webscout 5.7__py3-none-any.whl → 5.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

webscout/AIutel.py CHANGED
@@ -3,6 +3,8 @@ import json
3
3
  import platform
4
4
  import subprocess
5
5
  import logging
6
+ import threading
7
+ import time
6
8
  import appdirs
7
9
  import datetime
8
10
  import re
@@ -11,7 +13,7 @@ import click
11
13
  from rich.markdown import Markdown
12
14
  from rich.console import Console
13
15
  import g4f
14
- from typing import Union
16
+ from typing import List, Tuple, Union
15
17
  from typing import NoReturn
16
18
  import requests
17
19
  from pathlib import Path
@@ -1053,4 +1055,76 @@ class Audio:
1053
1055
  """
1054
1056
  if not Path(path_to_audio_file).is_file():
1055
1057
  raise FileNotFoundError(f"File does not exist - '{path_to_audio_file}'")
1056
- playsound(path_to_audio_file)
1058
+ playsound(path_to_audio_file)
1059
+ class ProxyManager:
1060
+ def __init__(self, refresh_interval=60):
1061
+ self.proxies: List[Tuple[str, float]] = [] # Store proxy and its latency
1062
+ self.last_refresh: float = 0
1063
+ self.refresh_interval = refresh_interval
1064
+ self.lock = threading.Lock() # Add a lock for thread safety
1065
+ # Start auto-refresh in a separate thread
1066
+ threading.Thread(target=self.auto_refresh_proxies, daemon=True).start()
1067
+
1068
+ def fetch_proxies(self, max_proxies=50) -> List[str]:
1069
+ try:
1070
+ url = "https://api.proxyscrape.com/v2/?request=displayproxies&protocol=http&timeout=10000&country=all&ssl=all&anonymity=all"
1071
+ response = requests.get(url)
1072
+ proxies = response.text.split('\r\n')[:max_proxies] # Extract up to max_proxies
1073
+ return [proxy for proxy in proxies if proxy]
1074
+ except requests.RequestException as e:
1075
+ print(f"Error fetching proxies: {e}")
1076
+ return []
1077
+
1078
+ def test_proxy(self, proxy: str) -> Tuple[str, float] | None:
1079
+ # Test both HTTP and HTTPS
1080
+ for protocol in ['http', 'https']:
1081
+ try:
1082
+ start_time = time.time()
1083
+ response = requests.get('http://httpbin.org/ip', proxies={protocol: f"{protocol}://{proxy}"}, timeout=5)
1084
+ if response.status_code == 200:
1085
+ end_time = time.time()
1086
+ return proxy, end_time - start_time
1087
+ except requests.RequestException:
1088
+ pass
1089
+ return None
1090
+
1091
+ def refresh_proxies(self) -> int:
1092
+ new_proxies = self.fetch_proxies()
1093
+ threads = []
1094
+ working_proxies = []
1095
+
1096
+ # Use threading for faster proxy testing
1097
+ for proxy in new_proxies:
1098
+ thread = threading.Thread(target=self.test_proxy_and_append, args=(proxy, working_proxies))
1099
+ threads.append(thread)
1100
+ thread.start()
1101
+
1102
+ # Wait for all threads to complete
1103
+ for thread in threads:
1104
+ thread.join()
1105
+
1106
+ with self.lock: # Acquire lock before updating proxies list
1107
+ self.proxies = working_proxies
1108
+ self.last_refresh = time.time()
1109
+
1110
+ # print(f"Refreshed proxies at {datetime.now()}. Total working proxies: {len(self.proxies)}")
1111
+ return len(self.proxies)
1112
+
1113
+ def test_proxy_and_append(self, proxy: str, working_proxies: list):
1114
+ result = self.test_proxy(proxy)
1115
+ if result:
1116
+ with self.lock: # Acquire lock before appending to shared list
1117
+ working_proxies.append(result) # Append the proxy and its latency
1118
+
1119
+ def auto_refresh_proxies(self):
1120
+ while True:
1121
+ time.sleep(self.refresh_interval)
1122
+ self.refresh_proxies()
1123
+
1124
+ def get_fastest_proxy(self) -> str | None:
1125
+ with self.lock: # Acquire lock before accessing proxies list
1126
+ if self.proxies:
1127
+ # Sort proxies by latency and return the fastest
1128
+ self.proxies.sort(key=lambda x: x[1]) # Sort by latency
1129
+ return self.proxies[0][0] # Return the fastest proxy
1130
+ return None
@@ -1,162 +1,170 @@
1
1
  import json
2
- import colorlog
3
- from webscout import WEBS
4
- from webscout import DeepInfra
5
2
  import httpx
6
3
  from bs4 import BeautifulSoup
7
4
  from typing import List, Dict
8
- import logging
5
+ from webscout import WEBS, GEMINIAPI
6
+ import re
7
+ from concurrent.futures import ThreadPoolExecutor, as_completed
8
+
9
9
 
