webscout 7.1__py3-none-any.whl → 7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of webscout might be problematic. Click here for more details.
- webscout/AIauto.py +191 -191
- webscout/AIbase.py +122 -122
- webscout/AIutel.py +440 -440
- webscout/Bard.py +343 -161
- webscout/DWEBS.py +489 -492
- webscout/Extra/YTToolkit/YTdownloader.py +995 -995
- webscout/Extra/YTToolkit/__init__.py +2 -2
- webscout/Extra/YTToolkit/transcriber.py +476 -479
- webscout/Extra/YTToolkit/ytapi/channel.py +307 -307
- webscout/Extra/YTToolkit/ytapi/playlist.py +58 -58
- webscout/Extra/YTToolkit/ytapi/pool.py +7 -7
- webscout/Extra/YTToolkit/ytapi/utils.py +62 -62
- webscout/Extra/YTToolkit/ytapi/video.py +103 -103
- webscout/Extra/autocoder/__init__.py +9 -9
- webscout/Extra/autocoder/autocoder_utiles.py +199 -199
- webscout/Extra/autocoder/rawdog.py +5 -7
- webscout/Extra/autollama.py +230 -230
- webscout/Extra/gguf.py +3 -3
- webscout/Extra/weather.py +171 -171
- webscout/LLM.py +442 -442
- webscout/Litlogger/__init__.py +67 -681
- webscout/Litlogger/core/__init__.py +6 -0
- webscout/Litlogger/core/level.py +20 -0
- webscout/Litlogger/core/logger.py +123 -0
- webscout/Litlogger/handlers/__init__.py +12 -0
- webscout/Litlogger/handlers/console.py +50 -0
- webscout/Litlogger/handlers/file.py +143 -0
- webscout/Litlogger/handlers/network.py +174 -0
- webscout/Litlogger/styles/__init__.py +7 -0
- webscout/Litlogger/styles/colors.py +231 -0
- webscout/Litlogger/styles/formats.py +377 -0
- webscout/Litlogger/styles/text.py +87 -0
- webscout/Litlogger/utils/__init__.py +6 -0
- webscout/Litlogger/utils/detectors.py +154 -0
- webscout/Litlogger/utils/formatters.py +200 -0
- webscout/Provider/AISEARCH/DeepFind.py +250 -250
- webscout/Provider/Blackboxai.py +3 -3
- webscout/Provider/ChatGPTGratis.py +226 -0
- webscout/Provider/Cloudflare.py +3 -4
- webscout/Provider/DeepSeek.py +218 -0
- webscout/Provider/Deepinfra.py +3 -3
- webscout/Provider/Free2GPT.py +131 -124
- webscout/Provider/Gemini.py +100 -115
- webscout/Provider/Glider.py +3 -3
- webscout/Provider/Groq.py +5 -1
- webscout/Provider/Jadve.py +3 -3
- webscout/Provider/Marcus.py +191 -192
- webscout/Provider/Netwrck.py +3 -3
- webscout/Provider/PI.py +2 -2
- webscout/Provider/PizzaGPT.py +2 -3
- webscout/Provider/QwenLM.py +311 -0
- webscout/Provider/TTI/AiForce/__init__.py +22 -22
- webscout/Provider/TTI/AiForce/async_aiforce.py +257 -257
- webscout/Provider/TTI/AiForce/sync_aiforce.py +242 -242
- webscout/Provider/TTI/Nexra/__init__.py +22 -22
- webscout/Provider/TTI/Nexra/async_nexra.py +286 -286
- webscout/Provider/TTI/Nexra/sync_nexra.py +258 -258
- webscout/Provider/TTI/PollinationsAI/__init__.py +23 -23
- webscout/Provider/TTI/PollinationsAI/async_pollinations.py +330 -330
- webscout/Provider/TTI/PollinationsAI/sync_pollinations.py +285 -285
- webscout/Provider/TTI/artbit/__init__.py +22 -22
- webscout/Provider/TTI/artbit/async_artbit.py +184 -184
- webscout/Provider/TTI/artbit/sync_artbit.py +176 -176
- webscout/Provider/TTI/blackbox/__init__.py +4 -4
- webscout/Provider/TTI/blackbox/async_blackbox.py +212 -212
- webscout/Provider/TTI/blackbox/sync_blackbox.py +199 -199
- webscout/Provider/TTI/deepinfra/__init__.py +4 -4
- webscout/Provider/TTI/deepinfra/async_deepinfra.py +227 -227
- webscout/Provider/TTI/deepinfra/sync_deepinfra.py +199 -199
- webscout/Provider/TTI/huggingface/__init__.py +22 -22
