webscout 7.1__py3-none-any.whl → 7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (144) hide show
  1. webscout/AIauto.py +191 -191
  2. webscout/AIbase.py +122 -122
  3. webscout/AIutel.py +440 -440
  4. webscout/Bard.py +343 -161
  5. webscout/DWEBS.py +489 -492
  6. webscout/Extra/YTToolkit/YTdownloader.py +995 -995
  7. webscout/Extra/YTToolkit/__init__.py +2 -2
  8. webscout/Extra/YTToolkit/transcriber.py +476 -479
  9. webscout/Extra/YTToolkit/ytapi/channel.py +307 -307
  10. webscout/Extra/YTToolkit/ytapi/playlist.py +58 -58
  11. webscout/Extra/YTToolkit/ytapi/pool.py +7 -7
  12. webscout/Extra/YTToolkit/ytapi/utils.py +62 -62
  13. webscout/Extra/YTToolkit/ytapi/video.py +103 -103
  14. webscout/Extra/autocoder/__init__.py +9 -9
  15. webscout/Extra/autocoder/autocoder_utiles.py +199 -199
  16. webscout/Extra/autocoder/rawdog.py +5 -7
  17. webscout/Extra/autollama.py +230 -230
  18. webscout/Extra/gguf.py +3 -3
  19. webscout/Extra/weather.py +171 -171
  20. webscout/LLM.py +442 -442
  21. webscout/Litlogger/__init__.py +67 -681
  22. webscout/Litlogger/core/__init__.py +6 -0
  23. webscout/Litlogger/core/level.py +20 -0
  24. webscout/Litlogger/core/logger.py +123 -0
  25. webscout/Litlogger/handlers/__init__.py +12 -0
  26. webscout/Litlogger/handlers/console.py +50 -0
  27. webscout/Litlogger/handlers/file.py +143 -0
  28. webscout/Litlogger/handlers/network.py +174 -0
  29. webscout/Litlogger/styles/__init__.py +7 -0
  30. webscout/Litlogger/styles/colors.py +231 -0
  31. webscout/Litlogger/styles/formats.py +377 -0
  32. webscout/Litlogger/styles/text.py +87 -0
  33. webscout/Litlogger/utils/__init__.py +6 -0
  34. webscout/Litlogger/utils/detectors.py +154 -0
  35. webscout/Litlogger/utils/formatters.py +200 -0
  36. webscout/Provider/AISEARCH/DeepFind.py +250 -250
  37. webscout/Provider/Blackboxai.py +3 -3
  38. webscout/Provider/ChatGPTGratis.py +226 -0
  39. webscout/Provider/Cloudflare.py +3 -4
  40. webscout/Provider/DeepSeek.py +218 -0
  41. webscout/Provider/Deepinfra.py +3 -3
  42. webscout/Provider/Free2GPT.py +131 -124
  43. webscout/Provider/Gemini.py +100 -115
  44. webscout/Provider/Glider.py +3 -3
  45. webscout/Provider/Groq.py +5 -1
  46. webscout/Provider/Jadve.py +3 -3
  47. webscout/Provider/Marcus.py +191 -192
  48. webscout/Provider/Netwrck.py +3 -3
  49. webscout/Provider/PI.py +2 -2
  50. webscout/Provider/PizzaGPT.py +2 -3
  51. webscout/Provider/QwenLM.py +311 -0
  52. webscout/Provider/TTI/AiForce/__init__.py +22 -22
  53. webscout/Provider/TTI/AiForce/async_aiforce.py +257 -257
  54. webscout/Provider/TTI/AiForce/sync_aiforce.py +242 -242
  55. webscout/Provider/TTI/Nexra/__init__.py +22 -22
  56. webscout/Provider/TTI/Nexra/async_nexra.py +286 -286
  57. webscout/Provider/TTI/Nexra/sync_nexra.py +258 -258
  58. webscout/Provider/TTI/PollinationsAI/__init__.py +23 -23
  59. webscout/Provider/TTI/PollinationsAI/async_pollinations.py +330 -330
  60. webscout/Provider/TTI/PollinationsAI/sync_pollinations.py +285 -285
  61. webscout/Provider/TTI/artbit/__init__.py +22 -22
  62. webscout/Provider/TTI/artbit/async_artbit.py +184 -184
  63. webscout/Provider/TTI/artbit/sync_artbit.py +176 -176
  64. webscout/Provider/TTI/blackbox/__init__.py +4 -4
  65. webscout/Provider/TTI/blackbox/async_blackbox.py +212 -212
  66. webscout/Provider/TTI/blackbox/sync_blackbox.py +199 -199
  67. webscout/Provider/TTI/deepinfra/__init__.py +4 -4
  68. webscout/Provider/TTI/deepinfra/async_deepinfra.py +227 -227
  69. webscout/Provider/TTI/deepinfra/sync_deepinfra.py +199 -199
  70. webscout/Provider/TTI/huggingface/__init__.py +22 -22
