webscout 5.7__py3-none-any.whl → 5.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

@@ -1,13 +1,12 @@
1
1
  import cloudscraper
2
2
  from uuid import uuid4
3
3
  import json
4
-
4
+ import re
5
5
  from webscout.AIutel import Optimizers
6
6
  from webscout.AIutel import Conversation
7
7
  from webscout.AIutel import AwesomePrompts
8
8
  from webscout.AIbase import Provider
9
9
 
10
-
11
10
  class Genspark(Provider):
12
11
  """
13
12
  A class to interact with the Genspark.ai API.
@@ -25,7 +24,8 @@ class Genspark(Provider):
25
24
  history_offset: int = 10250,
26
25
  act: str = None,
27
26
  ) -> None:
28
- """Instantiates Genspark
27
+ """
28
+ Instantiates Genspark
29
29
 
30
30
  Args:
31
31
  is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
@@ -67,11 +67,11 @@ class Genspark(Provider):
67
67
  "session_id": uuid4().hex,
68
68
  }
69
69
 
70
- self.__available_optimizers = (
70
+ self.__available_optimizers = [
71
71
  method
72
72
  for method in dir(Optimizers)
73
73
  if callable(getattr(Optimizers, method)) and not method.startswith("__")
74
- )
74
+ ]
75
75
  self.session.headers.update(self.headers)
76
76
  Conversation.intro = (
77
77
  AwesomePrompts().get_act(
@@ -94,7 +94,8 @@ class Genspark(Provider):
94
94
  optimizer: str = None,
95
95
  conversationally: bool = False,
96
96
  ) -> dict:
97
- """Chat with AI
97
+ """
98
+ Chat with AI
98
99
 
99
100
  Args:
100
101
  prompt (str): Prompt to be send.
@@ -102,11 +103,12 @@ class Genspark(Provider):
102
103
  raw (bool, optional): Stream back raw response as received. Defaults to False.
103
104
  optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
104
105
  conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
106
+
105
107
  Returns:
106
- dict : {}
108
+ dict : {}
107
109
  ```json
108
110
  {
109
- "text" : "How may I assist you today?"
111
+ "text" : "How may I assist you today?"
110
112
  }
111
113
  ```
112
114
  """
@@ -121,11 +123,10 @@ class Genspark(Provider):
121
123
  f"Optimizer is not one of {self.__available_optimizers}"
122
124
  )
123
125
 
124
- self.url = (
125
- f"https://www.genspark.ai/api/search/stream?query={conversation_prompt}"
126
- )
126
+ self.url = f"https://www.genspark.ai/api/search/stream?query={conversation_prompt}"
127
127
 
128
128
  payload = {}
129
+
129
130
  def for_stream():
130
131
  response = self.session.post(
131
132
  self.url,
@@ -135,26 +136,24 @@ class Genspark(Provider):
135
136
  stream=True,
136
137
  timeout=self.timeout,
137
138
  )
139
+ if not response.ok:
140
+ raise Exception(
141
+ f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
142
+ )
138
143
 
139
- partial_response = ""
144
+ full_response = ""
140
145
  for line in response.iter_lines(decode_unicode=True):
141
146
  if line:
142
- try:
143
- data = json.loads(line[5:])
144
- if (
145
- data["type"] == "result_field"
146
- and data["field_name"] == "deep_dive_result"
147
- ):
148
- deep_dive_result = data["field_value"]
149
- if "detailAnswer" in deep_dive_result:
150
- new_content = deep_dive_result["detailAnswer"][
151
- len(partial_response) :
152
- ]
153
- partial_response = deep_dive_result["detailAnswer"]
154
- self.last_response.update(dict(text=new_content))
155
- yield new_content if raw else dict(text=new_content)
156
- except json.JSONDecodeError:
157
- print(f"Skipping invalid JSON line: {line}")
147
+ if line.startswith("data: "):
148
+ try:
149
+ data = json.loads(line[6:])
150
+ if data.get("type") == "result_field" and data["field_name"] == "streaming_summary":
151
+ full_response = data.get("field_value", "")
152
+ yield full_response if raw else {"text": full_response}
153
+ except json.JSONDecodeError as e:
154
+ print(f"Error decoding JSON: {line} - {e}")
155
+
156
+ self.last_response.update({"text": full_response})
158
157
  self.conversation.update_chat_history(
159
158
  prompt, self.get_message(self.last_response)
160
159
  )
@@ -173,7 +172,8 @@ class Genspark(Provider):
173
172
  optimizer: str = None,
174
173
  conversationally: bool = False,
175
174
  ) -> str:
176
- """Generate response `str`
175
+ """
176
+ Generate response `str`
177
177
  Args:
178
178
  prompt (str): Prompt to be send.
179
179
  stream (bool, optional): Flag for streaming response. Defaults to False.
@@ -190,19 +190,14 @@ class Genspark(Provider):
190
190
  yield self.get_message(response)
191
191
 
