webscout 2.8__py3-none-any.whl → 3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

webscout/AIutel.py CHANGED
@@ -46,6 +46,7 @@ webai = [
46
46
  "chatgptuk",
47
47
  "auto",
48
48
  "poe",
49
+ "basedgpt",
49
50
  ]
50
51
  gpt4free_providers = [
51
52
  provider.__name__ for provider in g4f.Provider.__providers__ # if provider.working
@@ -1,3 +1,3 @@
1
1
  from llama_cpp import __version__ as __llama_cpp_version__
2
2
 
3
- __version__ = '2.7'
3
+ __version__ = '2.9'
webscout/Local/model.py CHANGED
@@ -1,3 +1,4 @@
1
+ import json
1
2
  from ._version import __version__, __llama_cpp_version__
2
3
 
3
4
  """Submodule containing the Model class to work with language models"""
@@ -15,7 +16,7 @@ from .utils import (
15
16
 
16
17
  from .samplers import SamplerSettings, DefaultSampling
17
18
  from llama_cpp import Llama, StoppingCriteriaList
18
- from typing import Generator, Optional, Union
19
+ from typing import Callable, Generator, Optional, Union
19
20
  from os.path import isdir, exists
20
21
  from heapq import nlargest
21
22
 
@@ -26,6 +27,8 @@ class ModelUnloadedException(Exception):
26
27
  """Exception raised when trying to use a Model that has been unloaded"""
27
28
  def __init__(self, message):
28
29
  self.message = message
30
+ self.tool_code_start = "```tool_code\n" # Define tool code markers
31
+ self.tool_code_end = "\n```tool_code```"
29
32
  super().__init__(self.message)
30
33
  self.add_note('Are you trying to use a Model that has been unloaded?')
31
34
 
@@ -68,7 +71,7 @@ class Model:
68
71
  n_gpu_layers: int = 0,
69
72
  offload_kqv: bool = True,
70
73
  flash_attn: bool = False,
71
- verbose: bool = False
74
+ verbose: bool = False,
72
75
  ):
73
76
  """
74
77
  Given the path to a GGUF file, construct a Model instance.
@@ -105,7 +108,7 @@ class Model:
105
108
  self._offload_kqv = offload_kqv
106
109
  self._flash_attn = flash_attn
107
110
  self._verbose = self.verbose = verbose
108
-
111
+ self.tools = {}
109
112
  # if context_length <= 0, use n_ctx_train
110
113
  if isinstance(context_length, int) and context_length <= 0:
111
114
  context_length = None
@@ -269,7 +272,73 @@ class Model:
269
272
  print_verbose(f"param: self.context_length == {self.context_length}")
270
273
  print_verbose(f" gguf: rope_freq_base_train == {rope_freq_base_train}")
271
274
  print_verbose(f"param: rope_freq_base == {rope_freq_base}")
272
-
275
+ def register_tool(self, name: str, function: Callable):
276
+ """Registers a tool for function calling."""
277
+ self.tools[name] = function
278
+
279
+ def _extract_tool_code(self, text: str) -> dict:
280
+ """Extracts tool code from the model's output."""
281
+ try:
282
+ start = text.find(self.tool_code_start) + len(self.tool_code_start)
283
+ end = text.find(self.tool_code_end)
284
+ tool_code_json = text[start:end]
285
+ tool_code = json.loads(tool_code_json)
286
+ return tool_code
287
+ except (ValueError, json.JSONDecodeError):
288
+ return None
289
+ def _should_call_tool(self, response_text: str) -> bool:
290
+ """Determines if the model suggests a tool call."""
291
+ # Simple check for tool code markers in response
292
+ return self.tool_code_start in response_text and self.tool_code_end in response_text
293
+ def generate(
294
+ self,
295
+ prompt: Union[str, list[int]],
296
+ stops: list[Union[str, int]] = [],
297
+ sampler: SamplerSettings = DefaultSampling,
298
+ max_iterations: int = 3, # Maximum iterations for tool calls
299
+ ) -> str:
300
+ """
301
+ Generates text and handles tool calls.
302
+
303
+ Args:
304
+ prompt (Union[str, list[int]]): The input prompt.
305
+ stops (list[Union[str, int]]): Stop sequences.
306
+ sampler (SamplerSettings): Sampler settings.
307
+ max_iterations (int): Maximum number of tool call iterations.
308
+
309
+ Returns:
310
+ str: The generated text.
311
+ """
312
+ assert_model_is_loaded(self)
313
+ response_text = self.llama.create_completion(
314
+ prompt,
315
+ max_tokens=sampler.max_len_tokens,
316
+ temperature=sampler.temp,
317
+ top_p=sampler.top_p,
318
+ min_p=sampler.min_p,
319
+ frequency_penalty=sampler.frequency_penalty,
320
+ presence_penalty=sampler.presence_penalty,
321
+ repeat_penalty=sampler.repeat_penalty,
322
+ top_k=sampler.top_k,
323
+ stop=stops
324
+ )['choices'][0]['text']
325
+
326
+ iteration = 0
327
+ while self._should_call_tool(response_text) and iteration < max_iterations:
328
+ tool_code = self._extract_tool_code(response_text)
329
+ if tool_code:
330
+ tool_name = tool_code.get("function", {}).get("name")
331
+ arguments = tool_code.get("function", {}).get("arguments", "")
332
+ if tool_name and arguments and tool_name in self.tools:
333
+ # Execute the tool and append its output
334
+ tool_output = self.tools[tool_name](**json.loads(arguments))
335
+ response_text = response_text.replace(
336
+ f"{self.tool_code_start}{json.dumps(tool_code)}{self.tool_code_end}",
337
+ tool_output
338
+ )
339
+ iteration += 1
340
+
341
+ return response_text
273
342
  def __repr__(self) -> str:
274
343
  return \
275
344
  f"Model({repr(self._model_path)}, " + \
webscout/Local/thread.py CHANGED
@@ -1,3 +1,4 @@
1
+ import json
1
2
  from ._version import __version__, __llama_cpp_version__
2
3
 