10
10
  class WebSearchAgent:
11
11
  def __init__(self):
12
12
  self.webs = WEBS()
13
- self.ai = DeepInfra(is_conversation=False)
14
-
15
- def generate_search_queries(self, information, num_queries=3):
16
- prompt = f"""
17
- Task: Generate {num_queries} optimal search queries based on the given information.
18
-
19
- Instructions:
20
- 1. Analyze the provided information carefully.
21
- 2. Identify key concepts, entities, and relationships.
22
- 3. Formulate {num_queries} concise and specific search queries that will yield relevant results.
23
- 4. Each query should focus on a different aspect or angle of the information.
24
- 5. The queries should be in natural language, not in the form of keywords.
25
- 6. Avoid unnecessary words or phrases that might limit the search results.
26
-
27
- Your response must be in the following JSON format:
28
- {{
29
- "search_queries": [
30
- "Your first search query here",
31
- "Your second search query here",
32
- "Your third search query here"
33
- ]
34
- }}
35
-
36
- Ensure that:
37
- - You provide exactly {num_queries} search queries.
38
- - Each query is unique and focuses on a different aspect of the information.
39
- - The queries are in plain text, suitable for a web search engine.
40
-
41
- Information to base the search queries on:
42
- {information}
43
-
44
- Now, generate the optimal search queries:
45
- """
13
+ self.ai = GEMINIAPI(is_conversation=False, api_key='AIzaSyAYlT5-V0MXZwaLYpXCF1Z-Yvy_tx1jylA')
14
+
15
+ def generate_search_queries(self, information: str, num_queries: int = 10) -> List[str]:
16
+ prompt = f""" Task: Generate exactly {num_queries} optimal search queries based on the given information.
17
+ Instructions:
18
+ 1. Analyze the provided information thoroughly.
19
+ 2. Identify key concepts, entities, and relationships.
20
+ 3. Formulate {num_queries} concise and specific search queries that will yield relevant and diverse results.
21
+ 4. Each query should focus on a different aspect or angle of the information.
22
+ 5. The queries should be in natural language, not in the form of keywords.
23
+ 6. Avoid unnecessary words or phrases that might limit the search results.
24
+ 7. **Important**: Return the response **ONLY** in JSON format without any additional text or code blocks.
25
+ Your response must be in the following JSON format: {{
26
+ "search_queries": [
27
+ "Your first search query here",
28
+ "Your second search query here",
29
+ "...",
30
+ "Your last search query here"
31
+ ]
32
+ }}
33
+ Ensure that:
34
+ - You provide exactly {num_queries} search queries.
35
+ - Each query is unique and focuses on a different aspect of the information.
36
+ - The queries are in plain text, suitable for a web search engine.
37
+
38
+ Information to base the search queries on:
39
+ {information}
40
+
41
+ Now, generate the optimal search queries: """
46
42
 
47
43
  response = ""
48
44
  for chunk in self.ai.chat(prompt):
49
45
  response += chunk
50
46
 