192
192
  def for_non_stream():
193
- return self.get_message(
194
- self.ask(
195
- prompt,
196
- False,
197
- optimizer=optimizer,
198
- conversationally=conversationally,
199
- )
200
- )
193
+ response = self.ask(prompt, False, optimizer=optimizer, conversationally=conversationally)
194
+ return self.get_message(response)
201
195
 
202
196
  return for_stream() if stream else for_non_stream()
203
197
 
204
198
  def get_message(self, response: dict) -> str:
205
- """Retrieves message only from response
199
+ """
200
+ Retrieves message only from response
206
201
 
207
202
  Args:
208
203
  response (dict): Response generated by `self.ask`
@@ -211,12 +206,20 @@ class Genspark(Provider):
211
206
  str: Message extracted
212
207
  """
213
208
  assert isinstance(response, dict), "Response should be of dict data-type only"
214
- return response["text"]
215
-
216
-
217
- if __name__ == "__main__":
209
+ text = response.get('text', '')
210
+ # Remove footnote references from the text
211
+ text = re.sub(r"\[.*?\]\(.*?\)", "", text)
212
+ try:
213
+ # Attempt to parse the text as JSON
214
+ text_json = json.loads(text)
215
+ return text_json.get('detailAnswer', text)
216
+ except json.JSONDecodeError:
217
+ # If text is not JSON, return it as is
218
+ return text
219
+
220
+ if __name__ == '__main__':
218
221
  from rich import print
219
222
  ai = Genspark()
220
- response = ai.chat("hi")
223
+ response = ai.chat(input(">>> "))
221
224
  for chunk in response:
222
225
  print(chunk, end="", flush=True)
@@ -0,0 +1,222 @@
1
+ import requests
2
+ import json
3
+
4
+ from webscout.AIutel import Optimizers
5
+ from webscout.AIutel import Conversation
6
+ from webscout.AIutel import AwesomePrompts
7
+ from webscout.AIbase import Provider
8
+ from webscout import exceptions
9
+
10
+ class LlamaTutor(Provider):
11
+ """
12
+ A class to interact with the LlamaTutor API (Together.ai).
13
+ """
14
+
15
+ def __init__(
16
+ self,
17
+ is_conversation: bool = True,
18
+ max_tokens: int = 600,
19
+ timeout: int = 30,
20
+ intro: str = None,
21
+ filepath: str = None,
22
+ update_file: bool = True,
23
+ proxies: dict = {},
24
+ history_offset: int = 10250,
25
+ act: str = None,
26
+ system_prompt: str = "You are a helpful AI assistant.",
27
+ ):
28
+ """
29
+ Initializes the LlamaTutor API with given parameters.
30
+
31
+ Args:
32
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
33
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
34
+ timeout (int, optional): Http request timeout. Defaults to 30.
35
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
36
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
37
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
38
+ proxies (dict, optional): Http request proxies. Defaults to {}.
39
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
40
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
41
+ system_prompt (str, optional): System prompt for LlamaTutor.
42
+ Defaults to "You are a helpful AI assistant.".
43
+ """
44
+ self.session = requests.Session()
45
+ self.is_conversation = is_conversation
46
+ self.max_tokens_to_sample = max_tokens
47
+ self.api_endpoint = "https://llamatutor.together.ai/api/getChat"
48
+ self.stream_chunk_size = 64
49
+ self.timeout = timeout
50
+ self.last_response = {}
51
+ self.system_prompt = system_prompt
52
+ self.headers = {
53
+ "Content-Type": "application/json",
54
+ "Accept": "*/*",
55
+ "Accept-Encoding": "gzip, deflate, br, zstd",
56
+ "Accept-Language": "en-US,en;q=0.9,en-IN;q=0.8",
57
+ "DNT": "1",
58
+ "Origin": "https://llamatutor.together.ai",
59
+ "Referer": "https://llamatutor.together.ai/",
60