  71. webscout/Provider/TTI/huggingface/async_huggingface.py +199 -199
  72. webscout/Provider/TTI/huggingface/sync_huggingface.py +195 -195
  73. webscout/Provider/TTI/imgninza/__init__.py +4 -4
  74. webscout/Provider/TTI/imgninza/async_ninza.py +214 -214
  75. webscout/Provider/TTI/imgninza/sync_ninza.py +209 -209
  76. webscout/Provider/TTI/talkai/__init__.py +4 -4
  77. webscout/Provider/TTI/talkai/async_talkai.py +229 -229
  78. webscout/Provider/TTI/talkai/sync_talkai.py +207 -207
  79. webscout/Provider/TTS/deepgram.py +182 -182
  80. webscout/Provider/TTS/elevenlabs.py +136 -136
  81. webscout/Provider/TTS/gesserit.py +150 -150
  82. webscout/Provider/TTS/murfai.py +138 -138
  83. webscout/Provider/TTS/parler.py +133 -134
  84. webscout/Provider/TTS/streamElements.py +360 -360
  85. webscout/Provider/TTS/utils.py +280 -280
  86. webscout/Provider/TTS/voicepod.py +116 -116
  87. webscout/Provider/TextPollinationsAI.py +2 -3
  88. webscout/Provider/WiseCat.py +193 -0
  89. webscout/Provider/__init__.py +144 -134
  90. webscout/Provider/cerebras.py +242 -227
  91. webscout/Provider/chatglm.py +204 -204
  92. webscout/Provider/dgaf.py +2 -3
  93. webscout/Provider/gaurish.py +2 -3
  94. webscout/Provider/geminiapi.py +208 -208
  95. webscout/Provider/granite.py +223 -0
  96. webscout/Provider/hermes.py +218 -218
  97. webscout/Provider/llama3mitril.py +179 -179
  98. webscout/Provider/llamatutor.py +3 -3
  99. webscout/Provider/llmchat.py +2 -3
  100. webscout/Provider/meta.py +794 -794
  101. webscout/Provider/multichat.py +331 -331
  102. webscout/Provider/typegpt.py +359 -359
  103. webscout/Provider/yep.py +2 -2
  104. webscout/__main__.py +5 -5
  105. webscout/cli.py +319 -319
  106. webscout/conversation.py +241 -242
  107. webscout/exceptions.py +328 -328
  108. webscout/litagent/__init__.py +28 -28
  109. webscout/litagent/agent.py +2 -3
  110. webscout/litprinter/__init__.py +0 -58
  111. webscout/scout/__init__.py +8 -8
  112. webscout/scout/core.py +884 -884
  113. webscout/scout/element.py +459 -459
  114. webscout/scout/parsers/__init__.py +69 -69
  115. webscout/scout/parsers/html5lib_parser.py +172 -172
  116. webscout/scout/parsers/html_parser.py +236 -236
  117. webscout/scout/parsers/lxml_parser.py +178 -178
  118. webscout/scout/utils.py +38 -38
  119. webscout/swiftcli/__init__.py +811 -811
  120. webscout/update_checker.py +2 -12
  121. webscout/version.py +1 -1
  122. webscout/webscout_search.py +5 -4
  123. webscout/zeroart/__init__.py +54 -54
  124. webscout/zeroart/base.py +60 -60
  125. webscout/zeroart/effects.py +99 -99
  126. webscout/zeroart/fonts.py +816 -816
  127. {webscout-7.1.dist-info → webscout-7.2.dist-info}/METADATA +4 -3
  128. webscout-7.2.dist-info/RECORD +217 -0
  129. webstoken/__init__.py +30 -30
  130. webstoken/classifier.py +189 -189
  131. webstoken/keywords.py +216 -216
  132. webstoken/language.py +128 -128
  133. webstoken/ner.py +164 -164
  134. webstoken/normalizer.py +35 -35
  135. webstoken/processor.py +77 -77
  136. webstoken/sentiment.py +206 -206
  137. webstoken/stemmer.py +73 -73
  138. webstoken/tagger.py +60 -60
  139. webstoken/tokenizer.py +158 -158
  140. webscout-7.1.dist-info/RECORD +0 -198
  141. {webscout-7.1.dist-info → webscout-7.2.dist-info}/LICENSE.md +0 -0
  142. {webscout-7.1.dist-info → webscout-7.2.dist-info}/WHEEL +0 -0
  143. {webscout-7.1.dist-info → webscout-7.2.dist-info}/entry_points.txt +0 -0
  144. {webscout-7.1.dist-info → webscout-7.2.dist-info}/top_level.txt +0 -0
webstoken/classifier.py CHANGED
@@ -1,189 +1,189 @@
1
- """
2
- Text classification module using rule-based and statistical approaches.