51
- try:
52
- json_response = json.loads(response)
53
- return json_response["search_queries"]
54
- except json.JSONDecodeError:
55
- print(f"Warning: Failed to parse JSON. Raw response: {response}")
56
- # Fallback: try to extract queries manually
57
- queries = []
58
- for line in response.split('\n'):
59
- if line.strip().startswith('"') and line.strip().endswith('"'):
60
- queries.append(line.strip(' "'))
61
- if queries:
62
- return queries[:num_queries]
63
- else:
64
- print(f"Warning: Using original information as search query.")
65
- return [information]
66
-
67
- def search(self, information, region='wt-wt', safesearch='off', timelimit='y', max_results=5):
68
- search_queries = self.generate_search_queries(information)
47
+ json_match = re.search(r'\{.*\}', response, re.DOTALL)
48
+ if json_match:
49
+ json_str = json_match.group(0)
50
+ try:
51
+ json_response = json.loads(json_str)
52
+ print(json_response['search_queries'])
53
+ return json_response["search_queries"]
54
+ except json.JSONDecodeError:
55
+ pass
56
+
57
+ queries = re.findall(r'"([^"]+)"', response)
58
+ if len(queries) >= num_queries:
59
+ return queries[:num_queries]
60
+ elif queries:
61
+ return queries
62
+ else:
63
+ return [information]
64
+
65
+ def search(self, information: str, region: str = 'wt-wt', safesearch: str = 'off',
66
+ timelimit: str = 'y', max_results: int = 10) -> List[Dict]:
67
+ search_queries = self.generate_search_queries(information, num_queries=10)
69
68
  all_results = []
70
-
69
+
71
70
  for query in search_queries:
72
71
  results = []
73
72
  with self.webs as webs:
74
- for result in webs.text(query, region=region, safesearch=safesearch, timelimit=timelimit, max_results=max_results):
73
+ for result in webs.text(query, region=region, safesearch=safesearch,
74
+ timelimit=timelimit, max_results=max_results):
75
75
  results.append(result)
76
76
  all_results.extend(results)
77
-
77
+
78
78
  return all_results
79
79
 
80
- def extract_urls(self, results):
81
- urls = []
82
- for result in results:
83
- url = result.get('href')
84
- if url:
85
- urls.append(url)
86
- return list(set(urls))
80
+ def extract_urls(self, results: List[Dict]) -> List[str]:
81
+ urls = [result.get('href') for result in results if result.get('href')]
82
+ unique_urls = list(set(urls))
83
+ return unique_urls
87
84
 
88
- def fetch_webpage(self, url: str) -> str:
85
+ def fetch_webpage(self, url: str) -> Dict[str, str]:
89
86
  try:
90
- response = httpx.get(url, timeout=120)
91
- if response.status_code == 200:
92
- html = response.text
93
- soup = BeautifulSoup(html, 'html.parser')
94
- paragraphs = soup.find_all('p')
95
- text = ' '.join([p.get_text() for p in paragraphs])
96
- words = text.split()
97
- if len(words) > 600:
98
- text = ' '.join(words[:600]) + '...'
99
- return text
100
- else:
101
- return f"Failed to fetch {url}: HTTP {response.status}"
87
+ with httpx.Client(timeout=120) as client:
88
+ response = client.get(url)
89
+ if response.status_code == 200:
90
+ html = response.text
91
+ soup = BeautifulSoup(html, 'html.parser')
92
+ paragraphs = soup.find_all('p')
93
+ text = ' '.join([p.get_text() for p in paragraphs])
94
+ words = text.split()
95
+ if len(words) > 600:
96
+ text = ' '.join(words[:600]) + '...'
97
+ return {"url": url, "content": text}
98
+ else:
99
+ return {"url": url, "content": f"Failed to fetch {url}: HTTP {response.status_code}"}
102
100
  except Exception as e:
103
- return f"Error fetching {url}: {str(e)}"
101
+ return {"url": url, "content": f"Error fetching {url}: {str(e)}"}
104
102
 
105
- def fetch_all_webpages(self, urls: List[str]) -> List[Dict[str, str]]:
103
+ def fetch_all_webpages(self, urls: List[str], max_workers: int = 10) -> List[Dict[str, str]]:
106
104
  contents = []
107
- for url in urls:
108
- content = self.fetch_webpage(url)
109
- contents.append({"url": url, "content": content})
105
+ with ThreadPoolExecutor(max_workers=max_workers) as executor:
106
+ future_to_url = {executor.submit(self.fetch_webpage, url): url for url in urls}
107
+ for future in as_completed(future_to_url):
108
+ result = future.result()
109
+ contents.append(result)
110
110
  return contents
111
111
 
112
+
112
113
  class OnlineSearcher:
113
114
  def __init__(self):
114
115
  self.agent = WebSearchAgent()
115
- self.ai = DeepInfra(is_conversation=False)
116
+ self.ai = GEMINIAPI(is_conversation=False, api_key='AIzaSyAYlT5-V0MXZwaLYpXCF1Z-Yvy_tx1jylA')
116
117
 
117
- def answer_question(self, question: str):
118
- search_results = self.agent.search(question)
118
+ def answer_question(self, question: str) -> None:
119
+ search_results = self.agent.search(question, max_results=10)
119
120
  urls = self.agent.extract_urls(search_results)
120
121
  webpage_contents = self.agent.fetch_all_webpages(urls)
121
122
 
