webscout 8.2.6__py3-none-any.whl → 8.2.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (150) hide show
  1. webscout/AIauto.py +1 -1
  2. webscout/AIutel.py +298 -239
  3. webscout/Extra/Act.md +309 -0
  4. webscout/Extra/GitToolkit/gitapi/README.md +110 -0
  5. webscout/Extra/YTToolkit/README.md +375 -0
  6. webscout/Extra/YTToolkit/ytapi/README.md +44 -0
  7. webscout/Extra/YTToolkit/ytapi/extras.py +92 -19
  8. webscout/Extra/autocoder/autocoder.py +309 -114
  9. webscout/Extra/autocoder/autocoder_utiles.py +15 -15
  10. webscout/Extra/gguf.md +430 -0
  11. webscout/Extra/tempmail/README.md +488 -0
  12. webscout/Extra/weather.md +281 -0
  13. webscout/Litlogger/Readme.md +175 -0
  14. webscout/Provider/AISEARCH/DeepFind.py +41 -37
  15. webscout/Provider/AISEARCH/README.md +279 -0
  16. webscout/Provider/AISEARCH/__init__.py +0 -1
  17. webscout/Provider/AISEARCH/genspark_search.py +228 -86
  18. webscout/Provider/AISEARCH/hika_search.py +11 -11
  19. webscout/Provider/AISEARCH/scira_search.py +324 -322
  20. webscout/Provider/AllenAI.py +7 -14
  21. webscout/Provider/Blackboxai.py +518 -74
  22. webscout/Provider/Cloudflare.py +0 -1
  23. webscout/Provider/Deepinfra.py +23 -21
  24. webscout/Provider/Flowith.py +217 -0
  25. webscout/Provider/FreeGemini.py +250 -0
  26. webscout/Provider/GizAI.py +15 -5
  27. webscout/Provider/Glider.py +11 -8
  28. webscout/Provider/HeckAI.py +80 -52
  29. webscout/Provider/Koboldai.py +7 -4
  30. webscout/Provider/LambdaChat.py +2 -2
  31. webscout/Provider/Marcus.py +10 -18
  32. webscout/Provider/OPENAI/BLACKBOXAI.py +735 -0
  33. webscout/Provider/OPENAI/Cloudflare.py +378 -0
  34. webscout/Provider/OPENAI/FreeGemini.py +282 -0
  35. webscout/Provider/OPENAI/NEMOTRON.py +244 -0
  36. webscout/Provider/OPENAI/README.md +1253 -0
  37. webscout/Provider/OPENAI/__init__.py +8 -0
  38. webscout/Provider/OPENAI/ai4chat.py +293 -286
  39. webscout/Provider/OPENAI/api.py +810 -0
  40. webscout/Provider/OPENAI/base.py +217 -14
  41. webscout/Provider/OPENAI/c4ai.py +373 -367
  42. webscout/Provider/OPENAI/chatgpt.py +7 -0
  43. webscout/Provider/OPENAI/chatgptclone.py +7 -0
  44. webscout/Provider/OPENAI/chatsandbox.py +172 -0
  45. webscout/Provider/OPENAI/deepinfra.py +30 -20
  46. webscout/Provider/OPENAI/e2b.py +6 -0
  47. webscout/Provider/OPENAI/exaai.py +7 -0
  48. webscout/Provider/OPENAI/exachat.py +6 -0
  49. webscout/Provider/OPENAI/flowith.py +162 -0
  50. webscout/Provider/OPENAI/freeaichat.py +359 -352
  51. webscout/Provider/OPENAI/glider.py +323 -316
  52. webscout/Provider/OPENAI/groq.py +361 -354
  53. webscout/Provider/OPENAI/heckai.py +30 -64
  54. webscout/Provider/OPENAI/llmchatco.py +8 -0
  55. webscout/Provider/OPENAI/mcpcore.py +7 -0
  56. webscout/Provider/OPENAI/multichat.py +8 -0
  57. webscout/Provider/OPENAI/netwrck.py +356 -350
  58. webscout/Provider/OPENAI/opkfc.py +8 -0
  59. webscout/Provider/OPENAI/scirachat.py +471 -462
  60. webscout/Provider/OPENAI/sonus.py +9 -0
  61. webscout/Provider/OPENAI/standardinput.py +9 -1
  62. webscout/Provider/OPENAI/textpollinations.py +339 -329
  63. webscout/Provider/OPENAI/toolbaz.py +7 -0
  64. webscout/Provider/OPENAI/typefully.py +355 -0
  65. webscout/Provider/OPENAI/typegpt.py +358 -346