3
- """
4
-
5
- from typing import Dict, List, Set, Tuple
6
- from collections import Counter
7
- import math
8
- import re
9
-
10
- from .normalizer import TextNormalizer
11
- from .tokenizer import WordTokenizer
12
-
13
-
14
- class TextClassifier:
15
- """Simple text classifier using TF-IDF and cosine similarity."""
16
-
17
- def __init__(self):
18
- self.word_tokenizer = WordTokenizer()
19
- self.normalizer = TextNormalizer()
20
- self.documents: Dict[str, List[str]] = {} # category -> list of documents
21
- self.vocabulary: Set[str] = set()
22
- self.idf_scores: Dict[str, float] = {}
23
- self.category_vectors: Dict[str, Dict[str, float]] = {}
24
-
25
- def train(self, documents: Dict[str, List[str]]) -> None:
26
- """
27
- Train the classifier on labeled documents.
28
-
29
- Args:
30
- documents: Dict mapping categories to lists of documents
31
- """
32
- self.documents = documents
33
-
34
- # Build vocabulary and document frequencies
35
- doc_frequencies: Dict[str, int] = Counter()
36
- total_docs = sum(len(docs) for docs in documents.values())
37
-
38
- for category, docs in documents.items():
39
- for doc in docs:
40
- # Normalize and tokenize
41
- doc = self.normalizer.normalize(doc)
42
- tokens = self.word_tokenizer.tokenize(doc)
43
-
44
- # Update vocabulary and document frequencies
45
- unique_tokens = set(tokens)
46
- self.vocabulary.update(unique_tokens)
47
- doc_frequencies.update(unique_tokens)
48
-
49
- # Calculate IDF scores
50
- self.idf_scores = {
51
- word: math.log(total_docs / (freq + 1))
52
- for word, freq in doc_frequencies.items()
53
- }
54
-
55
- # Calculate TF-IDF vectors for each category
56
- for category, docs in documents.items():
57
- category_vector: Dict[str, float] = {word: 0.0 for word in self.vocabulary}
58
-
59
- for doc in docs:
60
- # Get term frequencies
61
- doc = self.normalizer.normalize(doc)
62
- tokens = self.word_tokenizer.tokenize(doc)
63
- term_freqs = Counter(tokens)
64
-
65
- # Update category vector with TF-IDF scores
66
- for word, tf in term_freqs.items():
67
- if word in self.idf_scores:
68
- category_vector[word] += tf * self.idf_scores[word]
69
-
70
- # Average the scores
71
- for word in category_vector:
72
- category_vector[word] /= len(docs)
73
-
74
- self.category_vectors[category] = category_vector
75
-
76
- def _calculate_vector(self, text: str) -> Dict[str, float]:
77
- """Calculate TF-IDF vector for input text."""