122
123
  context = "Web search results and extracted content:\n\n"
123
124
  for i, result in enumerate(search_results, 1):
124
- context += f"{i}. Title: {result['title']}\n URL: {result['href']}\n Snippet: {result['body']}\n\n"
125
+ title = result.get('title', 'No Title')
126
+ href = result.get('href', 'No URL')
127
+ snippet = result.get('body', 'No Snippet')
128
+ context += f"{i}. **Title:** {title}\n **URL:** {href}\n **Snippet:** {snippet}\n\n"
125
129
 
126
130
  context += "Extracted webpage contents:\n"
127
- for i, webpage in enumerate(webpage_contents):
128
- context += f"{i}. URL: {webpage['url']}\n Content: {webpage['content'][:600]}...\n\n"
129
-
130
- prompt = f"""
131
- Task: Provide a comprehensive and accurate answer to the given question based on the provided web search results and your general knowledge.
131
+ for i, webpage in enumerate(webpage_contents, 1):
132
+ content = webpage['content']
133
+ content_preview = content[:600] + '...' if len(content) > 600 else content
134
+ context += f"{i}. **URL:** {webpage['url']}\n **Content:** {content_preview}\n\n"
135
+
136
+ prompt = f""" Task: Provide a comprehensive, insightful, and well-structured answer to the given question based on the provided web search results and your general knowledge.
137
+ Question: {question}
138
+ Context: {context}
139
+ Instructions:
140
+ 1. Carefully analyze the provided web search results and extracted content.
141
+ 2. Synthesize the information to form a coherent and comprehensive answer.
142
+ 3. If the search results contain relevant information, incorporate it into your answer seamlessly.
143
+ 4. Avoid providing irrelevant information, and do not reference "according to web page".
144
+ 5. If the search results don't contain sufficient information, clearly state this and provide the best answer based on your general knowledge.
145
+ 6. Ensure your answer is well-structured, factual, and directly addresses the question.
146
+ 7. Use clear headings, bullet points, or other formatting tools to enhance readability where appropriate.
147
+ 8. Strive for a tone and style similar to that of professional, authoritative sources like Perplexity, ensuring clarity and depth in your response.
148
+ Your response should be informative, accurate, and properly sourced when possible. Begin your answer now: """
149
+
150
+ for chunk in self.ai.chat(prompt, stream=True):
151
+ print(chunk, end='', flush=True) # Print each chunk in real-time
132
152
 
133
- Question: {question}
134
153
 
135
- Context:
136
- {context}
137
-
138
- Instructions:
139
- 1. Carefully analyze the provided web search results and extracted content.
140
- 2. Synthesize the information to form a coherent and comprehensive answer.
141
- 3. If the search results contain relevant information, incorporate it into your answer.
142
- 4. Don't provide irrelevant information, and don't say "according to web page".
143
- 5. If the search results don't contain sufficient information, clearly state this and provide the best answer based on your general knowledge.
144
- 6. Ensure your answer is well-structured, factual, and directly addresses the question.
145
- 7. If appropriate, provide additional context or related information that might be helpful.
146
-
147
- Your response should be informative, accurate, and properly sourced when possible. Begin your answer now:
148
- """
149
-
150
- return self.ai.chat(prompt)
151
154
 
