webscout 2.8__py3-none-any.whl → 3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

webscout/Provider/Groq.py CHANGED
@@ -1,512 +1,512 @@
1
- import time
2
- import uuid
3
- from selenium import webdriver
4
- from selenium.webdriver.chrome.options import Options
5
- from selenium.webdriver.common.by import By
6
- from selenium.webdriver.support import expected_conditions as EC
7
- from selenium.webdriver.support.ui import WebDriverWait
8
- import click
9
- import requests
10
- from requests import get
11
- from uuid import uuid4
12
- from re import findall
13
- from requests.exceptions import RequestException
14
- from curl_cffi.requests import get, RequestsError
15
- import g4f
16
- from random import randint
17
- from PIL import Image
18
- import io
19
- import re
20
- import json
21
- import yaml
22
- from ..AIutel import Optimizers
23
- from ..AIutel import Conversation
24
- from ..AIutel import AwesomePrompts, sanitize_stream
25
- from ..AIbase import Provider, AsyncProvider
26
- from Helpingai_T2 import Perplexity
27
- from webscout import exceptions
28
- from typing import Any, AsyncGenerator, Dict
29
- import logging
30
- import httpx
31
-
32
- class GROQ(Provider):
33
- def __init__(
34
- self,
35
- api_key: str,
36
- is_conversation: bool = True,
37
- max_tokens: int = 600,
38
- temperature: float = 1,
39
- presence_penalty: int = 0,
40
- frequency_penalty: int = 0,
41
- top_p: float = 1,
42
- model: str = "mixtral-8x7b-32768",
43
- timeout: int = 30,
44
- intro: str = None,
45
- filepath: str = None,
46
- update_file: bool = True,
47
- proxies: dict = {},
48
- history_offset: int = 10250,
49
- act: str = None,
50
- ):
51
- """Instantiates GROQ
52
-
53
- Args:
54
- api_key (key): GROQ's API key.
55
- is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
56
- max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
57
- temperature (float, optional): Charge of the generated text's randomness. Defaults to 1.
58
- presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
59
- frequency_penalty (int, optional): Chances of word being repeated. Defaults to 0.
60
- top_p (float, optional): Sampling threshold during inference time. Defaults to 0.999.
61
- model (str, optional): LLM model name. Defaults to "gpt-3.5-turbo".
62
- timeout (int, optional): Http request timeout. Defaults to 30.
63
- intro (str, optional): Conversation introductory prompt. Defaults to None.
64
- filepath (str, optional): Path to file containing conversation history. Defaults to None.
65
- update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
66
- proxies (dict, optional): Http request proxies. Defaults to {}.
67
- history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
68
- act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
69
- """
70
- self.session = requests.Session()
71
- self.is_conversation = is_conversation
72
- self.max_tokens_to_sample = max_tokens
73
- self.api_key = api_key
74
- self.model = model
75
- self.temperature = temperature
76
- self.presence_penalty = presence_penalty
77
- self.frequency_penalty = frequency_penalty
78
- self.top_p = top_p
79
- self.chat_endpoint = "https://api.groq.com/openai/v1/chat/completions"
80
- self.stream_chunk_size = 64
81
- self.timeout = timeout
82
- self.last_response = {}
83
- self.headers = {
84
- "Content-Type": "application/json",
85
- "Authorization": f"Bearer {self.api_key}",
86
- }
87
-
88
- self.__available_optimizers = (
89
- method
90
- for method in dir(Optimizers)
91
- if callable(getattr(Optimizers, method)) and not method.startswith("__")
92
- )
93
- self.session.headers.update(self.headers)
94
- Conversation.intro = (
95
- AwesomePrompts().get_act(
96
- act, raise_not_found=True, default=None, case_insensitive=True
97
- )
98
- if act
99
- else intro or Conversation.intro
100
- )
101
- self.conversation = Conversation(
102
- is_conversation, self.max_tokens_to_sample, filepath, update_file
103
- )
104
- self.conversation.history_offset = history_offset
105
- self.session.proxies = proxies
106
-
107
- def ask(
108
- self,
109
- prompt: str,
110
- stream: bool = False,
111
- raw: bool = False,
112
- optimizer: str = None,
113
- conversationally: bool = False,
114
- ) -> dict:
115
- """Chat with AI
116
-
117
- Args:
118
- prompt (str): Prompt to be send.
119
- stream (bool, optional): Flag for streaming response. Defaults to False.