  66. webscout/Provider/OPENAI/uncovrAI.py +7 -0
  67. webscout/Provider/OPENAI/utils.py +103 -7
  68. webscout/Provider/OPENAI/venice.py +12 -0
  69. webscout/Provider/OPENAI/wisecat.py +19 -19
  70. webscout/Provider/OPENAI/writecream.py +7 -0
  71. webscout/Provider/OPENAI/x0gpt.py +7 -0
  72. webscout/Provider/OPENAI/yep.py +50 -21
  73. webscout/Provider/OpenGPT.py +1 -1
  74. webscout/Provider/TTI/AiForce/README.md +159 -0
  75. webscout/Provider/TTI/FreeAIPlayground/README.md +99 -0
  76. webscout/Provider/TTI/ImgSys/README.md +174 -0
  77. webscout/Provider/TTI/MagicStudio/README.md +101 -0
  78. webscout/Provider/TTI/Nexra/README.md +155 -0
  79. webscout/Provider/TTI/PollinationsAI/README.md +146 -0
  80. webscout/Provider/TTI/README.md +128 -0
  81. webscout/Provider/TTI/aiarta/README.md +134 -0
  82. webscout/Provider/TTI/artbit/README.md +100 -0
  83. webscout/Provider/TTI/fastflux/README.md +129 -0
  84. webscout/Provider/TTI/huggingface/README.md +114 -0
  85. webscout/Provider/TTI/piclumen/README.md +161 -0
  86. webscout/Provider/TTI/pixelmuse/README.md +79 -0
  87. webscout/Provider/TTI/talkai/README.md +139 -0
  88. webscout/Provider/TTS/README.md +192 -0
  89. webscout/Provider/TTS/__init__.py +2 -1
  90. webscout/Provider/TTS/speechma.py +500 -100
  91. webscout/Provider/TTS/sthir.py +94 -0
  92. webscout/Provider/TeachAnything.py +3 -7
  93. webscout/Provider/TextPollinationsAI.py +4 -2
  94. webscout/Provider/{aimathgpt.py → UNFINISHED/ChatHub.py} +88 -68
  95. webscout/Provider/UNFINISHED/liner_api_request.py +263 -0
  96. webscout/Provider/UNFINISHED/oivscode.py +351 -0
  97. webscout/Provider/UNFINISHED/test_lmarena.py +119 -0
  98. webscout/Provider/Writecream.py +11 -2
  99. webscout/Provider/__init__.py +8 -14
  100. webscout/Provider/ai4chat.py +4 -58
  101. webscout/Provider/asksteve.py +17 -9
  102. webscout/Provider/cerebras.py +3 -1
  103. webscout/Provider/koala.py +170 -268
  104. webscout/Provider/llmchat.py +3 -0
  105. webscout/Provider/lmarena.py +198 -0
  106. webscout/Provider/meta.py +7 -4
  107. webscout/Provider/samurai.py +223 -0
  108. webscout/Provider/scira_chat.py +4 -2
  109. webscout/Provider/typefully.py +23 -151
  110. webscout/__init__.py +4 -2
  111. webscout/cli.py +3 -28
  112. webscout/conversation.py +35 -35
  113. webscout/litagent/Readme.md +276 -0
  114. webscout/scout/README.md +402 -0
  115. webscout/swiftcli/Readme.md +323 -0
  116. webscout/version.py +1 -1
  117. webscout/webscout_search.py +2 -182
  118. webscout/webscout_search_async.py +1 -179
  119. webscout/zeroart/README.md +89 -0
  120. webscout/zeroart/__init__.py +134 -54
  121. webscout/zeroart/base.py +19 -13
  122. webscout/zeroart/effects.py +101 -99
  123. webscout/zeroart/fonts.py +1239 -816
  124. {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/METADATA +116 -74
  125. {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/RECORD +130 -103
  126. {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/WHEEL +1 -1
  127. webscout-8.2.8.dist-info/entry_points.txt +3 -0
  128. webscout-8.2.8.dist-info/top_level.txt +1 -0
  129. webscout/Provider/AISEARCH/ISou.py +0 -256
  130. webscout/Provider/ElectronHub.py +0 -773
  131. webscout/Provider/Free2GPT.py +0 -241