78
- # Normalize and tokenize
79
- text = self.normalizer.normalize(text)
80
- tokens = self.word_tokenizer.tokenize(text)
81
- term_freqs = Counter(tokens)
82
-
83
- # Calculate TF-IDF scores
84
- vector = {word: 0.0 for word in self.vocabulary}
85
- for word, tf in term_freqs.items():
86
- if word in self.idf_scores:
87
- vector[word] = tf * self.idf_scores[word]
88
-
89
- return vector
90
-
91
- def _cosine_similarity(self, vec1: Dict[str, float], vec2: Dict[str, float]) -> float:
92
- """Calculate cosine similarity between two vectors."""
93
- dot_product = sum(vec1[word] * vec2[word] for word in vec1)
94
- norm1 = math.sqrt(sum(score * score for score in vec1.values()))
95
- norm2 = math.sqrt(sum(score * score for score in vec2.values()))
96
-
97
- if norm1 == 0 or norm2 == 0:
98
- return 0.0
99
- return dot_product / (norm1 * norm2)
100
-
101
- def classify(self, text: str) -> List[Tuple[str, float]]:
102
- """
103
- Classify text into categories with confidence scores.
104
-
105
- Returns:
106
- List of (category, confidence) tuples, sorted by confidence
107
- """
108
- if not self.category_vectors:
109
- raise ValueError("Classifier must be trained before classification")
110
-
111
- # Calculate vector for input text
112
- text_vector = self._calculate_vector(text)
113
-
114
- # Calculate similarity with each category
115
- similarities = [
116
- (category, self._cosine_similarity(text_vector, category_vec))
117
- for category, category_vec in self.category_vectors.items()
118
- ]
119
-
120
- # Sort by similarity score
121
- return sorted(similarities, key=lambda x: x[1], reverse=True)
122
-
123
-
124
- class TopicClassifier:
125
- """Rule-based topic classifier using keyword matching."""
126
-
127
- def __init__(self):
128
- # Define topic keywords
129
- self.topic_keywords = {
130
- 'TECHNOLOGY': {
131
- 'computer', 'software', 'hardware', 'internet', 'programming',
132
- 'digital', 'data', 'algorithm', 'code', 'web', 'app', 'mobile',
133
- 'cyber', 'robot', 'ai', 'artificial intelligence', 'machine learning'
134
- },
135
- 'SCIENCE': {
136
- 'research', 'experiment', 'laboratory', 'scientific', 'physics',
137
- 'chemistry', 'biology', 'mathematics', 'theory', 'hypothesis',
138
- 'study', 'discovery', 'innovation', 'analysis', 'observation'
139
- },
140
- 'BUSINESS': {
141
- 'company', 'market', 'finance', 'investment', 'stock', 'trade',
142
- 'economy', 'business', 'corporate', 'startup', 'entrepreneur',
143
- 'profit', 'revenue', 'management', 'strategy', 'commercial'
144
- },
145
- 'POLITICS': {
146
- 'government', 'policy', 'election', 'political', 'democracy',
147
- 'parliament', 'congress', 'law', 'legislation', 'party',
148
- 'vote', 'campaign', 'president', 'minister', 'diplomatic'
149
- },
150
- 'SPORTS': {
151
- 'game', 'team', 'player', 'competition', 'tournament',
152
- 'championship', 'score', 'match', 'athlete', 'sport',
153
- 'win', 'lose', 'victory', 'defeat', 'coach', 'training'
154
- },
155
- 'ENTERTAINMENT': {
156
- 'movie', 'film', 'music', 'song', 'concert', 'actor',
157
- 'actress', 'celebrity', 'show', 'performance', 'art',
158
- 'entertainment', 'theater', 'dance', 'festival', 'media'
159
- }
160
- }
161
-
162
- # Compile regex patterns for each topic
163
- self.topic_patterns = {
164
- topic: re.compile(r'\b(' + '|'.join(re.escape(kw) for kw in keywords) + r')\b', re.IGNORECASE)
165
- for topic, keywords in self.topic_keywords.items()
166
- }
167
-
168
- def classify(self, text: str) -> List[Tuple[str, float]]:
169
- """
170
- Classify text into topics with confidence scores.