120
- raw (bool, optional): Stream back raw response as received. Defaults to False.
121
- optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
122
- conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
123
- Returns:
124
- dict : {}
125
- ```json
126
- {
127
- "id": "c0c8d139-d2b9-9909-8aa1-14948bc28404",
128
- "object": "chat.completion",
129
- "created": 1710852779,
130
- "model": "mixtral-8x7b-32768",
131
- "choices": [
132
- {
133
- "index": 0,
134
- "message": {
135
- "role": "assistant",
136
- "content": "Hello! How can I assist you today? I'm here to help answer your questions and engage in conversation on a wide variety of topics. Feel free to ask me anything!"
137
- },
138
- "logprobs": null,
139
- "finish_reason": "stop"
140
- }
141
- ],
142
- "usage": {
143
- "prompt_tokens": 47,
144
- "prompt_time": 0.03,
145
- "completion_tokens": 37,
146
- "completion_time": 0.069,
147
- "total_tokens": 84,
148
- "total_time": 0.099
149
- },
150
- "system_fingerprint": null
151
- }
152
- ```
153
- """
154
- conversation_prompt = self.conversation.gen_complete_prompt(prompt)
155
- if optimizer:
156
- if optimizer in self.__available_optimizers:
157
- conversation_prompt = getattr(Optimizers, optimizer)(
158
- conversation_prompt if conversationally else prompt
159
- )
160
- else:
161
- raise Exception(
162
- f"Optimizer is not one of {self.__available_optimizers}"
163
- )
164
- self.session.headers.update(self.headers)
165
- payload = {
166
- "frequency_penalty": self.frequency_penalty,
167
- "messages": [{"content": conversation_prompt, "role": "user"}],
168
- "model": self.model,
169
- "presence_penalty": self.presence_penalty,
170
- "stream": stream,
171
- "temperature": self.temperature,
172
- "top_p": self.top_p,
173
- }
174
-
175
- def for_stream():
176
- response = self.session.post(
177
- self.chat_endpoint, json=payload, stream=True, timeout=self.timeout
178
- )
179
- if not response.ok:
180
- raise Exception(
181
- f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
182
- )
183
-
184
- message_load = ""
185
- for value in response.iter_lines(
186
- decode_unicode=True,
187
- delimiter="" if raw else "data:",
188
- chunk_size=self.stream_chunk_size,
189
- ):
190
- try:
191
- resp = json.loads(value)
192
- incomplete_message = self.get_message(resp)
193
- if incomplete_message:
194
- message_load += incomplete_message
195
- resp["choices"][0]["delta"]["content"] = message_load
196
- self.last_response.update(resp)
197
- yield value if raw else resp
198
- elif raw:
199
- yield value
200
- except json.decoder.JSONDecodeError:
201
- pass
202
- self.conversation.update_chat_history(
203
- prompt, self.get_message(self.last_response)
204
- )
205
-
206
- def for_non_stream():
207
- response = self.session.post(
208
- self.chat_endpoint, json=payload, stream=False, timeout=self.timeout
209
- )
210
- if not response.ok:
211
- raise Exception(
212
- f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
213
- )
214
- resp = response.json()
215
- self.last_response.update(resp)
216
- self.conversation.update_chat_history(
217
- prompt, self.get_message(self.last_response)
218
- )
219
- return resp
220
-
221
- return for_stream() if stream else for_non_stream()
222
-
223
- def chat(
224
- self,
225
- prompt: str,
226
- stream: bool = False,
227
- optimizer: str = None,
228
- conversationally: bool = False,
229
- ) -> str:
230
- """Generate response `str`
231
- Args:
232
- prompt (str): Prompt to be send.
233
- stream (bool, optional): Flag for streaming response. Defaults to False.