  132. webscout/Provider/GPTWeb.py +0 -249
  133. webscout/Provider/bagoodex.py +0 -145
  134. webscout/Provider/geminiprorealtime.py +0 -160
  135. webscout/scout/core.py +0 -881
  136. webscout-8.2.6.dist-info/entry_points.txt +0 -3
  137. webscout-8.2.6.dist-info/top_level.txt +0 -2
  138. webstoken/__init__.py +0 -30
  139. webstoken/classifier.py +0 -189
  140. webstoken/keywords.py +0 -216
  141. webstoken/language.py +0 -128
  142. webstoken/ner.py +0 -164
  143. webstoken/normalizer.py +0 -35
  144. webstoken/processor.py +0 -77
  145. webstoken/sentiment.py +0 -206
  146. webstoken/stemmer.py +0 -73
  147. webstoken/tagger.py +0 -60
  148. webstoken/tokenizer.py +0 -158
  149. /webscout/Provider/{Youchat.py → UNFINISHED/Youchat.py} +0 -0
  150. {webscout-8.2.6.dist-info → webscout-8.2.8.dist-info}/licenses/LICENSE.md +0 -0
@@ -89,14 +89,14 @@ def get_intro_prompt(name: str = "Vortex") -> str:
89
89
  A typical interaction unfolds as follows:
90
90
  1. The user provides a natural language PROMPT.
91
91
  2. You:
92
- i. Analyze the PROMPT to determine required actions.
93
- ii. Craft a short Python SCRIPT to execute those actions.
94
- iii. Provide clear and concise feedback to the user by printing to the console within your SCRIPT.
92
+ i. Analyze the PROMPT to determine the required actions.
93
+ ii. Craft a SCRIPT to execute those actions. This SCRIPT may contain Python code for logic, data processing, and interacting with Python libraries. However, for any direct shell/command-line (CLI) operations, the SCRIPT MUST use the `!` prefix (e.g., `!ls -la`, `!pip install requests`).
94
+ iii. Provide clear and concise feedback to the user by printing to the console, either from Python code or by observing the output of `!` commands.
95
95
  3. The compiler will then:
96
- i. Extract and execute the SCRIPT using exec().
97
- ii. Handle any exceptions that arise during script execution. Exceptions are returned to you starting with "PREVIOUS SCRIPT EXCEPTION:".
96
+ i. Extract the SCRIPT. Python parts of the script are executed (e.g., via `exec()`), and `!` prefixed commands are handled as direct shell executions.
97
+ ii. Handle any exceptions that arise during Python script execution. Exceptions are returned to you starting with "PREVIOUS SCRIPT EXCEPTION:". Errors from `!` commands might also be reported.
98
98
  4. In cases of exceptions, ensure that you regenerate the script and return one that has no errors.
99
-
99
+
100
100
  <continue_process>
101
101
  If you need to review script outputs before task completion, include the word "CONTINUE" at the end of your SCRIPT.
102
102
  This allows multi-step reasoning for tasks like summarizing documents, reviewing instructions, or performing other multi-part operations.
@@ -105,7 +105,7 @@ def get_intro_prompt(name: str = "Vortex") -> str:
105
105
  2. You:
106
106
  i. Determine what needs to be done.
107
107
  ii. Determine that you need to see the output of some subprocess call to complete the task
108
- iii. Write a short Python SCRIPT to print that and then print the word "CONTINUE"
108
+ iii. Write a SCRIPT to perform the action and print its output (if necessary), then print the word "CONTINUE".
109
109
  3. The compiler will:
110
110
  i. Check and run your SCRIPT.