3
4
  """Submodule containing the Thread class, used for interaction with a Model"""
@@ -80,7 +81,9 @@ class Thread:
80
81
  format: Union[dict, AdvancedFormat],
81
82
  sampler: SamplerSettings = DefaultSampling,
82
83
  messages: Optional[list[Message]] = None,
84
+
83
85
  ):
86
+
84
87
  """
85
88
  Given a Model and a format, construct a Thread instance.
86
89
 
@@ -141,7 +144,7 @@ class Thread:
141
144
  self.create_message("system", self.format['system_content'])
142
145
  ] if self._messages is None else self._messages
143
146
  self.sampler: SamplerSettings = sampler
144
-
147
+ self.tools = []
145
148
  if self.model.verbose:
146
149
  print_verbose("new Thread instance with the following attributes:")
147
150
  print_verbose(f"model == {self.model}")
@@ -162,8 +165,13 @@ class Thread:
162
165
  print_verbose(f"sampler.presence_penalty == {self.sampler.presence_penalty}")
163
166
  print_verbose(f"sampler.repeat_penalty == {self.sampler.repeat_penalty}")
164
167
  print_verbose(f"sampler.top_k == {self.sampler.top_k}")
165
-
168
+ def add_tool(self, tool: dict):
169
+ """Adds a tool to the Thread for function calling."""
170
+ self.tools.append(tool)
171
+ self.model.register_tool(tool['function']['name'], tool['function']['execute']) # Register the tool
166
172
 
173
+ # Include tool information in the system message (optional, but helpful)
174
+ self.messages[0]['content'] += f"\nYou have access to the following tool:\n{tool['function']['description']}"
167
175
  def __repr__(self) -> str:
168
176
  return \
169
177
  f"Thread({repr(self.model)}, {repr(self.format)}, " + \
webscout/Local/utils.py CHANGED
@@ -25,18 +25,19 @@ class _ArrayLike(Iterable):
25
25
  class _SupportsWriteAndFlush(TextIO):
26
26
  pass
27
27
 
28
- def download_model(repo_id: str, filename: str, cache_dir: str = ".cache") -> str:
28
+ def download_model(repo_id: str, filename: str, token: str, cache_dir: str = ".cache") -> str:
29
29
  """
30
30
  Downloads a GGUF model file from Hugging Face Hub.
31
31
 