+ "Sec-Ch-Ua": '"Chromium";v="128", "Not;A=Brand";v="24", "Microsoft Edge";v="128"',
61
+ "Sec-Ch-Ua-Mobile": "?0",
62
+ "Sec-Ch-Ua-Platform": '"Windows"',
63
+ "Sec-Fetch-Dest": "empty",
64
+ "Sec-Fetch-Mode": "cors",
65
+ "Sec-Fetch-Site": "same-origin",
66
+ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36 Edg/128.0.0.0"
67
+ }
68
+
69
+ self.__available_optimizers = (
70
+ method
71
+ for method in dir(Optimizers)
72
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
73
+ )
74
+ self.session.headers.update(self.headers)
75
+ Conversation.intro = (
76
+ AwesomePrompts().get_act(
77
+ act, raise_not_found=True, default=None, case_insensitive=True
78
+ )
79
+ if act
80
+ else intro or Conversation.intro
81
+ )
82
+ self.conversation = Conversation(
83
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
84
+ )
85
+ self.conversation.history_offset = history_offset
86
+ self.session.proxies = proxies
87
+
88
+ def ask(
89
+ self,
90
+ prompt: str,
91
+ stream: bool = False,
92
+ raw: bool = False,
93
+ optimizer: str = None,
94
+ conversationally: bool = False,
95
+ ) -> dict:
96
+ """Chat with LlamaTutor
97
+
98
+ Args:
99
+ prompt (str): Prompt to be send.
100
+ stream (bool, optional): Flag for streaming response. Defaults to False.
101
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
102
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
103
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
104
+ Returns:
105
+ dict : {}
106
+ ```json
107
+ {
108
+ "text" : "How may I assist you today?"
109
+ }
110
+ ```
111
+ """
112
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
113
+ if optimizer:
114
+ if optimizer in self.__available_optimizers:
115
+ conversation_prompt = getattr(Optimizers, optimizer)(
116
+ conversation_prompt if conversationally else prompt
117
+ )
118
+ else:
119
+ raise Exception(
120
+ f"Optimizer is not one of {self.__available_optimizers}"
121
+ )
122
+
123
+ payload = {
124
+ "messages": [
125
+ {
126
+ "role": "system",
127
+ "content": self.system_prompt
128
+ },
129
+ {
130
+ "role": "user",
131
+ "content": conversation_prompt
132
+ }
133
+ ]
134
+ }
135
+
136
+ def for_stream():
137
+ try:
138
+ response = requests.post(self.api_endpoint, headers=self.headers, data=json.dumps(payload), stream=True, timeout=self.timeout)
139
+ response.raise_for_status()
140
+
141
+ # Stream and process the response line by line
142
+ full_response = ''
143
+ for line in response.iter_lines(decode_unicode=True):
144
+ if line:
145
+ decoded_line = line.decode('utf-8')
146
+ if decoded_line.startswith("data: "):
147
+ json_data = json.loads(decoded_line[6:])
148
+ if "text" in json_data:
149
+ full_response += json_data["text"]
150
+ yield json_data["text"] if raw else dict(text=full_response)
151
+
152
+ self.last_response.update(dict(text=full_response))
153
+ self.conversation.update_chat_history(
154
+ prompt, self.get_message(self.last_response)
155
+ )
156
+
157
+ except requests.exceptions.HTTPError as http_err:
158
+ raise exceptions.FailedToGenerateResponseError(f"HTTP error occurred: {http_err}")
159
+ except requests.exceptions.RequestException as err:
160
+ raise exceptions.FailedToGenerateResponseError(f"An error occurred: {err}")
161
+
162
+ def for_non_stream():
163
+ for _ in for_stream():
164
+ pass
165
+ return self.last_response
166
+
167
+ return for_stream() if stream else for_non_stream()
168
+
169
+ def chat(
170
+ self,
171
+ prompt: str,
172
+ stream: bool = False,
173
+ optimizer: str = None,
174
+ conversationally: bool = False,
175
+ ) -> str:
176
+ """Generate response `str`
177
+ Args:
178
+ prompt (str): Prompt to be send.