111
111
  ii. Capture the output and append it to the conversation as "LAST SCRIPT OUTPUT:".
@@ -113,7 +113,7 @@ def get_intro_prompt(name: str = "Vortex") -> str:
113
113
  4. You will then:
114
114
  i. Review the original PROMPT + the "LAST SCRIPT OUTPUT:" to determine what to do
115
115
  ii. Write a short Python SCRIPT to complete the task.
116
- iii. Communicate back to the user by printing to the console in that SCRIPT.
116
+ iii. Communicate back to the user by printing to the console in that SCRIPT, or by ensuring the `!` command output is relevant.
117
117
  5. The compiler repeats the above process...
118
118
  </continue_process>
119
119
 
@@ -121,6 +121,7 @@ def get_intro_prompt(name: str = "Vortex") -> str:
121
121
 
122
122
  <conventions>
123
123
  - Decline any tasks that seem dangerous, irreversible, or that you don't understand.
124
+ - **Shell/CLI Command Execution**: This is a critical instruction. For ALL shell, terminal, or command-line interface (CLI) tasks (e.g., listing files with `ls` or `dir`, managing packages with `pip` or `npm`, using `git`, running system utilities), you MUST use the `!` prefix followed directly by the command. For example: `!ls -l`, `!pip install SomePackage`, `!git status`. You MUST NEVER use Python modules such as `os.system()`, `subprocess.run()`, `subprocess.Popen()`, or any other Python code constructs to execute these types of commands. The SCRIPT you generate should contain these `!` commands directly when a shell/CLI operation is needed. Python code should still be used for other logic, data manipulation, or when interacting with Python-specific libraries and their functions.
124
125
  - Always review the full conversation prior to answering and maintain continuity.
125
126
  - If asked for information, just print the information clearly and concisely.
126
127
  - If asked to do something, print a concise summary of what you've done as confirmation.
@@ -129,18 +130,17 @@ def get_intro_prompt(name: str = "Vortex") -> str:
129
130
  - Assume the user would like something concise. For example rather than printing a massive table, filter or summarize it to what's likely of interest.
130
131
  - Actively clean up any temporary processes or files you use.
131
132
  - When looking through files, use git as available to skip files, and skip hidden files (.env, .git, etc) by default.
132
- - You can plot anything with matplotlib.
133
- - **IMPORTANT**: ALWAYS Return your SCRIPT inside of a single pair of \`\`\` delimiters. Only the console output of the first such SCRIPT is visible to the user, so make sure that it's complete and don't bother returning anything else.
133
+ - You can plot anything with matplotlib using Python code.
134
+ - **IMPORTANT**: ALWAYS Return your SCRIPT inside of a single pair of \`\`\` delimiters. This SCRIPT can be a mix of Python code and `!`-prefixed shell commands. Only the console output from this SCRIPT (Python prints or `!` command stdout/stderr) is visible to the user, so ensure it's complete.
134
135
  </conventions>
135
136
 
136
137
  <examples>
137
138
  <example>
138
- <user_request>Kill the process running on port 3000</user_request>
139
+ <user_request>Kill the process running on port 3000 and then list installed pip packages.</user_request>
139
140
  <rawdog_response>
140
- ```python
141
- import os
142
- os.system("kill $(lsof -t -i:3000)")
143
- print("Process killed")
141
+ ```
142
+ !kill $(lsof -t -i:3000)
143
+ !pip list
144
144
  ```
145
145
  </rawdog_response>
146
146
  </example>
webscout/Extra/gguf.md ADDED
@@ -0,0 +1,430 @@
1
+ <div align="center">
2
+ <a href="https://github.com/OEvortex/Webscout">
3
+ <img src="https://img.shields.io/badge/WebScout-GGUF%20Converter-blue?style=for-the-badge&logo=python&logoColor=white" alt="GGUF Converter Logo">
4
+ </a>
5
+
6
+ <h1>GGUF Converter</h1>
7
+
8
+ <p><strong>Convert Hugging Face models to GGUF format with advanced quantization options</strong></p>
9
+
10
+ <p>
11
+ Transform large language models from Hugging Face into optimized GGUF format for efficient inference on consumer hardware.
12
+ Balance size, speed, and quality with multiple quantization methods.