234
- optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
235
- conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
236
- Returns:
237
- str: Response generated
238
- """
239
-
240
- def for_stream():
241
- for response in self.ask(
242
- prompt, True, optimizer=optimizer, conversationally=conversationally
243
- ):
244
- yield self.get_message(response)
245
-
246
- def for_non_stream():
247
- return self.get_message(
248
- self.ask(
249
- prompt,
250
- False,
251
- optimizer=optimizer,
252
- conversationally=conversationally,
253
- )
254
- )
255
-
256
- return for_stream() if stream else for_non_stream()
257
-
258
- def get_message(self, response: dict) -> str:
259
- """Retrieves message only from response
260
-
261
- Args:
262
- response (dict): Response generated by `self.ask`
263
-
264
- Returns:
265
- str: Message extracted
266
- """
267
- assert isinstance(response, dict), "Response should be of dict data-type only"
268
- try:
269
- if response["choices"][0].get("delta"):
270
- return response["choices"][0]["delta"]["content"]
271
- return response["choices"][0]["message"]["content"]
272
- except KeyError:
273
- return ""
274
- class AsyncGROQ(AsyncProvider):
275
- def __init__(
276
- self,
277
- api_key: str,
278
- is_conversation: bool = True,
279
- max_tokens: int = 600,
280
- temperature: float = 1,
281
- presence_penalty: int = 0,
282
- frequency_penalty: int = 0,
283
- top_p: float = 1,
284
- model: str = "mixtral-8x7b-32768",
285
- timeout: int = 30,
286
- intro: str = None,
287
- filepath: str = None,
288
- update_file: bool = True,
289
- proxies: dict = {},
290
- history_offset: int = 10250,
291
- act: str = None,
292
- ):
293
- """Instantiates GROQ
294
-
295
- Args:
296
- api_key (key): GROQ's API key.
297
- is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
298
- max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
299
- temperature (float, optional): Charge of the generated text's randomness. Defaults to 1.
300
- presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
301
- frequency_penalty (int, optional): Chances of word being repeated. Defaults to 0.
302
- top_p (float, optional): Sampling threshold during inference time. Defaults to 0.999.
303
- model (str, optional): LLM model name. Defaults to "gpt-3.5-turbo".
304
- timeout (int, optional): Http request timeout. Defaults to 30.
305
- intro (str, optional): Conversation introductory prompt. Defaults to None.
306
- filepath (str, optional): Path to file containing conversation history. Defaults to None.
307
- update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
308
- proxies (dict, optional): Http request proxies. Defaults to {}.
309
- history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
310
- act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
311
- """
312
- self.is_conversation = is_conversation
313
- self.max_tokens_to_sample = max_tokens
314
- self.api_key = api_key
315
- self.model = model
316
- self.temperature = temperature
317
- self.presence_penalty = presence_penalty
318
- self.frequency_penalty = frequency_penalty
319
- self.top_p = top_p
320
- self.chat_endpoint = "https://api.groq.com/openai/v1/chat/completions"
321
- self.stream_chunk_size = 64
322
- self.timeout = timeout
323
- self.last_response = {}
324
- self.headers = {
325
- "Content-Type": "application/json",
326
- "Authorization": f"Bearer {self.api_key}",
327
- }
328
-
329
- self.__available_optimizers = (
330
- method
331
- for method in dir(Optimizers)
332
- if callable(getattr(Optimizers, method)) and not method.startswith("__")
333
- )
334
- Conversation.intro = (
335
- AwesomePrompts().get_act(
336
- act, raise_not_found=True, default=None, case_insensitive=True
337
- )
338
- if act
339
- else intro or Conversation.intro
340
- )
341
- self.conversation = Conversation(
342
- is_conversation, self.max_tokens_to_sample, filepath, update_file
343
- )
344
- self.conversation.history_offset = history_offset
345
- self.session = httpx.AsyncClient(headers=self.headers, proxies=proxies)
346
-
347
- async def ask(
348
- self,
349
- prompt: str,
350
- stream: bool = False,
351
- raw: bool = False,
352
- optimizer: str = None,
353
- conversationally: bool = False,
354
- ) -> dict | AsyncGenerator:
355
- """Chat with AI asynchronously.
356
-
357
- Args:
358
- prompt (str): Prompt to be send.
359
- stream (bool, optional): Flag for streaming response. Defaults to False.
360
- raw (bool, optional): Stream back raw response as received. Defaults to False.
361
- optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
362
- conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
363
- Returns:
364
- dict|AsyncGenerator : ai content
365
- ```json
366
- {
367
- "id": "c0c8d139-d2b9-9909-8aa1-14948bc28404",
368
- "object": "chat.completion",
369
- "created": 1710852779,
370
- "model": "mixtral-8x7b-32768",
371
- "choices": [
372
- {
373
- "index": 0,
374
- "message": {
375
- "role": "assistant",
376
- "content": "Hello! How can I assist you today? I'm here to help answer your questions and engage in conversation on a wide variety of topics. Feel free to ask me anything!"