152
155
  # Usage example
153
156
  if __name__ == "__main__":
154
157
  assistant = OnlineSearcher()
155
158
  while True:
156
- question = input(">>> ")
157
- if question.lower() == 'quit':
159
+ try:
160
+ question = input(">>> ")
161
+ if question.lower() == 'quit':
162
+ break
163
+ print("=" * 50)
164
+ assistant.answer_question(question) # The answer is printed in real-time
165
+ print("=" * 50)
166
+ except KeyboardInterrupt:
167
+ print("\nExiting.")
158
168
  break
159
- print("\n" + "="*50)
160
- for chunk in assistant.answer_question(question):
161
- print(chunk, end="", flush=True)
162
- print("\n" + "="*50)
169
+ except Exception as e:
170
+ print(f"An error occurred: {e}")
@@ -0,0 +1,239 @@
1
+ import requests
2
+ import re
3
+ import json
4
+ import os
5
+ from typing import List, Dict
6
+ from webscout.AIutel import Optimizers, Conversation, AwesomePrompts
7
+ from webscout.AIbase import Provider
8
+ from webscout import exceptions
9
+ from rich import print
10
+
11
+ class ChatGPTES(Provider):
12
+ """
13
+ A class to interact with the ChatGPT.es API.
14
+ """
15
+
16
+ SUPPORTED_MODELS = {
17
+ 'gpt-4o', 'gpt-4o-mini', 'chatgpt-4o-latest'
18
+ }
19
+
20
+ def __init__(
21
+ self,
22
+ is_conversation: bool = True,
23
+ max_tokens: int = 600,
24
+ timeout: int = 30,
25
+ intro: str = None,
26
+ filepath: str = None,
27
+ update_file: bool = True,
28
+ proxies: dict = {},
29
+ history_offset: int = 10250,
30
+ act: str = None,
31
+ model: str = "chatgpt-4o-latest", # Default model
32
+ system_prompt: str = "You are a helpful assistant.",
33
+ ):
34
+ """
35
+ Initializes the ChatGPT.es API with given parameters.
36
+ """
37
+ if model not in self.SUPPORTED_MODELS:
38
+ raise ValueError(f"Unsupported model: {model}. Choose from: {self.SUPPORTED_MODELS}")
39
+
40
+ self.session = requests.Session()
41
+ self.is_conversation = is_conversation
42
+ self.max_tokens_to_sample = max_tokens
43
+ self.api_endpoint = 'https://chatgpt.es/wp-admin/admin-ajax.php'
44
+ self.stream_chunk_size = 64
45
+ self.timeout = timeout
46
+ self.last_response = {}
47
+ self.system_prompt = system_prompt
48
+ self.model = model
49
+ self.initial_headers = {
50
+ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) '
51
+ 'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36',
52
+ 'Referer': 'https://www.google.com/',
53
+ 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,'
54
+ 'image/avif,image/webp,image/apng,*/*;q=0.8,'
55
+ 'application/signed-exchange;v=b3;q=0.7',
56
+ }
57
+ self.post_headers = {
58
+ 'User-Agent': self.initial_headers['User-Agent'],
59
+ 'Referer': 'https://chatgpt.es/',
60
+ 'Origin': 'https://chatgpt.es',
61
+ 'Accept': '*/*',
62
+ 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8',
63
+ }
64
+ self.nonce = None
65
+ self.post_id = None
66
+
67
+ self.__available_optimizers = (
68
+ method
69
+ for method in dir(Optimizers)
70
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
71
+ )
72
+
73
+ # Conversation setup
74
+ Conversation.intro = (
75
+ AwesomePrompts().get_act(
76
+ act, raise_not_found=True, default=None, case_insensitive=True
77
+ )
78
+ if act
79
+ else intro or Conversation.intro
80
+ )
81
+ self.conversation = Conversation(
82
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
83
+ )
84
+ self.conversation.history_offset = history_offset
85
+ self.session.proxies = proxies
86
+
87
+ def get_nonce_and_post_id(self):
88
+ """
89
+ Retrieves the nonce and post ID from the ChatGPT.es website.
90
+ """
91
+ try:
92
+ response = self.session.get('https://chatgpt.es/', headers=self.initial_headers, timeout=self.timeout)
93
+ response.raise_for_status()
94
+ except requests.RequestException as e:
95
+ raise ConnectionError(f"Failed to retrieve nonce and post_id: {e}")
96
+
97
+ nonce_match = re.search(r'data-nonce="(.+?)"', response.text)
98
+ post_id_match = re.search(r'data-post-id="(.+?)"', response.text)
99
+
100
+ if not nonce_match or not post_id_match:
101
+ raise ValueError("Failed to parse nonce or post_id from the response.")
102
+
103
+ self.nonce = nonce_match.group(1)
104
+ self.post_id = post_id_match.group(1)
105
+
106
+ def ask(
107
+ self,
108
+ prompt: str,
109
+ stream: bool = False,
110
+ raw: bool = False,
111
+ optimizer: str = None,
112
+ conversationally: bool = False,
113
+ ) -> dict:
114
+ """
115
+ Chat with ChatGPT.es
116
+
117
+ Args:
118
+ prompt (str): Prompt to be sent.
119