13
+ </p>
14
+
15
+ <!-- Badges -->
16
+ <p>
17
+ <a href="https://github.com/ggerganov/llama.cpp"><img src="https://img.shields.io/badge/Powered%20by-llama.cpp-orange?style=flat-square" alt="Powered by llama.cpp"></a>
18
+ <a href="https://huggingface.co/"><img src="https://img.shields.io/badge/Hugging%20Face-compatible-yellow?style=flat-square" alt="Hugging Face compatible"></a>
19
+ <a href="#"><img src="https://img.shields.io/badge/GPU-acceleration-green?style=flat-square" alt="GPU acceleration"></a>
20
+ </p>
21
+ </div>
22
+
23
+ <hr/>
24
+
25
+ ## 📋 Table of Contents
26
+
27
+ - [🌟 Features](#-features)
28
+ - [⚙️ Installation](#️-installation)
29
+ - [🛠️ Basic Usage](#️-basic-usage)
30
+ - [🧩 Advanced Options](#-advanced-options)
31
+ - [📊 Quantization Methods](#-quantization-methods)
32
+ - [📏 Size & Quality Comparison](#-size--quality-comparison)
33
+ - [📦 Hardware Requirements](#-hardware-requirements)
34
+ - [⚡ Examples](#-examples)
35
+ - [🔍 Troubleshooting](#-troubleshooting)
36
+ - [🧠 Technical Details](#-technical-details)
37
+
38
+ <hr/>
39
+
40
+ ## 🌟 Features
41
+
42
+ <details open>
43
+ <summary><b>Core Capabilities</b></summary>
44
+ <p>
45
+
46
+ * **Multiple Quantization Methods**: Support for various precision levels from 2-bit to 16-bit floating point
47
+ * **Importance Matrix Quantization**: Enhanced precision by focusing bits on the most important weights
48
+ * **Model Splitting**: Split large models into manageable chunks for easier distribution
49
+ * **Hardware Acceleration Detection**: Automatically detects and utilizes CUDA, Metal, OpenCL, Vulkan, and ROCm
50
+ * **Hugging Face Integration**: Direct download from and upload to Hugging Face repositories
51
+ * **README Generation**: Automatically creates documentation for your quantized models
52
+ </p>
53
+ </details>
54
+
55
+ <hr/>
56
+
57
+ ## ⚙️ Installation
58
+
59
+ <div class="installation-box">
60
+ <p>The GGUF Converter is included with the WebScout package:</p>
61
+
62
+ ```bash
63
+ pip install -U webscout
64
+ ```
65
+ </div>
66
+
67
+ <hr/>
68
+
69
+ ## 🛠️ Basic Usage
70
+
71
+ The simplest way to convert a model is with the default settings:
72
+
73
+ ```bash
74
+ python -m webscout.Extra.gguf convert -m "organization/model-name"
75
+ ```
76
+
77
+ This will:
78
+ 1. Download the model from Hugging Face
79
+ 2. Convert it to GGUF format with q4_k_m quantization (a good balance of size and quality)
80
+ 3. Save the converted model in your current directory
81
+
82
+ <hr/>
83
+
84
+ ## 🧩 Advanced Options
85
+
86
+ <details open>
87
+ <summary><b>Command Reference</b></summary>
88
+ <p>
89
+
90
+ The full command syntax is:
91
+
92
+ ```
93
+ python -m webscout.Extra.gguf convert [OPTIONS]
94
+ ```
95
+
96
+ | Option | Description | Default |
97
+ |--------|-------------|---------|
98
+ | `-m, --model-id` | The HuggingFace model ID (e.g., 'OEvortex/HelpingAI-Lite-1.5T') | **Required** |
99
+ | `-u, --username` | Your HuggingFace username for uploads | None |
100
+ | `-t, --token` | Your HuggingFace API token for uploads | None |
101
+ | `-q, --quantization` | Comma-separated quantization methods | "q4_k_m" |
102
+ | `-i, --use-imatrix` | Use importance matrix for quantization | False |
103
+ | `--train-data` | Training data file for imatrix quantization | None |
104
+ | `-s, --split-model` | Split the model into smaller chunks | False |
105
+ | `--split-max-tensors` | Maximum number of tensors per file when splitting | 256 |
106
+ | `--split-max-size` | Maximum file size when splitting (e.g., '256M', '5G') | None |
107
+ </p>
108
+ </details>
109
+
110
+ <details>
111
+ <summary><b>Multiple Quantization Methods</b></summary>
112
+ <p>
113
+
114
+ Apply multiple quantization methods at once:
115
+
116
+ ```bash
117
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -q "q4_k_m,q5_k_m"
118
+ ```
119
+
120
+ This will create two versions of the model with different quantization methods.