- webscout/Provider/TTI/huggingface/async_huggingface.py +199 -199
- webscout/Provider/TTI/huggingface/sync_huggingface.py +195 -195
- webscout/Provider/TTI/imgninza/__init__.py +4 -4
- webscout/Provider/TTI/imgninza/async_ninza.py +214 -214
- webscout/Provider/TTI/imgninza/sync_ninza.py +209 -209
- webscout/Provider/TTI/talkai/__init__.py +4 -4
- webscout/Provider/TTI/talkai/async_talkai.py +229 -229
- webscout/Provider/TTI/talkai/sync_talkai.py +207 -207
- webscout/Provider/TTS/deepgram.py +182 -182
- webscout/Provider/TTS/elevenlabs.py +136 -136
- webscout/Provider/TTS/gesserit.py +150 -150
- webscout/Provider/TTS/murfai.py +138 -138
- webscout/Provider/TTS/parler.py +133 -134
- webscout/Provider/TTS/streamElements.py +360 -360
- webscout/Provider/TTS/utils.py +280 -280
- webscout/Provider/TTS/voicepod.py +116 -116
- webscout/Provider/TextPollinationsAI.py +2 -3
- webscout/Provider/WiseCat.py +193 -0
- webscout/Provider/__init__.py +144 -134
- webscout/Provider/cerebras.py +242 -227
- webscout/Provider/chatglm.py +204 -204
- webscout/Provider/dgaf.py +2 -3
- webscout/Provider/gaurish.py +2 -3
- webscout/Provider/geminiapi.py +208 -208
- webscout/Provider/granite.py +223 -0
- webscout/Provider/hermes.py +218 -218
- webscout/Provider/llama3mitril.py +179 -179
- webscout/Provider/llamatutor.py +3 -3
- webscout/Provider/llmchat.py +2 -3
- webscout/Provider/meta.py +794 -794
- webscout/Provider/multichat.py +331 -331
- webscout/Provider/typegpt.py +359 -359
- webscout/Provider/yep.py +2 -2
- webscout/__main__.py +5 -5
- webscout/cli.py +319 -319
- webscout/conversation.py +241 -242
- webscout/exceptions.py +328 -328
- webscout/litagent/__init__.py +28 -28
- webscout/litagent/agent.py +2 -3
- webscout/litprinter/__init__.py +0 -58
- webscout/scout/__init__.py +8 -8
- webscout/scout/core.py +884 -884
- webscout/scout/element.py +459 -459
- webscout/scout/parsers/__init__.py +69 -69
- webscout/scout/parsers/html5lib_parser.py +172 -172
- webscout/scout/parsers/html_parser.py +236 -236
- webscout/scout/parsers/lxml_parser.py +178 -178
- webscout/scout/utils.py +38 -38
- webscout/swiftcli/__init__.py +811 -811
- webscout/update_checker.py +2 -12
- webscout/version.py +1 -1
- webscout/webscout_search.py +5 -4
- webscout/zeroart/__init__.py +54 -54
- webscout/zeroart/base.py +60 -60
- webscout/zeroart/effects.py +99 -99
- webscout/zeroart/fonts.py +816 -816
- {webscout-7.1.dist-info → webscout-7.2.dist-info}/METADATA +4 -3
- webscout-7.2.dist-info/RECORD +217 -0
- webstoken/__init__.py +30 -30
- webstoken/classifier.py +189 -189
- webstoken/keywords.py +216 -216
- webstoken/language.py +128 -128
- webstoken/ner.py +164 -164
- webstoken/normalizer.py +35 -35
- webstoken/processor.py +77 -77
- webstoken/sentiment.py +206 -206
- webstoken/stemmer.py +73 -73
- webstoken/tagger.py +60 -60
- webstoken/tokenizer.py +158 -158
- webscout-7.1.dist-info/RECORD +0 -198
- {webscout-7.1.dist-info → webscout-7.2.dist-info}/LICENSE.md +0 -0
- {webscout-7.1.dist-info → webscout-7.2.dist-info}/WHEEL +0 -0
- {webscout-7.1.dist-info → webscout-7.2.dist-info}/entry_points.txt +0 -0
- {webscout-7.1.dist-info → webscout-7.2.dist-info}/top_level.txt +0 -0
webstoken/keywords.py
CHANGED
|
@@ -1,216 +1,216 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Keyword extraction module using statistical and graph-based approaches.