+ stream (bool, optional): Flag for streaming response. Defaults to False.
120
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
121
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
122
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
123
+
124
+ Returns:
125
+ dict: Response dictionary.
126
+ """
127
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
128
+ if optimizer:
129
+ if optimizer in self.__available_optimizers:
130
+ optimizer_func = getattr(Optimizers, optimizer)
131
+ conversation_prompt = optimizer_func(
132
+ conversation_prompt if conversationally else prompt
133
+ )
134
+ else:
135
+ raise ValueError(f"Optimizer '{optimizer}' is not supported. "
136
+ f"Available optimizers: {list(self.__available_optimizers)}")
137
+
138
+ # Retrieve nonce and post_id if they are not set
139
+ if not self.nonce or not self.post_id:
140
+ self.get_nonce_and_post_id()
141
+
142
+ messages = [
143
+ {"role": "user", "content": conversation_prompt},
144
+ ]
145
+
146
+ # Prepare conversation history
147
+ conversation = ["Human: strictly respond in the same language as my prompt, preferably English"]
148
+ for msg in messages:
149
+ role = "Human" if msg['role'] == "user" else "AI"
150
+ conversation.append(f"{role}: {msg['content']}")
151
+
152
+ payload = {
153
+ '_wpnonce': self.nonce,
154
+ 'post_id': self.post_id,
155
+ 'url': 'https://chatgpt.es',
156
+ 'action': 'wpaicg_chat_shortcode_message',
157
+ 'message': messages[-1]['content'],
158
+ 'bot_id': '0',
159
+ 'chatbot_identity': 'shortcode',
160
+ 'wpaicg_chat_client_id': os.urandom(5).hex(),
161
+ 'wpaicg_chat_history': json.dumps(conversation)
162
+ }
163
+
164
+ try:
165
+ response = self.session.post(
166
+ self.api_endpoint,
167
+ headers=self.post_headers,
168
+ data=payload,
169
+ timeout=self.timeout
170
+ )
171
+ response.raise_for_status()
172
+ except requests.RequestException as e:
173
+ raise ConnectionError(f"Failed to send request to ChatGPT.es: {e}")
174
+
175
+ try:
176
+ response_data = response.json()
177
+ except json.JSONDecodeError:
178
+ raise ValueError(f"Invalid JSON response: {response.text}")
179
+
180
+ if not isinstance(response_data, dict):
181
+ raise TypeError(f"Expected response_data to be a dict, got {type(response_data)}")
182
+
183
+ # Extract the message directly from the 'data' key
184
+ message = response_data.get('data')
185
+ if not isinstance(message, str):
186
+ raise KeyError("Missing 'data' key in response or 'data' is not a string")
187
+
188
+ self.last_response.update(dict(text=message))
189
+ self.conversation.update_chat_history(
190
+ prompt, self.get_message(self.last_response)
191
+ )
192
+ return self.last_response
193
+
194
+ def chat(
195
+ self,
196
+ prompt: str,
197
+ stream: bool = False,
198
+ optimizer: str = None,
199
+ conversationally: bool = False,
200
+ ) -> str:
201
+ """
202
+ Generate response as a string.
203
+
204
+ Args:
205
+ prompt (str): Prompt to be sent.
206
+ stream (bool, optional): Flag for streaming response. Defaults to False.
207
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
208
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
209
+
210
+ Returns:
211
+ str: Response generated.
212
+ """
213
+ response = self.ask(
214
+ prompt,
215
+ stream=stream,
216
+ optimizer=optimizer,
217
+ conversationally=conversationally,
218
+ )
219
+ return self.get_message(response)
220
+
221
+ def get_message(self, response: dict) -> str:
222
+ """
223
+ Retrieves message only from response.
224
+
225
+ Args:
226
+ response (dict): Response generated by `self.ask`.
227
+
228
+ Returns:
229
+ str: Message extracted.
230
+ """
231
+ assert isinstance(response, dict), "Response should be of dict data-type only"
232
+ return response["text"]
233
+
234
+ if __name__ == "__main__":
235
+ ai = ChatGPTES()
236
+ response = ai.chat(input(">>> "))
237
+ for chunk in response:
238
+ print(chunk, end="", flush=True)
239
+
@@ -21,7 +21,7 @@ class DeepInfra(Provider):
21
21
  proxies: dict = {},
22
22
  history_offset: int = 10250,
23
23
  act: str = None,
24
- model: str = "Qwen/Qwen2-72B-Instruct",
24
+ model: str = "Qwen/Qwen2.5-72B-Instruct",
25
25
  system_prompt: str = "You are a Helpful AI."
26
26
  ):
27
27
  """Instantiates DeepInfra
@@ -2,4 +2,6 @@ from .deepinfra import *
2
2
  from .PollinationsAI import *
3
3
  from .aiforce import *
4
4
  from .blackboximage import *
5
- from .Nexra import *
5
+ from .Nexra import *
6
+ from .huggingface import *
7
+ from .artbit import *