377
- },
378
- "logprobs": null,
379
- "finish_reason": "stop"
380
- }
381
- ],
382
- "usage": {
383
- "prompt_tokens": 47,
384
- "prompt_time": 0.03,
385
- "completion_tokens": 37,
386
- "completion_time": 0.069,
387
- "total_tokens": 84,
388
- "total_time": 0.099
389
- },
390
- "system_fingerprint": null
391
- }
392
- ```
393
- """
394
- conversation_prompt = self.conversation.gen_complete_prompt(prompt)
395
- if optimizer:
396
- if optimizer in self.__available_optimizers:
397
- conversation_prompt = getattr(Optimizers, optimizer)(
398
- conversation_prompt if conversationally else prompt
399
- )
400
- else:
401
- raise Exception(
402
- f"Optimizer is not one of {self.__available_optimizers}"
403
- )
404
- payload = {
405
- "frequency_penalty": self.frequency_penalty,
406
- "messages": [{"content": conversation_prompt, "role": "user"}],
407
- "model": self.model,
408
- "presence_penalty": self.presence_penalty,
409
- "stream": stream,
410
- "temperature": self.temperature,
411
- "top_p": self.top_p,
412
- }
413
-
414
- async def for_stream():
415
- async with self.session.stream(
416
- "POST", self.chat_endpoint, json=payload, timeout=self.timeout
417
- ) as response:
418
- if not response.is_success:
419
- raise Exception(
420
- f"Failed to generate response - ({response.status_code}, {response.reason_phrase})"
421
- )
422
-
423
- message_load = ""
424
- intro_value = "data:"
425
- async for value in response.aiter_lines():
426
- try:
427
- if value.startswith(intro_value):
428
- value = value[len(intro_value) :]
429
- resp = json.loads(value)
430
- incomplete_message = await self.get_message(resp)
431
- if incomplete_message:
432
- message_load += incomplete_message
433
- resp["choices"][0]["delta"]["content"] = message_load
434
- self.last_response.update(resp)
435
- yield value if raw else resp
436
- elif raw:
437
- yield value
438
- except json.decoder.JSONDecodeError:
439
- pass
440
- self.conversation.update_chat_history(
441
- prompt, await self.get_message(self.last_response)
442
- )
443
-
444
- async def for_non_stream():
445
- response = httpx.post(
446
- self.chat_endpoint, json=payload, timeout=self.timeout
447
- )
448
- if not response.is_success:
449
- raise Exception(
450
- f"Failed to generate response - ({response.status_code}, {response.reason_phrase})"
451
- )
452
- resp = response.json()
453
- self.last_response.update(resp)
454
- self.conversation.update_chat_history(
455
- prompt, await self.get_message(self.last_response)
456
- )
457
- return resp
458
-
459
- return for_stream() if stream else await for_non_stream()
460
-
461
- async def chat(
462
- self,
463
- prompt: str,
464
- stream: bool = False,
465
- optimizer: str = None,
466
- conversationally: bool = False,
467
- ) -> str | AsyncGenerator:
468
- """Generate response `str` asynchronously.
469
- Args:
470
- prompt (str): Prompt to be send.
471
- stream (bool, optional): Flag for streaming response. Defaults to False.