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
from typing import Dict, List, Set, Tuple
|
|
6
|
-
from collections import Counter, defaultdict
|
|
7
|
-
import math
|
|
8
|
-
import re
|
|
9
|
-
|
|
10
|
-
from .tokenizer import WordTokenizer
|
|
11
|
-
from .normalizer import TextNormalizer
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
class KeywordExtractor:
|
|
15
|
-
"""Keyword extraction using TF-IDF and TextRank-inspired algorithms."""
|
|
16
|
-
|
|
17
|
-
def __init__(self):
|
|
18
|
-
self.word_tokenizer = WordTokenizer()
|
|
19
|
-
self.normalizer = TextNormalizer()
|
|
20
|
-
|
|
21
|
-
# Common words to filter out beyond basic stop words
|
|
22
|
-
self.filter_words: Set[str] = {
|
|
23
|
-
'would', 'could', 'should', 'said', 'also', 'may', 'might',
|
|
24
|
-
'must', 'need', 'shall', 'want', 'way', 'time', 'just',
|
|
25
|
-
'now', 'like', 'make', 'made', 'well', 'back', 'even',
|
|
26
|
-
'still', 'way', 'take', 'took', 'get', 'got', 'go', 'went'
|
|
27
|
-
}
|
|
28
|
-
|
|
29
|
-
def _split_into_sentences(self, text: str) -> List[str]:
|
|
30
|
-
"""Split text into sentences using simple rules."""
|
|
31
|
-
text = re.sub(r'\s+', ' ', text)
|
|
32
|
-
sentences = re.split(r'[.!?]+', text)
|
|
33
|
-
return [s.strip() for s in sentences if s.strip()]
|
|
34
|
-
|
|
35
|
-
def _calculate_word_scores(self, text: str) -> Dict[str, float]:
|
|
36
|
-
"""Calculate word importance scores using frequency and position."""
|
|
37
|
-
# Normalize and tokenize text
|
|
38
|
-
text = self.normalizer.normalize(text)
|
|
39
|
-
sentences = self._split_into_sentences(text)
|
|
40
|
-
|
|
41
|
-
word_scores: Dict[str, float] = defaultdict(float)
|
|
42
|
-
word_positions: Dict[str, List[int]] = defaultdict(list)
|
|
43
|
-
|
|
44
|
-
# Calculate word frequencies and positions
|
|
45
|
-
for i, sentence in enumerate(sentences):
|
|
46
|
-
words = self.word_tokenizer.tokenize(sentence)
|
|
47
|
-
for j, word in enumerate(words):
|
|
48
|
-
word = word.lower()
|
|
49
|
-
if (word.isalnum() and
|
|
50
|
-
len(word) > 2 and
|
|
51
|
-
word not in self.filter_words and
|
|
52
|
-
word not in self.normalizer.stop_words):
|
|
53
|
-
word_scores[word] += 1
|
|
54
|
-
word_positions[word].append(i)
|
|
55
|
-
|
|
56
|
-
# Adjust scores based on position
|
|
57
|
-
num_sentences = len(sentences)
|
|
58
|
-
for word, positions in word_positions.items():
|
|
59
|
-
# Words appearing in first or last sentences get bonus
|
|
60
|
-
if 0 in positions:
|
|
61
|
-
word_scores[word] *= 1.2
|
|
62
|
-
if num_sentences - 1 in positions:
|
|
63
|
-
word_scores[word] *= 1.1
|
|
64
|
-
|
|
65
|
-
# Words appearing throughout text get bonus
|
|
66
|
-
coverage = len(set(positions)) / num_sentences
|
|
67
|
-
word_scores[word] *= (1 + coverage)
|
|
68
|
-
|
|
69
|
-
return word_scores
|
|
70
|
-
|
|
71
|
-
def _calculate_word_cooccurrence(self, text: str, window_size: int = 3) -> Dict[str, Dict[str, int]]:
|
|
72
|
-
"""Calculate word co-occurrence matrix."""