179
+ stream (bool, optional): Flag for streaming response. Defaults to False.
180
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
181
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
182
+ Returns:
183
+ str: Response generated
184
+ """
185
+
186
+ def for_stream():
187
+ for response in self.ask(
188
+ prompt, True, optimizer=optimizer, conversationally=conversationally
189
+ ):
190
+ yield self.get_message(response)
191
+
192
+ def for_non_stream():
193
+ return self.get_message(
194
+ self.ask(
195
+ prompt,
196
+ False,
197
+ optimizer=optimizer,
198
+ conversationally=conversationally,
199
+ )
200
+ )
201
+
202
+ return for_stream() if stream else for_non_stream()
203
+
204
+ def get_message(self, response: dict) -> str:
205
+ """Retrieves message only from response
206
+
207
+ Args:
208
+ response (dict): Response generated by `self.ask`
209
+
210
+ Returns:
211
+ str: Message extracted
212
+ """
213
+ assert isinstance(response, dict), "Response should be of dict data-type only"
214
+ return response["text"]
215
+
216
+ if __name__ == "__main__":
217
+ from rich import print
218
+
219
+ ai = LlamaTutor()
220
+ response = ai.chat(input(">>> "))
221
+ for chunk in response:
222
+ print(chunk, end="", flush=True)
@@ -0,0 +1,191 @@
1
+ import requests
2
+ import uuid
3
+ import json
4
+
5
+ from webscout.AIutel import Optimizers
6
+ from webscout.AIutel import Conversation
7
+ from webscout.AIutel import AwesomePrompts
8
+ from webscout.AIbase import Provider
9
+ from fake_useragent import UserAgent
10
+
11
+ class PromptRefine(Provider):
12
+ """
13
+ A class to interact with the PromptRefine API.
14
+ """
15
+
16
+ def __init__(
17
+ self,
18
+ is_conversation: bool = True,
19
+ max_tokens: int = 600,
20
+ timeout: int = 30,
21
+ intro: str = None,
22
+ filepath: str = None,
23
+ update_file: bool = True,
24
+ proxies: dict = {},
25
+ history_offset: int = 10250,
26
+ act: str = None,
27
+ system_prompt: str = "You are a helpful AI assistant.",
28
+ model: str = "openai/gpt-4o", # Default model
29
+ ):
30
+ """
31
+ Initializes the PromptRefine API with given parameters.
32
+
33
+ Args:
34
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
35
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
36
+ timeout (int, optional): Http request timeout. Defaults to 30.
37
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
38
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
39
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
40
+ proxies (dict, optional): Http request proxies. Defaults to {}.
41
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
42
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
43
+ system_prompt (str, optional): System prompt for PromptRefine. Defaults to "You are a helpful AI assistant.".
44
+ model (str, optional): Model to use for generation. Defaults to "openai/gpt-4o".
45
+ """
46
+ self.session = requests.Session()
47
+ self.is_conversation = is_conversation
48
+ self.max_tokens_to_sample = max_tokens
49
+ self.api_endpoint = 'https://www.promptrefine.com/api/completion'
50
+ self.stream_chunk_size = 64
51
+ self.timeout = timeout
52
+ self.last_response = {}
53
+ self.system_prompt = system_prompt
54
+ self.model = model
55
+ self.headers = {
56
+ 'origin': 'https://www.promptrefine.com',
57
+ 'referer': 'https://www.promptrefine.com/prompt/new',
58
+ 'user-agent': UserAgent().random
59
+ }
60
+
61
+ self.__available_optimizers = (
62
+ method
63
+ for method in dir(Optimizers)
64
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
65
+ )
66
+ self.session.headers.update(self.headers)
67
+ Conversation.intro = (
68