472
- optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
473
- conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
474
- Returns:
475
- str|AsyncGenerator: Response generated
476
- """
477
-
478
- async def for_stream():
479
- async_ask = await self.ask(
480
- prompt, True, optimizer=optimizer, conversationally=conversationally
481
- )
482
- async for response in async_ask:
483
- yield await self.get_message(response)
484
-
485
- async def for_non_stream():
486
- return await self.get_message(
487
- await self.ask(
488
- prompt,
489
- False,
490
- optimizer=optimizer,
491
- conversationally=conversationally,
492
- )
493
- )
494
-
495
- return for_stream() if stream else await for_non_stream()
496
-
497
- async def get_message(self, response: dict) -> str:
498
- """Retrieves message only from response
499
-
500
- Args:
501
- response (dict): Response generated by `self.ask`
502
-
503
- Returns:
504
- str: Message extracted
505
- """
506
- assert isinstance(response, dict), "Response should be of dict data-type only"
507
- try:
508
- if response["choices"][0].get("delta"):
509
- return response["choices"][0]["delta"]["content"]
510
- return response["choices"][0]["message"]["content"]
511
- except KeyError:
1
+ import time
2
+ import uuid
3
+ from selenium import webdriver
4
+ from selenium.webdriver.chrome.options import Options
5
+ from selenium.webdriver.common.by import By
6
+ from selenium.webdriver.support import expected_conditions as EC
7
+ from selenium.webdriver.support.ui import WebDriverWait
8
+ import click
9
+ import requests
10
+ from requests import get
11
+ from uuid import uuid4
12
+ from re import findall
13
+ from requests.exceptions import RequestException
14
+ from curl_cffi.requests import get, RequestsError
15
+ import g4f
16
+ from random import randint
17
+ from PIL import Image
18
+ import io
19
+ import re
20
+ import json
21
+ import yaml
22
+ from ..AIutel import Optimizers
23
+ from ..AIutel import Conversation
24
+ from ..AIutel import AwesomePrompts, sanitize_stream
25
+ from ..AIbase import Provider, AsyncProvider
26
+ from Helpingai_T2 import Perplexity
27
+ from webscout import exceptions
28
+ from typing import Any, AsyncGenerator, Dict
29
+ import logging
30
+ import httpx
31
+
32
+ class GROQ(Provider):
33
+ def __init__(
34
+ self,
35
+ api_key: str,
36
+ is_conversation: bool = True,
37
+ max_tokens: int = 600,
38
+ temperature: float = 1,
39
+ presence_penalty: int = 0,
40
+ frequency_penalty: int = 0,
41
+ top_p: float = 1,
42
+ model: str = "mixtral-8x7b-32768",
43
+ timeout: int = 30,
44
+ intro: str = None,
45
+ filepath: str = None,
46
+ update_file: bool = True,
47
+ proxies: dict = {},
48
+ history_offset: int = 10250,
49
+ act: str = None,
50
+ ):
51
+ """Instantiates GROQ
52
+
53
+ Args:
54
+ api_key (key): GROQ's API key.
55
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
56
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
57
+ temperature (float, optional): Charge of the generated text's randomness. Defaults to 1.
58
+ presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
59
+ frequency_penalty (int, optional): Chances of word being repeated. Defaults to 0.
60
+ top_p (float, optional): Sampling threshold during inference time. Defaults to 0.999.
61
+ model (str, optional): LLM model name. Defaults to "gpt-3.5-turbo".
62
+ timeout (int, optional): Http request timeout. Defaults to 30.
63
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
64
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
65
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
66
+ proxies (dict, optional): Http request proxies. Defaults to {}.
67
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
68
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
69
+ """
70
+ self.session = requests.Session()
71
+ self.is_conversation = is_conversation
72
+ self.max_tokens_to_sample = max_tokens
73
+ self.api_key = api_key
74
+ self.model = model
75
+ self.temperature = temperature
76
+ self.presence_penalty = presence_penalty
77
+ self.frequency_penalty = frequency_penalty
78
+ self.top_p = top_p
79
+ self.chat_endpoint = "https://api.groq.com/openai/v1/chat/completions"
80
+ self.stream_chunk_size = 64
81
+ self.timeout = timeout
82
+ self.last_response = {}
83
+ self.headers = {
84
+ "Content-Type": "application/json",
85
+ "Authorization": f"Bearer {self.api_key}",
86
+ }
87
+
88
+ self.__available_optimizers = (
89
+ method
90
+ for method in dir(Optimizers)
91
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
92
+ )
93
+ self.session.headers.update(self.headers)
94
+ Conversation.intro = (
95
+ AwesomePrompts().get_act(
96
+ act, raise_not_found=True, default=None, case_insensitive=True
97
+ )
98
+ if act
99
+ else intro or Conversation.intro
100
+ )
101
+ self.conversation = Conversation(
102
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
103
+ )
104
+ self.conversation.history_offset = history_offset
105
+ self.session.proxies = proxies
106
+
107
+ def ask(
108
+ self,
109
+ prompt: str,
110
+ stream: bool = False,
111
+ raw: bool = False,
112
+ optimizer: str = None,
113
+ conversationally: bool = False,
114
+ ) -> dict:
115
+ """Chat with AI
116
+
117
+ Args:
118
+ prompt (str): Prompt to be send.
119
+ stream (bool, optional): Flag for streaming response. Defaults to False.