|
|
73
|
-
# Normalize and tokenize text
|
|
74
|
-
text = self.normalizer.normalize(text)
|
|
75
|
-
words = self.word_tokenizer.tokenize(text)
|
|
76
|
-
|
|
77
|
-
# Filter words
|
|
78
|
-
filtered_words = [
|
|
79
|
-
word.lower() for word in words
|
|
80
|
-
if (word.isalnum() and
|
|
81
|
-
len(word) > 2 and
|
|
82
|
-
word.lower() not in self.filter_words and
|
|
83
|
-
word.lower() not in self.normalizer.stop_words)
|
|
84
|
-
]
|
|
85
|
-
|
|
86
|
-
# Build co-occurrence matrix
|
|
87
|
-
cooccurrence: Dict[str, Dict[str, int]] = defaultdict(lambda: defaultdict(int))
|
|
88
|
-
|
|
89
|
-
for i, word in enumerate(filtered_words):
|
|
90
|
-
for j in range(max(0, i - window_size), min(len(filtered_words), i + window_size + 1)):
|
|
91
|
-
if i != j:
|
|
92
|
-
cooccurrence[word][filtered_words[j]] += 1
|
|
93
|
-
cooccurrence[filtered_words[j]][word] += 1
|
|
94
|
-
|
|
95
|
-
return cooccurrence
|
|
96
|
-
|
|
97
|
-
def _textrank_scores(self, cooccurrence: Dict[str, Dict[str, int]], damping: float = 0.85,
|
|
98
|
-
iterations: int = 30) -> Dict[str, float]:
|
|
99
|
-
"""Calculate TextRank scores from co-occurrence matrix."""
|
|
100
|
-
scores = {word: 1.0 for word in cooccurrence}
|
|
101
|
-
|
|
102
|
-
for _ in range(iterations):
|
|
103
|
-
new_scores = {}
|
|
104
|
-
for word in scores:
|
|
105
|
-
if not cooccurrence[word]:
|
|
106
|
-
continue
|
|
107
|
-
|
|
108
|
-
incoming_score = sum(
|
|
109
|
-
scores[other] * cooccurrence[word][other] / sum(cooccurrence[other].values())
|
|
110
|
-
for other in cooccurrence[word]
|
|
111
|
-
)
|
|
112
|
-
new_scores[word] = (1 - damping) + damping * incoming_score
|
|
113
|
-
|
|
114
|
-
# Check convergence
|
|
115
|
-
score_diff = sum(abs(new_scores[w] - scores[w]) for w in scores)
|
|
116
|
-
scores = new_scores
|
|
117
|
-
if score_diff < 0.0001:
|
|
118
|
-
break
|
|
119
|
-
|
|
120
|
-
return scores
|
|
121
|
-
|
|
122
|
-
def extract_keywords(self, text: str, num_keywords: int = 10,
|
|
123
|
-
use_textrank: bool = True) -> List[Tuple[str, float]]:
|
|
124
|
-
"""
|
|
125
|
-
Extract keywords from text using combined frequency and graph-based approach.
