|
252
|
+
| q2_k | ~0.25x model size |
|
|
253
|
+
|
|
254
|
+
For example, a 7B parameter model requires:
|
|
255
|
+
- fp16: ~14GB RAM
|
|
256
|
+
- q4_k_m: ~3.5GB RAM
|
|
257
|
+
</p>
|
|
258
|
+
</details>
|
|
259
|
+
|
|
260
|
+
<details>
|
|
261
|
+
<summary><b>Hardware Acceleration</b></summary>
|
|
262
|
+
<p>
|
|
263
|
+
|
|
264
|
+
The converter automatically detects and utilizes:
|
|
265
|
+
- **CUDA** for NVIDIA GPUs
|
|
266
|
+
- **Metal** for Apple Silicon and AMD GPUs on macOS
|
|
267
|
+
- **OpenCL** for cross-platform GPU acceleration
|
|
268
|
+
- **Vulkan** for cross-platform GPU acceleration
|
|
269
|
+
- **ROCm** for AMD GPUs on Linux
|
|
270
|
+
|
|
271
|
+
If no acceleration is available, the converter will use CPU-only mode.
|
|
272
|
+
</p>
|
|
273
|
+
</details>
|
|
274
|
+
|
|
275
|
+
> **NOTE:**
|
|
276
|
+
> **GPU acceleration is highly recommended** for converting larger models (13B+).
|
|
277
|
+
|
|
278
|
+
<hr/>
|
|
279
|
+
|
|
280
|
+
## ⚡ Examples
|
|
281
|
+
|
|
282
|
+
<details open>
|
|
283
|
+
<summary><b>Basic Conversion with Upload</b></summary>
|
|
284
|
+
<p>
|
|
285
|
+
|
|
286
|
+
```bash
|
|
287
|
+
python -m webscout.Extra.gguf convert \
|
|
288
|
+
-m "mistralai/Mistral-7B-Instruct-v0.2" \
|
|
289
|
+
-q "q4_k_m" \
|
|
290
|
+
-u "your-username" \
|
|
291
|
+
-t "your-token"
|
|
292
|
+
```
|
|
293
|
+
|
|
294
|
+
This will convert Mistral-7B to q4_k_m quantization and upload it to your Hugging Face account.
|
|
295
|
+
</p>
|
|
296
|
+
</details>
|
|
297
|
+
|
|
298
|
+
<details>
|
|
299
|
+
<summary><b>Multiple Quantizations with Importance Matrix</b></summary>
|
|
300
|
+
<p>
|
|
301
|
+
|
|
302
|
+
```bash
|
|
303
|
+
python -m webscout.Extra.gguf convert \
|
|
304
|
+
-m "mistralai/Mistral-7B-Instruct-v0.2" \
|
|
305
|
+
-q "q4_k_m,q5_k_m" \
|
|
306
|
+
-i \
|
|
307
|
+
--train-data "my_training_data.txt"
|
|
308
|
+
```
|
|
309
|
+
|
|
310
|
+
This will create two versions of the model with different quantizations, both using importance matrix.
|
|
311
|
+
</p>
|
|
312
|
+
</details>
|
|
313
|
+
|
|
314
|
+
<details>
|
|
315
|
+
<summary><b>Split Large Model</b></summary>
|
|
316
|
+
<p>
|
|
317
|
+
|
|
318
|
+
```bash
|
|
319
|
+
python -m webscout.Extra.gguf convert \
|
|
320
|
+
-m "meta-llama/Llama-2-70b-chat-hf" \
|
|
321
|
+
-q "q4_k_m" \
|
|
322
|
+
-s \
|
|
323
|
+
--split-max-size "4G"
|
|
324
|
+
```
|
|
325
|
+
|
|
326
|
+
This will split the large 70B model into multiple files, each no larger than 4GB.
|
|
327
|
+
</p>
|
|
328
|
+
</details>
|
|
329
|
+
|
|
330
|
+
<hr/>
|
|
331
|
+
|
|
332
|
+
## 🔍 Troubleshooting
|
|
333
|
+
|
|
334
|
+
<details>
|
|
335
|
+
<summary><b>Missing Dependencies</b></summary>
|
|
336
|
+
<p>
|
|
337
|
+
|
|
338
|
+
```
|
|
339
|
+
Error: Missing required dependencies: git, cmake
|
|
340
|
+
```
|
|
341
|
+
|
|
342
|
+
**Solution:** Install the required system dependencies:
|
|
343
|
+
|
|
344
|
+
- **Ubuntu/Debian:** `sudo apt install git cmake python3-dev build-essential`
|
|
345
|
+
- **macOS:** `brew install git cmake`
|
|
346
|
+
- **Windows:** Install Git and CMake from their respective websites
|
|
347
|
+
|
|
348
|
+
For hardware acceleration, install relevant drivers (CUDA, ROCm, etc.)