120
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
121
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
122
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
123
+ Returns:
124
+ dict : {}
125
+ ```json
126
+ {
127
+ "id": "c0c8d139-d2b9-9909-8aa1-14948bc28404",
128
+ "object": "chat.completion",
129
+ "created": 1710852779,
130
+ "model": "mixtral-8x7b-32768",
131
+ "choices": [
132
+ {
133
+ "index": 0,
134
+ "message": {
135
+ "role": "assistant",
136
+ "content": "Hello! How can I assist you today? I'm here to help answer your questions and engage in conversation on a wide variety of topics. Feel free to ask me anything!"
137
+ },
138
+ "logprobs": null,
139
+ "finish_reason": "stop"
140
+ }
141
+ ],
142
+ "usage": {
143
+ "prompt_tokens": 47,
144
+ "prompt_time": 0.03,
145
+ "completion_tokens": 37,
146
+ "completion_time": 0.069,
147
+ "total_tokens": 84,
148
+ "total_time": 0.099
149
+ },
150
+ "system_fingerprint": null
151
+ }
152
+ ```
153
+ """
154
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
155
+ if optimizer:
156
+ if optimizer in self.__available_optimizers:
157
+ conversation_prompt = getattr(Optimizers, optimizer)(
158
+ conversation_prompt if conversationally else prompt
159
+ )
160
+ else:
161
+ raise Exception(
162
+ f"Optimizer is not one of {self.__available_optimizers}"
163
+ )
164
+ self.session.headers.update(self.headers)
165
+ payload = {
166
+ "frequency_penalty": self.frequency_penalty,
167
+ "messages": [{"content": conversation_prompt, "role": "user"}],
168
+ "model": self.model,
169
+ "presence_penalty": self.presence_penalty,
170
+ "stream": stream,
171
+ "temperature": self.temperature,
172
+ "top_p": self.top_p,
173
+ }
174
+
175
+ def for_stream():
176
+ response = self.session.post(
177
+ self.chat_endpoint, json=payload, stream=True, timeout=self.timeout
178
+ )
179
+ if not response.ok:
180
+ raise Exception(
181
+ f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
182
+ )
183
+
184
+ message_load = ""
185
+ for value in response.iter_lines(
186
+ decode_unicode=True,
187
+ delimiter="" if raw else "data:",
188
+ chunk_size=self.stream_chunk_size,
189
+ ):
190
+ try:
191
+ resp = json.loads(value)
192
+ incomplete_message = self.get_message(resp)
193
+ if incomplete_message:
194
+ message_load += incomplete_message
195
+ resp["choices"][0]["delta"]["content"] = message_load
196
+ self.last_response.update(resp)
197
+ yield value if raw else resp
198
+ elif raw:
199
+ yield value
200
+ except json.decoder.JSONDecodeError:
201
+ pass
202
+ self.conversation.update_chat_history(
203
+ prompt, self.get_message(self.last_response)
204
+ )
205
+
206
+ def for_non_stream():
207
+ response = self.session.post(
208
+ self.chat_endpoint, json=payload, stream=False, timeout=self.timeout
209
+ )
210
+ if not response.ok:
211
+ raise Exception(
212
+ f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
213
+ )
214
+ resp = response.json()
215
+ self.last_response.update(resp)
216
+ self.conversation.update_chat_history(
217
+ prompt, self.get_message(self.last_response)
218
+ )
219
+ return resp
220
+
221
+ return for_stream() if stream else for_non_stream()
222
+
223
+ def chat(
224
+ self,
225
+ prompt: str,
226
+ stream: bool = False,
227
+ optimizer: str = None,
228
+ conversationally: bool = False,
229
+ ) -> str:
230
+ """Generate response `str`
231
+ Args:
232
+ prompt (str): Prompt to be send.
233
+ stream (bool, optional): Flag for streaming response. Defaults to False.