|
|
126
|
-
|
|
127
|
-
Args:
|
|
128
|
-
text: Input text
|
|
129
|
-
num_keywords: Number of keywords to return
|
|
130
|
-
use_textrank: Whether to use TextRank algorithm
|
|
131
|
-
|
|
132
|
-
Returns:
|
|
133
|
-
List of (keyword, score) tuples, sorted by score
|
|
134
|
-
"""
|
|
135
|
-
if not text:
|
|
136
|
-
return []
|
|
137
|
-
|
|
138
|
-
# Get frequency-based scores
|
|
139
|
-
freq_scores = self._calculate_word_scores(text)
|
|
140
|
-
|
|
141
|
-
if use_textrank:
|
|
142
|
-
# Get TextRank scores
|
|
143
|
-
cooccurrence = self._calculate_word_cooccurrence(text)
|
|
144
|
-
textrank_scores = self._textrank_scores(cooccurrence)
|
|
145
|
-
|
|
146
|
-
# Combine scores
|
|
147
|
-
combined_scores = {
|
|
148
|
-
word: freq_scores[word] * textrank_scores.get(word, 0)
|
|
149
|
-
for word in freq_scores
|
|
150
|
-
}
|
|
151
|
-
else:
|
|
152
|
-
combined_scores = freq_scores
|
|
153
|
-
|
|
154
|
-
# Sort and return top keywords
|
|
155
|
-
sorted_words = sorted(
|
|
156
|
-
combined_scores.items(),
|
|
157
|
-
key=lambda x: x[1],
|
|
158
|
-
reverse=True
|
|
159
|
-
)
|
|
160
|
-
|
|
161
|
-
return sorted_words[:num_keywords]
|
|
162
|
-
|
|
163
|
-
def extract_keyphrases(self, text: str, num_phrases: int = 5,
|
|
164
|
-
min_words: int = 2, max_words: int = 4) -> List[Tuple[str, float]]:
|
|
165
|
-
"""
|
|
166
|
-
Extract key phrases from text.
|
|
167
|
-
|
|
168
|
-
Args:
|
|
169
|
-
text: Input text
|
|
170
|
-
num_phrases: Number of phrases to return
|
|
171
|
-
min_words: Minimum words in phrase
|
|
172
|
-
max_words: Maximum words in phrase
|
|
173
|
-
|
|
174
|
-
Returns:
|
|
175
|
-
List of (phrase, score) tuples, sorted by score
|
|
176
|
-
"""
|
|
177
|
-
# Normalize and split into sentences
|
|
178
|
-
text = self.normalizer.normalize(text)
|
|
179
|
-
sentences = self._split_into_sentences(text)
|
|
180
|
-
|
|
181
|
-
# Get word importance scores
|
|
182
|
-
word_scores = self._calculate_word_scores(text)
|
|
183
|
-
|
|
184
|
-
# Extract candidate phrases
|
|
185
|
-
phrases: Dict[str, float] = {}
|
|
186
|
-
|
|
187
|
-
for sentence in sentences:
|
|
188
|
-
words = self.word_tokenizer.tokenize(sentence)
|
|
189
|
-
|
|
190
|
-
# Generate phrases of different lengths
|
|
191
|
-
for i in range(len(words)):
|
|
192
|
-
for length in range(min_words, min(max_words + 1, len(words) - i + 1)):
|
|
193
|
-
phrase_words = words[i:i+length]
|
|
194
|
-
|
|
195
|
-
# Filter phrases
|
|
196
|
-
if all(
|
|
197
|
-
word.isalnum() and
|
|
198
|
-
len(word) > 2 and
|
|
199
|
-
word.lower() not in self.filter_words and
|
|
200
|
-
word.lower() not in self.normalizer.stop_words
|
|
201
|
-
for word in phrase_words
|
|
202
|
-
):
|
|
203
|
-
phrase = ' '.join(phrase_words)
|
|
204
|
-
# Score is average of word scores
|
|
205
|
-
score = sum(word_scores.get(word.lower(), 0) for word in phrase_words)
|
|
206
|
-
score /= len(phrase_words)
|
|
207
|
-
phrases[phrase] = score
|
|
208
|
-
|
|
209
|
-
# Sort and return top phrases
|
|
210
|
-
sorted_phrases = sorted(
|
|
211
|
-
phrases.items(),
|
|
212
|
-
key=lambda x: x[1],
|
|
213
|
-
reverse=True
|
|
214
|
-
)
|
|
215
|
-
|
|
216
|
-
return sorted_phrases[:num_phrases]
|
|
1
|
+
"""
|
|
2
|
+
Keyword extraction module using statistical and graph-based approaches.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import Dict, List, Set, Tuple
|
|
6
|
+
from collections import Counter, defaultdict
|
|
7
|
+
import math
|
|
8
|
+
import re
|
|
9
|
+
|
|
10
|
+
from .tokenizer import WordTokenizer
|
|
11
|
+
from .normalizer import TextNormalizer
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class KeywordExtractor:
|
|
15
|
+
"""Keyword extraction using TF-IDF and TextRank-inspired algorithms."""