121
+ </p>
122
+ </details>
123
+
124
+ <details>
125
+ <summary><b>Uploading to Hugging Face</b></summary>
126
+ <p>
127
+
128
+ Convert and upload the model to your Hugging Face account:
129
+
130
+ ```bash
131
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -u "your-username" -t "your-token"
132
+ ```
133
+
134
+ This will create a new repository in your account named `model-name-GGUF` containing the converted model.
135
+ </p>
136
+ </details>
137
+
138
+ <details>
139
+ <summary><b>Importance Matrix Quantization</b></summary>
140
+ <p>
141
+
142
+ Use importance matrix for more efficient quantization:
143
+
144
+ ```bash
145
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -i --train-data "train_data.txt"
146
+ ```
147
+
148
+ Importance matrix helps focus more bits on weights that matter most for the model's performance.
149
+ </p>
150
+ </details>
151
+
152
+ <details>
153
+ <summary><b>Model Splitting</b></summary>
154
+ <p>
155
+
156
+ Split large models for easier distribution:
157
+
158
+ ```bash
159
+ # Split by number of tensors
160
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-tensors 256
161
+
162
+ # Split by file size
163
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-size "2G"
164
+ ```
165
+
166
+ This is useful for very large models that may be difficult to distribute as a single file.
167
+ </p>
168
+ </details>
169
+
170
+ <hr/>
171
+
172
+ ## 📊 Quantization Methods
173
+
174
+ <details open>
175
+ <summary><b>Standard Methods</b></summary>
176
+ <p>
177
+
178
+ | Method | Description |
179
+ |--------|-------------|
180
+ | `fp16` | 16-bit floating point - maximum accuracy, largest size |
181
+ | `q2_k` | 2-bit quantization (smallest size, lowest accuracy) |
182
+ | `q3_k_l` | 3-bit quantization (large) - balanced for size/accuracy |
183
+ | `q3_k_m` | 3-bit quantization (medium) - good balance for most use cases |
184
+ | `q3_k_s` | 3-bit quantization (small) - optimized for speed |
185
+ | `q4_0` | 4-bit quantization (version 0) - standard 4-bit compression |
186
+ | `q4_1` | 4-bit quantization (version 1) - improved accuracy over q4_0 |
187
+ | `q4_k_m` | 4-bit quantization (medium) - balanced for most models |
188
+ | `q4_k_s` | 4-bit quantization (small) - optimized for speed |
189
+ | `q5_0` | 5-bit quantization (version 0) - high accuracy, larger size |
190
+ | `q5_1` | 5-bit quantization (version 1) - improved accuracy over q5_0 |
191
+ | `q5_k_m` | 5-bit quantization (medium) - best balance for quality/size |
192
+ | `q5_k_s` | 5-bit quantization (small) - optimized for speed |
193
+ | `q6_k` | 6-bit quantization - highest accuracy, larger size |
194
+ | `q8_0` | 8-bit quantization - maximum accuracy, largest size |
195
+ </p>
196
+ </details>
197
+
198
+ <details>
199
+ <summary><b>Importance Matrix Methods</b></summary>
200
+ <p>
201
+
202
+ | Method | Description |
203
+ |--------|-------------|
204
+ | `iq3_m` | 3-bit imatrix quantization (medium) - balanced importance-based |
205
+ | `iq3_xxs` | 3-bit imatrix quantization (extra extra small) - maximum compression |
206
+ | `q4_k_m` | 4-bit imatrix quantization (medium) - balanced importance-based |
207
+ | `q4_k_s` | 4-bit imatrix quantization (small) - optimized for speed |
208