|
|
349
|
+
</p>
|
|
350
|
+
</details>
|
|
351
|
+
|
|
352
|
+
<details>
|
|
353
|
+
<summary><b>Out of Memory</b></summary>
|
|
354
|
+
<p>
|
|
355
|
+
|
|
356
|
+
```
|
|
357
|
+
Error: CUDA out of memory
|
|
358
|
+
```
|
|
359
|
+
|
|
360
|
+
**Solutions:**
|
|
361
|
+
1. Try a lower precision quantization method: `q3_k_s` or `q2_k`
|
|
362
|
+
2. Enable model splitting with `-s`
|
|
363
|
+
3. Increase your system's swap space/virtual memory
|
|
364
|
+
4. Use a machine with more RAM
|
|
365
|
+
</p>
|
|
366
|
+
</details>
|
|
367
|
+
|
|
368
|
+
<details>
|
|
369
|
+
<summary><b>Download Failures</b></summary>
|
|
370
|
+
<p>
|
|
371
|
+
|
|
372
|
+
```
|
|
373
|
+
Error: Failed to download model
|
|
374
|
+
```
|
|
375
|
+
|
|
376
|
+
**Solutions:**
|
|
377
|
+
1. Check your internet connection
|
|
378
|
+
2. Verify you have access to the model on Hugging Face
|
|
379
|
+
3. Try using a Hugging Face token with `-t`
|
|
380
|
+
4. Check if the model repository exists and is public
|
|
381
|
+
</p>
|
|
382
|
+
</details>
|
|
383
|
+
|
|
384
|
+
<details>
|
|
385
|
+
<summary><b>Build Failures</b></summary>
|
|
386
|
+
<p>
|
|
387
|
+
|
|
388
|
+
```
|
|
389
|
+
Error: Failed to build llama.cpp
|
|
390
|
+
```
|
|
391
|
+
|
|
392
|
+
**Solutions:**
|
|
393
|
+
1. Check if you have a C++ compiler installed
|
|
394
|
+
2. Ensure you have sufficient disk space
|
|
395
|
+
3. Try building with CPU-only mode if GPU builds fail
|
|
396
|
+
4. Update your GPU drivers if using acceleration
|
|
397
|
+
</p>
|
|
398
|
+
</details>
|
|
399
|
+
|
|
400
|
+
<hr/>
|
|
401
|
+
|
|
402
|
+
## 🧠 Technical Details
|
|
403
|
+
|
|
404
|
+
The converter works by following these steps:
|
|
405
|
+
|
|
406
|
+
1. **Setup**: Clone and build llama.cpp with appropriate hardware acceleration
|
|
407
|
+
2. **Download**: Fetch the model from Hugging Face
|
|
408
|
+
3. **Convert**: Transform the model to fp16 GGUF format
|
|
409
|
+
4. **Quantize**: Apply the requested quantization methods
|
|
410
|
+
5. **Split**: Optionally split the model into smaller chunks
|
|
411
|
+
6. **Upload**: If credentials are provided, upload to Hugging Face
|
|
412
|
+
|
|
413
|
+
<details>
|
|
414
|
+
<summary><b>Advanced Configuration</b></summary>
|
|
415
|
+
<p>
|
|
416
|
+
|
|
417
|
+
For special cases, you may want to modify llama.cpp's build parameters. The converter automatically detects and enables available hardware acceleration, but you can also build llama.cpp manually with custom options before running the converter.
|
|
418
|
+
</p>
|
|
419
|
+
</details>
|
|
420
|
+
|
|
421
|
+
<hr/>
|
|
422
|
+
|
|
423
|
+
<div align="center">
|
|
424
|
+
<p>
|
|
425
|
+
<a href="https://github.com/OEvortex/Webscout">🔗 Part of the WebScout Project</a> |
|
|
426
|
+
<a href="https://github.com/ggerganov/llama.cpp">🚀 Powered by llama.cpp</a>
|
|
427
|
+
</p>
|
|
428
|
+
|
|
429
|
+
<p>Made with ❤️ by the Webscout team</p>
|
|
430
|
+
</div>
|