|
|
16
|
+
|
|
17
|
+
def __init__(self):
|
|
18
|
+
self.word_tokenizer = WordTokenizer()
|
|
19
|
+
self.normalizer = TextNormalizer()
|
|
20
|
+
|
|
21
|
+
# Common words to filter out beyond basic stop words
|
|
22
|
+
self.filter_words: Set[str] = {
|
|
23
|
+
'would', 'could', 'should', 'said', 'also', 'may', 'might',
|
|
24
|
+
'must', 'need', 'shall', 'want', 'way', 'time', 'just',
|
|
25
|
+
'now', 'like', 'make', 'made', 'well', 'back', 'even',
|
|
26
|
+
'still', 'way', 'take', 'took', 'get', 'got', 'go', 'went'
|
|
27
|
+
}
|
|
28
|
+
|
|
29
|
+
def _split_into_sentences(self, text: str) -> List[str]:
|
|
30
|
+
"""Split text into sentences using simple rules."""
|
|
31
|
+
text = re.sub(r'\s+', ' ', text)
|
|
32
|
+
sentences = re.split(r'[.!?]+', text)
|
|
33
|
+
return [s.strip() for s in sentences if s.strip()]
|
|
34
|
+
|
|
35
|
+
def _calculate_word_scores(self, text: str) -> Dict[str, float]:
|
|
36
|
+
"""Calculate word importance scores using frequency and position."""
|
|
37
|
+
# Normalize and tokenize text
|
|
38
|
+
text = self.normalizer.normalize(text)
|
|
39
|
+
sentences = self._split_into_sentences(text)
|
|
40
|
+
|
|
41
|
+
word_scores: Dict[str, float] = defaultdict(float)
|
|
42
|
+
word_positions: Dict[str, List[int]] = defaultdict(list)
|
|
43
|
+
|
|
44
|
+
# Calculate word frequencies and positions
|
|
45
|
+
for i, sentence in enumerate(sentences):
|
|
46
|
+
words = self.word_tokenizer.tokenize(sentence)
|
|
47
|
+
for j, word in enumerate(words):
|
|
48
|
+
word = word.lower()
|
|
49
|
+
if (word.isalnum() and
|
|
50
|
+
len(word) > 2 and
|
|
51
|
+
word not in self.filter_words and
|
|
52
|
+
word not in self.normalizer.stop_words):
|
|
53
|
+
word_scores[word] += 1
|
|
54
|
+
word_positions[word].append(i)
|
|
55
|
+
|
|
56
|
+
# Adjust scores based on position
|
|
57
|
+
num_sentences = len(sentences)
|
|
58
|
+
for word, positions in word_positions.items():
|
|
59
|
+
# Words appearing in first or last sentences get bonus
|
|
60
|
+
if 0 in positions:
|
|
61
|
+
word_scores[word] *= 1.2
|
|
62
|
+
if num_sentences - 1 in positions:
|
|
63
|
+
word_scores[word] *= 1.1
|
|
64
|
+
|
|
65
|
+
# Words appearing throughout text get bonus
|
|
66
|
+
coverage = len(set(positions)) / num_sentences
|
|
67
|
+
word_scores[word] *= (1 + coverage)
|
|
68
|
+
|
|
69
|
+
return word_scores
|
|
70
|
+
|
|
71
|
+
def _calculate_word_cooccurrence(self, text: str, window_size: int = 3) -> Dict[str, Dict[str, int]]:
|
|
72
|
+
"""Calculate word co-occurrence matrix."""