+ | `iq4_nl` | 4-bit imatrix quantization (non-linear) - best accuracy for 4-bit |
209
+ | `iq4_xs` | 4-bit imatrix quantization (extra small) - maximum compression |
210
+ | `q5_k_m` | 5-bit imatrix quantization (medium) - balanced importance-based |
211
+ | `q5_k_s` | 5-bit imatrix quantization (small) - optimized for speed |
212
+ </p>
213
+ </details>
214
+
215
+ <hr/>
216
+
217
+ ## 📏 Size & Quality Comparison
218
+
219
+ > **TIP:**
220
+ > When choosing a quantization method, consider the tradeoff between model size and quality. Here's a quick guide:
221
+
222
+ <div class="comparison-table">
223
+
224
+ ### 1. Maximum Quality (largest size)
225
+ - **fp16**: 100% of original size, best quality
226
+ - **q8_0**: 50% of original size, nearly identical to fp16
227
+
228
+ ### 2. Balanced Quality/Size
229
+ - **q5_k_m with imatrix**: 31% of original size, excellent quality
230
+ - **q4_k_m with imatrix**: 25% of original size, good quality for most use cases
231
+
232
+ ### 3. Minimum Size (reduced quality)
233
+ - **q3_k_s**: 18% of original size, acceptable for some tasks
234
+ - **q2_k**: 12% of original size, significantly reduced quality
235
+ </div>
236
+
237
+ <hr/>
238
+
239
+ ## 📦 Hardware Requirements
240
+
241
+ Hardware requirements vary based on quantization method and model size:
242
+
243
+ <details open>
244
+ <summary><b>Memory Requirements</b></summary>
245
+ <p>
246
+
247
+ | Quantization | RAM Required |
248
+ |--------------|--------------|
249
+ | fp16 | ~2x model size |
250
+ | q8_0 | ~1x model size |
251
+ | q4_k_m | ~0.5x model size |
252
+ | q2_k | ~0.25x model size |
253
+
254
+ For example, a 7B parameter model requires:
255
+ - fp16: ~14GB RAM
256
+ - q4_k_m: ~3.5GB RAM
257
+ </p>
258
+ </details>
259
+
260
+ <details>
261
+ <summary><b>Hardware Acceleration</b></summary>
262
+ <p>
263
+
264
+ The converter automatically detects and utilizes:
265
+ - **CUDA** for NVIDIA GPUs
266
+ - **Metal** for Apple Silicon and AMD GPUs on macOS
267
+ - **OpenCL** for cross-platform GPU acceleration
268
+ - **Vulkan** for cross-platform GPU acceleration
269
+ - **ROCm** for AMD GPUs on Linux
270
+
271
+ If no acceleration is available, the converter will use CPU-only mode.
272
+ </p>
273
+ </details>
274
+
275
+ > **NOTE:**
276
+ > **GPU acceleration is highly recommended** for converting larger models (13B+).
277
+
278
+ <hr/>
279
+
280
+ ## ⚡ Examples
281
+
282
+ <details open>
283
+ <summary><b>Basic Conversion with Upload</b></summary>
284
+ <p>
285
+
286
+ ```bash
287
+ python -m webscout.Extra.gguf convert \
288
+ -m "mistralai/Mistral-7B-Instruct-v0.2" \
289
+ -q "q4_k_m" \
290
+ -u "your-username" \
291
+ -t "your-token"
292
+ ```
293
+
294
+ This will convert Mistral-7B to q4_k_m quantization and upload it to your Hugging Face account.
295
+ </p>
296
+ </details>
297
+
298
+ <details>
299
+ <summary><b>Multiple Quantizations with Importance Matrix</b></summary>
300
+ <p>
301
+
302
+ ```bash
303
+ python -m webscout.Extra.gguf convert \
304
+ -m "mistralai/Mistral-7B-Instruct-v0.2" \
305
+ -q "q4_k_m,q5_k_m" \
306
+ -i \
307
+ --train-data "my_training_data.txt"
308
+ ```
309
+
310
+ This will create two versions of the model with different quantizations, both using importance matrix.