+ AwesomePrompts().get_act(
69
+ act, raise_not_found=True, default=None, case_insensitive=True
70
+ )
71
+ if act
72
+ else intro or Conversation.intro
73
+ )
74
+ self.conversation = Conversation(
75
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
76
+ )
77
+ self.conversation.history_offset = history_offset
78
+ self.session.proxies = proxies
79
+
80
+ def ask(
81
+ self,
82
+ prompt: str,
83
+ stream: bool = False,
84
+ raw: bool = False,
85
+ optimizer: str = None,
86
+ conversationally: bool = False,
87
+ ) -> dict:
88
+ """Chat with PromptRefine
89
+
90
+ Args:
91
+ prompt (str): Prompt to be send.
92
+ stream (bool, optional): Flag for streaming response. Defaults to False.
93
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
94
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
95
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
96
+ Returns:
97
+ dict : {}
98
+ ```json
99
+ {
100
+ "text" : "How may I assist you today?"
101
+ }
102
+ ```
103
+ """
104
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
105
+ if optimizer:
106
+ if optimizer in self.__available_optimizers:
107
+ conversation_prompt = getattr(Optimizers, optimizer)(
108
+ conversation_prompt if conversationally else prompt
109
+ )
110
+ else:
111
+ raise Exception(
112
+ f"Optimizer is not one of {self.__available_optimizers}"
113
+ )
114
+
115
+ payload = {
116
+ "messages": [
117
+ {"role": "system", "content": self.system_prompt},
118
+ {"role": "user", "content": conversation_prompt}
119
+ ],
120
+ "variables": {},
121
+ "parameters": {},
122
+ "model": self.model,
123
+ "userId": str(uuid.uuid4()),
124
+ }
125
+
126
+ def for_stream():
127
+ response = self.session.post(self.api_endpoint, headers=self.headers, json=payload, stream=True, timeout=self.timeout)
128
+ if not response.ok:
129
+ raise Exception(
130
+ f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
131
+ )
132
+
133
+ full_response = ""
134
+ for line in response.iter_lines(decode_unicode=True):
135
+ if line:
136
+ full_response += line # No need to decode here
137
+ yield full_response if raw else dict(text=full_response)
138
+ self.last_response.update(dict(text=full_response))
139
+ self.conversation.update_chat_history(
140
+ prompt, self.get_message(self.last_response)
141
+ )
142
+
143
+ def for_non_stream():
144
+ for _ in for_stream():
145
+ pass
146
+ return self.last_response
147
+
148
+ return for_stream() if stream else for_non_stream()
149
+
150
+ def chat(
151
+ self,
152
+ prompt: str,
153
+ stream: bool = False,
154
+ optimizer: str = None,
155
+ conversationally: bool = False,
156
+ ) -> str:
157
+ """Generate response `str`
158
+ Args:
159
+ prompt (str): Prompt to be send.
160
+ stream (bool, optional): Flag for streaming response. Defaults to False.
161
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
162
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
163
+ Returns:
164
+ str: Response generated
165
+ """
166
+ return self.get_message(
167
+ self.ask(
168
+ prompt,
169
+ optimizer=optimizer,
170
+ conversationally=conversationally,
171
+ )
172
+ )
173
+
174
+ def get_message(self, response: dict) -> str:
175
+ """Retrieves message only from response
176
+
177
+ Args:
178
+ response (dict): Response generated by `self.ask`
179
+
180
+ Returns:
181
+ str: Message extracted
182
+ """
183
+ assert isinstance(response, dict), "Response should be of dict data-type only"
184
+ return response["text"]
185
+
186
+ if __name__ == '__main__':
187
+ from rich import print
188
+ ai = PromptRefine()
189
+ response = ai.chat(input(">>> "))
190
+ for chunk in response:
191
+ print(chunk, end="", flush=True)