|
|
73
|
+
# Normalize and tokenize text
|
|
74
|
+
text = self.normalizer.normalize(text)
|
|
75
|
+
words = self.word_tokenizer.tokenize(text)
|
|
76
|
+
|
|
77
|
+
# Filter words
|
|
78
|
+
filtered_words = [
|
|
79
|
+
word.lower() for word in words
|
|
80
|
+
if (word.isalnum() and
|
|
81
|
+
len(word) > 2 and
|
|
82
|
+
word.lower() not in self.filter_words and
|
|
83
|
+
word.lower() not in self.normalizer.stop_words)
|
|
84
|
+
]
|
|
85
|
+
|
|
86
|
+
# Build co-occurrence matrix
|
|
87
|
+
cooccurrence: Dict[str, Dict[str, int]] = defaultdict(lambda: defaultdict(int))
|
|
88
|
+
|
|
89
|
+
for i, word in enumerate(filtered_words):
|
|
90
|
+
for j in range(max(0, i - window_size), min(len(filtered_words), i + window_size + 1)):
|
|
91
|
+
if i != j:
|
|
92
|
+
cooccurrence[word][filtered_words[j]] += 1
|
|
93
|
+
cooccurrence[filtered_words[j]][word] += 1
|
|
94
|
+
|
|
95
|
+
return cooccurrence
|
|
96
|
+
|
|
97
|
+
def _textrank_scores(self, cooccurrence: Dict[str, Dict[str, int]], damping: float = 0.85,
|
|
98
|
+
iterations: int = 30) -> Dict[str, float]:
|
|
99
|
+
"""Calculate TextRank scores from co-occurrence matrix."""
|
|
100
|
+
scores = {word: 1.0 for word in cooccurrence}
|
|
101
|
+
|
|
102
|
+
for _ in range(iterations):
|
|
103
|
+
new_scores = {}
|
|
104
|
+
for word in scores:
|
|
105
|
+
if not cooccurrence[word]:
|
|
106
|
+
continue
|
|
107
|
+
|
|
108
|
+
incoming_score = sum(
|
|
109
|
+
scores[other] * cooccurrence[word][other] / sum(cooccurrence[other].values())
|
|
110
|
+
for other in cooccurrence[word]
|
|
111
|
+
)
|
|
112
|
+
new_scores[word] = (1 - damping) + damping * incoming_score
|
|
113
|
+
|
|
114
|
+
# Check convergence
|
|
115
|
+
score_diff = sum(abs(new_scores[w] - scores[w]) for w in scores)
|
|
116
|
+
scores = new_scores
|
|
117
|
+
if score_diff < 0.0001:
|
|
118
|
+
break
|
|
119
|
+
|
|
120
|
+
return scores
|
|
121
|
+
|
|
122
|
+
def extract_keywords(self, text: str, num_keywords: int = 10,
|
|
123
|
+
use_textrank: bool = True) -> List[Tuple[str, float]]:
|
|
124
|
+
"""
|
|
125
|
+
Extract keywords from text using combined frequency and graph-based approach.