234
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
235
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
236
+ Returns:
237
+ str: Response generated
238
+ """
239
+
240
+ def for_stream():
241
+ for response in self.ask(
242
+ prompt, True, optimizer=optimizer, conversationally=conversationally
243
+ ):
244
+ yield self.get_message(response)
245
+
246
+ def for_non_stream():
247
+ return self.get_message(
248
+ self.ask(
249
+ prompt,
250
+ False,
251
+ optimizer=optimizer,
252
+ conversationally=conversationally,
253
+ )
254
+ )
255
+
256
+ return for_stream() if stream else for_non_stream()
257
+
258
+ def get_message(self, response: dict) -> str:
259
+ """Retrieves message only from response
260
+
261
+ Args:
262
+ response (dict): Response generated by `self.ask`
263
+
264
+ Returns:
265
+ str: Message extracted
266
+ """
267
+ assert isinstance(response, dict), "Response should be of dict data-type only"
268
+ try:
269
+ if response["choices"][0].get("delta"):
270
+ return response["choices"][0]["delta"]["content"]
271
+ return response["choices"][0]["message"]["content"]
272
+ except KeyError:
273
+ return ""
274
+ class AsyncGROQ(AsyncProvider):
275
+ def __init__(
276
+ self,
277
+ api_key: str,
278
+ is_conversation: bool = True,
279
+ max_tokens: int = 600,
280
+ temperature: float = 1,
281
+ presence_penalty: int = 0,
282
+ frequency_penalty: int = 0,
283
+ top_p: float = 1,
284
+ model: str = "mixtral-8x7b-32768",
285
+ timeout: int = 30,
286
+ intro: str = None,
287
+ filepath: str = None,
288
+ update_file: bool = True,
289
+ proxies: dict = {},
290
+ history_offset: int = 10250,
291
+ act: str = None,
292
+ ):
293
+ """Instantiates GROQ
294
+
295
+ Args:
296
+ api_key (key): GROQ's API key.
297
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
298
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
299
+ temperature (float, optional): Charge of the generated text's randomness. Defaults to 1.
300
+ presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
301
+ frequency_penalty (int, optional): Chances of word being repeated. Defaults to 0.
302
+ top_p (float, optional): Sampling threshold during inference time. Defaults to 0.999.
303
+ model (str, optional): LLM model name. Defaults to "gpt-3.5-turbo".
304
+ timeout (int, optional): Http request timeout. Defaults to 30.
305
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
306
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
307
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
308
+ proxies (dict, optional): Http request proxies. Defaults to {}.
309
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
310
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
311
+ """
312
+ self.is_conversation = is_conversation
313
+ self.max_tokens_to_sample = max_tokens
314
+ self.api_key = api_key
315
+ self.model = model
316
+ self.temperature = temperature
317
+ self.presence_penalty = presence_penalty
318
+ self.frequency_penalty = frequency_penalty
319
+ self.top_p = top_p
320
+ self.chat_endpoint = "https://api.groq.com/openai/v1/chat/completions"
321
+ self.stream_chunk_size = 64
322
+ self.timeout = timeout
323
+ self.last_response = {}
324
+ self.headers = {
325
+ "Content-Type": "application/json",
326
+ "Authorization": f"Bearer {self.api_key}",
327
+ }
328
+
329
+ self.__available_optimizers = (
330
+ method
331
+ for method in dir(Optimizers)
332
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
333
+ )
334
+ Conversation.intro = (
335
+ AwesomePrompts().get_act(
336
+ act, raise_not_found=True, default=None, case_insensitive=True
337
+ )
338
+ if act
339
+ else intro or Conversation.intro
340
+ )
341
+ self.conversation = Conversation(
342
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
343
+ )
344
+ self.conversation.history_offset = history_offset
345
+ self.session = httpx.AsyncClient(headers=self.headers, proxies=proxies)
346
+
347
+ async def ask(
348
+ self,
349
+ prompt: str,
350
+ stream: bool = False,
351
+ raw: bool = False,
352
+ optimizer: str = None,
353
+ conversationally: bool = False,
354
+ ) -> dict | AsyncGenerator:
355
+ """Chat with AI asynchronously.
356
+
357
+ Args:
358
+ prompt (str): Prompt to be send.
359
+ stream (bool, optional): Flag for streaming response. Defaults to False.
360
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
361
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
362
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
363
+ Returns:
364
+ dict|AsyncGenerator : ai content
365
+ ```json
366
+ {
367
+ "id": "c0c8d139-d2b9-9909-8aa1-14948bc28404",
368
+ "object": "chat.completion",
369
+ "created": 1710852779,
370
+ "model": "mixtral-8x7b-32768",
371
+ "choices": [
372
+ {
373
+ "index": 0,
374
+ "message": {
375
+ "role": "assistant",
376
+ "content": "Hello! How can I assist you today? I'm here to help answer your questions and engage in conversation on a wide variety of topics. Feel free to ask me anything!"