171
-
172
- Returns:
173
- List of (topic, confidence) tuples, sorted by confidence
174
- """
175
- # Count keyword matches for each topic
176
- topic_matches = {
177
- topic: len(pattern.findall(text))
178
- for topic, pattern in self.topic_patterns.items()
179
- }
180
-
181
- # Calculate confidence scores
182
- total_matches = sum(topic_matches.values()) or 1 # Avoid division by zero
183
- topic_scores = [
184
- (topic, count / total_matches)
185
- for topic, count in topic_matches.items()
186
- ]
187
-
188
- # Sort by score
189
- return sorted(topic_scores, key=lambda x: x[1], reverse=True)
1
+ """
2
+ Text classification module using rule-based and statistical approaches.
3
+ """
4
+
5
+ from typing import Dict, List, Set, Tuple
6
+ from collections import Counter
7
+ import math
8
+ import re
9
+
10
+ from .normalizer import TextNormalizer
11
+ from .tokenizer import WordTokenizer
12
+
13
+
14
+ class TextClassifier:
15
+ """Simple text classifier using TF-IDF and cosine similarity."""
16
+
17
+ def __init__(self):
18
+ self.word_tokenizer = WordTokenizer()
19
+ self.normalizer = TextNormalizer()
20
+ self.documents: Dict[str, List[str]] = {} # category -> list of documents
21
+ self.vocabulary: Set[str] = set()
22
+ self.idf_scores: Dict[str, float] = {}
23
+ self.category_vectors: Dict[str, Dict[str, float]] = {}
24
+
25
+ def train(self, documents: Dict[str, List[str]]) -> None:
26
+ """
27
+ Train the classifier on labeled documents.
28
+
29
+ Args:
30
+ documents: Dict mapping categories to lists of documents
31
+ """
32
+ self.documents = documents
33
+
34
+ # Build vocabulary and document frequencies
35
+ doc_frequencies: Dict[str, int] = Counter()
36
+ total_docs = sum(len(docs) for docs in documents.values())
37
+
38
+ for category, docs in documents.items():
39
+ for doc in docs:
40
+ # Normalize and tokenize
41
+ doc = self.normalizer.normalize(doc)
42
+ tokens = self.word_tokenizer.tokenize(doc)
43
+
44
+ # Update vocabulary and document frequencies
45
+ unique_tokens = set(tokens)
46
+ self.vocabulary.update(unique_tokens)
47
+ doc_frequencies.update(unique_tokens)
48
+
49
+ # Calculate IDF scores
50
+ self.idf_scores = {
51
+ word: math.log(total_docs / (freq + 1))
52
+ for word, freq in doc_frequencies.items()
53
+ }
54
+
55
+ # Calculate TF-IDF vectors for each category
56
+ for category, docs in documents.items():
57
+ category_vector: Dict[str, float] = {word: 0.0 for word in self.vocabulary}
58
+
59
+ for doc in docs:
60
+ # Get term frequencies
61
+ doc = self.normalizer.normalize(doc)
62
+ tokens = self.word_tokenizer.tokenize(doc)
63
+ term_freqs = Counter(tokens)
64
+
65
+ # Update category vector with TF-IDF scores
66
+ for word, tf in term_freqs.items():
67
+ if word in self.idf_scores:
68
+ category_vector[word] += tf * self.idf_scores[word]
69
+
70
+ # Average the scores
71
+ for word in category_vector:
72
+ category_vector[word] /= len(docs)
73
+
74
+ self.category_vectors[category] = category_vector
75
+
76
+ def _calculate_vector(self, text: str) -> Dict[str, float]:
77
+ """Calculate TF-IDF vector for input text."""
78
+ # Normalize and tokenize
79
+ text = self.normalizer.normalize(text)
80
+ tokens = self.word_tokenizer.tokenize(text)
81
+ term_freqs = Counter(tokens)
82
+
83
+ # Calculate TF-IDF scores
84
+ vector = {word: 0.0 for word in self.vocabulary}
85
+ for word, tf in term_freqs.items():
86
+ if word in self.idf_scores:
87
+ vector[word] = tf * self.idf_scores[word]
88
+
89
+ return vector
90
+
91
+ def _cosine_similarity(self, vec1: Dict[str, float], vec2: Dict[str, float]) -> float:
92
+ """Calculate cosine similarity between two vectors."""