311
+ </p>
312
+ </details>
313
+
314
+ <details>
315
+ <summary><b>Split Large Model</b></summary>
316
+ <p>
317
+
318
+ ```bash
319
+ python -m webscout.Extra.gguf convert \
320
+ -m "meta-llama/Llama-2-70b-chat-hf" \
321
+ -q "q4_k_m" \
322
+ -s \
323
+ --split-max-size "4G"
324
+ ```
325
+
326
+ This will split the large 70B model into multiple files, each no larger than 4GB.
327
+ </p>
328
+ </details>
329
+
330
+ <hr/>
331
+
332
+ ## 🔍 Troubleshooting
333
+
334
+ <details>
335
+ <summary><b>Missing Dependencies</b></summary>
336
+ <p>
337
+
338
+ ```
339
+ Error: Missing required dependencies: git, cmake
340
+ ```
341
+
342
+ **Solution:** Install the required system dependencies:
343
+
344
+ - **Ubuntu/Debian:** `sudo apt install git cmake python3-dev build-essential`
345
+ - **macOS:** `brew install git cmake`
346
+ - **Windows:** Install Git and CMake from their respective websites
347
+
348
+ For hardware acceleration, install relevant drivers (CUDA, ROCm, etc.)
349
+ </p>
350
+ </details>
351
+
352
+ <details>
353
+ <summary><b>Out of Memory</b></summary>
354
+ <p>
355
+
356
+ ```
357
+ Error: CUDA out of memory
358
+ ```
359
+
360
+ **Solutions:**
361
+ 1. Try a lower precision quantization method: `q3_k_s` or `q2_k`
362
+ 2. Enable model splitting with `-s`
363
+ 3. Increase your system's swap space/virtual memory
364
+ 4. Use a machine with more RAM
365
+ </p>
366
+ </details>
367
+
368
+ <details>
369
+ <summary><b>Download Failures</b></summary>
370
+ <p>
371
+
372
+ ```
373
+ Error: Failed to download model
374
+ ```
375
+
376
+ **Solutions:**
377
+ 1. Check your internet connection
378
+ 2. Verify you have access to the model on Hugging Face
379
+ 3. Try using a Hugging Face token with `-t`
380
+ 4. Check if the model repository exists and is public
381
+ </p>
382
+ </details>
383
+
384
+ <details>
385
+ <summary><b>Build Failures</b></summary>
386
+ <p>
387
+
388
+ ```
389
+ Error: Failed to build llama.cpp
390
+ ```
391
+
392
+ **Solutions:**
393
+ 1. Check if you have a C++ compiler installed
394
+ 2. Ensure you have sufficient disk space
395
+ 3. Try building with CPU-only mode if GPU builds fail
396
+ 4. Update your GPU drivers if using acceleration
397
+ </p>
398
+ </details>
399
+
400
+ <hr/>
401
+
402
+ ## 🧠 Technical Details
403
+
404
+ The converter works by following these steps:
405
+
406
+ 1. **Setup**: Clone and build llama.cpp with appropriate hardware acceleration
407
+ 2. **Download**: Fetch the model from Hugging Face
408
+ 3. **Convert**: Transform the model to fp16 GGUF format
409
+ 4. **Quantize**: Apply the requested quantization methods
410
+ 5. **Split**: Optionally split the model into smaller chunks
411
+ 6. **Upload**: If credentials are provided, upload to Hugging Face
412
+
413
+ <details>
414
+ <summary><b>Advanced Configuration</b></summary>
415
+ <p>
416
+
417
+ For special cases, you may want to modify llama.cpp's build parameters. The converter automatically detects and enables available hardware acceleration, but you can also build llama.cpp manually with custom options before running the converter.
418
+ </p>
419
+ </details>
420
+
421
+ <hr/>
422
+
423
+ <div align="center">
424
+ <p>
425
+ <a href="https://github.com/OEvortex/Webscout">🔗 Part of the WebScout Project</a> |
426
+ <a href="https://github.com/ggerganov/llama.cpp">🚀 Powered by llama.cpp</a>
427
+ </p>
428
+
429
+ <p>Made with ❤️ by the Webscout team</p>
430
+ </div>