377
+ },
378
+ "logprobs": null,
379
+ "finish_reason": "stop"
380
+ }
381
+ ],
382
+ "usage": {
383
+ "prompt_tokens": 47,
384
+ "prompt_time": 0.03,
385
+ "completion_tokens": 37,
386
+ "completion_time": 0.069,
387
+ "total_tokens": 84,
388
+ "total_time": 0.099
389
+ },
390
+ "system_fingerprint": null
391
+ }
392
+ ```
393
+ """
394
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
395
+ if optimizer:
396
+ if optimizer in self.__available_optimizers:
397
+ conversation_prompt = getattr(Optimizers, optimizer)(
398
+ conversation_prompt if conversationally else prompt
399
+ )
400
+ else:
401
+ raise Exception(
402
+ f"Optimizer is not one of {self.__available_optimizers}"
403
+ )
404
+ payload = {
405
+ "frequency_penalty": self.frequency_penalty,
406
+ "messages": [{"content": conversation_prompt, "role": "user"}],
407
+ "model": self.model,
408
+ "presence_penalty": self.presence_penalty,
409
+ "stream": stream,
410
+ "temperature": self.temperature,
411
+ "top_p": self.top_p,
412
+ }
413
+
414
+ async def for_stream():
415
+ async with self.session.stream(
416
+ "POST", self.chat_endpoint, json=payload, timeout=self.timeout
417
+ ) as response:
418
+ if not response.is_success:
419
+ raise Exception(
420
+ f"Failed to generate response - ({response.status_code}, {response.reason_phrase})"
421
+ )
422
+
423
+ message_load = ""
424
+ intro_value = "data:"
425
+ async for value in response.aiter_lines():
426
+ try:
427
+ if value.startswith(intro_value):
428
+ value = value[len(intro_value) :]
429
+ resp = json.loads(value)
430
+ incomplete_message = await self.get_message(resp)
431
+ if incomplete_message:
432
+ message_load += incomplete_message
433
+ resp["choices"][0]["delta"]["content"] = message_load
434
+ self.last_response.update(resp)
435
+ yield value if raw else resp
436
+ elif raw:
437
+ yield value
438
+ except json.decoder.JSONDecodeError:
439
+ pass
440
+ self.conversation.update_chat_history(
441
+ prompt, await self.get_message(self.last_response)
442
+ )
443
+
444
+ async def for_non_stream():
445
+ response = httpx.post(
446
+ self.chat_endpoint, json=payload, timeout=self.timeout
447
+ )
448
+ if not response.is_success:
449
+ raise Exception(
450
+ f"Failed to generate response - ({response.status_code}, {response.reason_phrase})"
451
+ )
452
+ resp = response.json()
453
+ self.last_response.update(resp)
454
+ self.conversation.update_chat_history(
455
+ prompt, await self.get_message(self.last_response)
456
+ )
457
+ return resp
458
+
459
+ return for_stream() if stream else await for_non_stream()
460
+
461
+ async def chat(
462
+ self,
463
+ prompt: str,
464
+ stream: bool = False,
465
+ optimizer: str = None,
466
+ conversationally: bool = False,
467
+ ) -> str | AsyncGenerator:
468
+ """Generate response `str` asynchronously.
469
+ Args:
470
+ prompt (str): Prompt to be send.
471
+ stream (bool, optional): Flag for streaming response. Defaults to False.
472
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
473
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
474
+ Returns:
475
+ str|AsyncGenerator: Response generated
476
+ """
477
+
478
+ async def for_stream():
479
+ async_ask = await self.ask(
480
+ prompt, True, optimizer=optimizer, conversationally=conversationally
481
+ )
482
+ async for response in async_ask:
483
+ yield await self.get_message(response)
484
+
485
+ async def for_non_stream():
486
+ return await self.get_message(
487
+ await self.ask(
488
+ prompt,
489
+ False,
490
+ optimizer=optimizer,
491
+ conversationally=conversationally,
492
+ )
493
+ )
494
+
495
+ return for_stream() if stream else await for_non_stream()
496
+
497
+ async def get_message(self, response: dict) -> str:
498
+ """Retrieves message only from response
499
+
500
+ Args:
501
+ response (dict): Response generated by `self.ask`
502
+
503
+ Returns:
504
+ str: Message extracted
505
+ """
506
+ assert isinstance(response, dict), "Response should be of dict data-type only"
507
+ try:
508
+ if response["choices"][0].get("delta"):
509
+ return response["choices"][0]["delta"]["content"]
510
+ return response["choices"][0]["message"]["content"]
511
+ except KeyError:
512
512
  return ""