93
+ dot_product = sum(vec1[word] * vec2[word] for word in vec1)
94
+ norm1 = math.sqrt(sum(score * score for score in vec1.values()))
95
+ norm2 = math.sqrt(sum(score * score for score in vec2.values()))
96
+
97
+ if norm1 == 0 or norm2 == 0:
98
+ return 0.0
99
+ return dot_product / (norm1 * norm2)
100
+
101
+ def classify(self, text: str) -> List[Tuple[str, float]]:
102
+ """
103
+ Classify text into categories with confidence scores.
104
+
105
+ Returns:
106
+ List of (category, confidence) tuples, sorted by confidence
107
+ """
108
+ if not self.category_vectors:
109
+ raise ValueError("Classifier must be trained before classification")
110
+
111
+ # Calculate vector for input text
112
+ text_vector = self._calculate_vector(text)
113
+
114
+ # Calculate similarity with each category
115
+ similarities = [
116
+ (category, self._cosine_similarity(text_vector, category_vec))
117
+ for category, category_vec in self.category_vectors.items()
118
+ ]
119
+
120
+ # Sort by similarity score
121
+ return sorted(similarities, key=lambda x: x[1], reverse=True)
122
+
123
+
124
+ class TopicClassifier:
125
+ """Rule-based topic classifier using keyword matching."""
126
+
127
+ def __init__(self):
128
+ # Define topic keywords
129
+ self.topic_keywords = {
130
+ 'TECHNOLOGY': {
131
+ 'computer', 'software', 'hardware', 'internet', 'programming',
132
+ 'digital', 'data', 'algorithm', 'code', 'web', 'app', 'mobile',
133
+ 'cyber', 'robot', 'ai', 'artificial intelligence', 'machine learning'
134
+ },
135
+ 'SCIENCE': {
136
+ 'research', 'experiment', 'laboratory', 'scientific', 'physics',
137
+ 'chemistry', 'biology', 'mathematics', 'theory', 'hypothesis',
138
+ 'study', 'discovery', 'innovation', 'analysis', 'observation'
139
+ },
140
+ 'BUSINESS': {
141
+ 'company', 'market', 'finance', 'investment', 'stock', 'trade',
142
+ 'economy', 'business', 'corporate', 'startup', 'entrepreneur',
143
+ 'profit', 'revenue', 'management', 'strategy', 'commercial'
144
+ },
145
+ 'POLITICS': {
146
+ 'government', 'policy', 'election', 'political', 'democracy',
147
+ 'parliament', 'congress', 'law', 'legislation', 'party',
148
+ 'vote', 'campaign', 'president', 'minister', 'diplomatic'
149
+ },
150
+ 'SPORTS': {
151
+ 'game', 'team', 'player', 'competition', 'tournament',
152
+ 'championship', 'score', 'match', 'athlete', 'sport',
153
+ 'win', 'lose', 'victory', 'defeat', 'coach', 'training'
154
+ },
155
+ 'ENTERTAINMENT': {
156
+ 'movie', 'film', 'music', 'song', 'concert', 'actor',
157
+ 'actress', 'celebrity', 'show', 'performance', 'art',
158
+ 'entertainment', 'theater', 'dance', 'festival', 'media'
159
+ }
160
+ }
161
+
162
+ # Compile regex patterns for each topic
163
+ self.topic_patterns = {
164
+ topic: re.compile(r'\b(' + '|'.join(re.escape(kw) for kw in keywords) + r')\b', re.IGNORECASE)
165
+ for topic, keywords in self.topic_keywords.items()
166
+ }
167
+
168
+ def classify(self, text: str) -> List[Tuple[str, float]]:
169
+ """
170
+ Classify text into topics with confidence scores.
171
+
172
+ Returns:
173
+ List of (topic, confidence) tuples, sorted by confidence
174
+ """
175
+ # Count keyword matches for each topic
176
+ topic_matches = {
177
+ topic: len(pattern.findall(text))
178
+ for topic, pattern in self.topic_patterns.items()
179
+ }
180
+
181
+ # Calculate confidence scores
182
+ total_matches = sum(topic_matches.values()) or 1 # Avoid division by zero
183
+ topic_scores = [
184
+ (topic, count / total_matches)
185
+ for topic, count in topic_matches.items()
186
+ ]
187
+
188
+ # Sort by score
189
+ return sorted(topic_scores, key=lambda x: x[1], reverse=True)