|
|
126
|
+
|
|
127
|
+
Args:
|
|
128
|
+
text: Input text
|
|
129
|
+
num_keywords: Number of keywords to return
|
|
130
|
+
use_textrank: Whether to use TextRank algorithm
|
|
131
|
+
|
|
132
|
+
Returns:
|
|
133
|
+
List of (keyword, score) tuples, sorted by score
|
|
134
|
+
"""
|
|
135
|
+
if not text:
|
|
136
|
+
return []
|
|
137
|
+
|
|
138
|
+
# Get frequency-based scores
|
|
139
|
+
freq_scores = self._calculate_word_scores(text)
|
|
140
|
+
|
|
141
|
+
if use_textrank:
|
|
142
|
+
# Get TextRank scores
|
|
143
|
+
cooccurrence = self._calculate_word_cooccurrence(text)
|
|
144
|
+
textrank_scores = self._textrank_scores(cooccurrence)
|
|
145
|
+
|
|
146
|
+
# Combine scores
|
|
147
|
+
combined_scores = {
|
|
148
|
+
word: freq_scores[word] * textrank_scores.get(word, 0)
|
|
149
|
+
for word in freq_scores
|
|
150
|
+
}
|
|
151
|
+
else:
|
|
152
|
+
combined_scores = freq_scores
|
|
153
|
+
|
|
154
|
+
# Sort and return top keywords
|
|
155
|
+
sorted_words = sorted(
|
|
156
|
+
combined_scores.items(),
|
|
157
|
+
key=lambda x: x[1],
|
|
158
|
+
reverse=True
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
return sorted_words[:num_keywords]
|
|
162
|
+
|
|
163
|
+
def extract_keyphrases(self, text: str, num_phrases: int = 5,
|
|
164
|
+
min_words: int = 2, max_words: int = 4) -> List[Tuple[str, float]]:
|
|
165
|
+
"""
|
|
166
|
+
Extract key phrases from text.
|
|
167
|
+
|
|
168
|
+
Args:
|
|
169
|
+
text: Input text
|
|
170
|
+
num_phrases: Number of phrases to return
|
|
171
|
+
min_words: Minimum words in phrase
|
|
172
|
+
max_words: Maximum words in phrase
|
|
173
|
+
|
|
174
|
+
Returns:
|
|
175
|
+
List of (phrase, score) tuples, sorted by score
|
|
176
|
+
"""
|
|
177
|
+
# Normalize and split into sentences
|
|
178
|
+
text = self.normalizer.normalize(text)
|
|
179
|
+
sentences = self._split_into_sentences(text)
|
|
180
|
+
|
|
181
|
+
# Get word importance scores
|
|
182
|
+
word_scores = self._calculate_word_scores(text)
|
|
183
|
+
|
|
184
|
+
# Extract candidate phrases
|
|
185
|
+
phrases: Dict[str, float] = {}
|
|
186
|
+
|
|
187
|
+
for sentence in sentences:
|
|
188
|
+
words = self.word_tokenizer.tokenize(sentence)
|
|
189
|
+
|
|
190
|
+
# Generate phrases of different lengths
|
|
191
|
+
for i in range(len(words)):
|
|
192
|
+
for length in range(min_words, min(max_words + 1, len(words) - i + 1)):
|
|
193
|
+
phrase_words = words[i:i+length]
|
|
194
|
+
|
|
195
|
+
# Filter phrases
|
|
196
|
+
if all(
|
|
197
|
+
word.isalnum() and
|
|
198
|
+
len(word) > 2 and
|
|
199
|
+
word.lower() not in self.filter_words and
|
|
200
|
+
word.lower() not in self.normalizer.stop_words
|
|
201
|
+
for word in phrase_words
|
|
202
|
+
):
|
|
203
|
+
phrase = ' '.join(phrase_words)
|
|
204
|
+
# Score is average of word scores
|
|
205
|
+
score = sum(word_scores.get(word.lower(), 0) for word in phrase_words)
|
|
206
|
+
score /= len(phrase_words)
|
|
207
|
+
phrases[phrase] = score
|
|
208
|
+
|
|
209
|
+
# Sort and return top phrases
|
|
210
|
+
sorted_phrases = sorted(
|
|
211
|
+
phrases.items(),
|
|
212
|
+
key=lambda x: x[1],
|
|
213
|
+
reverse=True
|
|
214
|
+
)
|
|
215
|
+
|
|
216
|
+
return sorted_phrases[:num_phrases]
|