32
32
  repo_id: The Hugging Face repository ID (e.g., 'facebook/bart-large-cnn').
33
33
  filename: The name of the GGUF file within the repository (e.g., 'model.gguf').
34
+ token: The Hugging Face token for authentication.
34
35
  cache_dir: The directory where the downloaded file should be stored.
35
36
 
36
37
  Returns: The path to the downloaded file.
37
38
  """
38
39
  url = hf_hub_url(repo_id, filename)
39
- filepath = cached_download(url, cache_dir=cache_dir, force_filename=filename)
40
+ filepath = cached_download(url, cache_dir=cache_dir, force_filename=filename, use_auth_token=token)
40
41
  return filepath
41
42
 
42
43
  class GGUFReader:
@@ -1,226 +1,226 @@
1
- import time
2
- import uuid
3
- from selenium import webdriver
4
- from selenium.webdriver.chrome.options import Options
5
- from selenium.webdriver.common.by import By
6
- from selenium.webdriver.support import expected_conditions as EC
7
- from selenium.webdriver.support.ui import WebDriverWait
8
- import click
9
- import requests
10
- from requests import get
11
- from uuid import uuid4
12
- from re import findall
13
- from requests.exceptions import RequestException
14
- from curl_cffi.requests import get, RequestsError
15
- import g4f
16
- from random import randint
17
- from PIL import Image
18
- import io
19
- import re
20
- import json
21
- import yaml
22
- from ..AIutel import Optimizers
23
- from ..AIutel import Conversation
24
- from ..AIutel import AwesomePrompts, sanitize_stream
25
- from ..AIbase import Provider, AsyncProvider
26
- from webscout import exceptions
27
- from typing import Any, AsyncGenerator, Dict
28
- import logging
29
- import httpx
30
-
31
- class BasedGPT(Provider):
32
- def __init__(
33
- self,
34
- is_conversation: bool = True,
35
- max_tokens: int = 600,
36
- timeout: int = 30,
37
- intro: str = None,
38
- filepath: str = None,
39
- update_file: bool = True,
40
- proxies: dict = {},
41
- history_offset: int = 10250,
42
- act: str = None,
43
- system_prompt: str = "Be Helpful and Friendly",
44
- ):
45
- """Instantiates BasedGPT
46
-
47
- Args:
48
- is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
49
- max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
50
- timeout (int, optional): Http request timeout. Defaults to 30.
51
- intro (str, optional): Conversation introductory prompt. Defaults to None.
52
- filepath (str, optional): Path to file containing conversation history. Defaults to None.
53
- update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
54
- proxies (dict, optional): Http request proxies. Defaults to {}.
55
- history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
56
- act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
57
- system_prompt (str, optional): System prompt for BasedGPT. Defaults to "Be Helpful and Friendly".
58
- """
59
- self.session = requests.Session()
60
- self.is_conversation = is_conversation
61
- self.max_tokens_to_sample = max_tokens
62
- self.chat_endpoint = "https://www.basedgpt.chat/api/chat"
63
- self.stream_chunk_size = 64
64
- self.timeout = timeout
65
- self.last_response = {}
66
- self.system_prompt = system_prompt
67
-
68
- self.__available_optimizers = (
69
- method
70
- for method in dir(Optimizers)
71
- if callable(getattr(Optimizers, method)) and not method.startswith("__")
72
- )
73
- self.session.headers.update(
74
- {"Content-Type": "application/json"}
75
- )
76
- Conversation.intro = (
77
- AwesomePrompts().get_act(
78
- act, raise_not_found=True, default=None, case_insensitive=True
79
- )
80
- if act
81
- else intro or Conversation.intro
82
- )
83
- self.conversation = Conversation(
84
- is_conversation, self.max_tokens_to_sample, filepath, update_file
85
- )
86
- self.conversation.history_offset = history_offset
87
- self.session.proxies = proxies
88
-
89
- def ask(
90
- self,
91
- prompt: str,
92
- stream: bool = False,
93
- raw: bool = False,
94
- optimizer: str = None,
95
- conversationally: bool = False,
96
- ) -> dict:
97
- """Chat with AI
98
-
99
- Args:
100
- prompt (str): Prompt to be send.
101
- stream (bool, optional): Flag for streaming response. Defaults to False.
102
- raw (bool, optional): Stream back raw response as received. Defaults to False.
103
- optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
104
- conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
105
- Returns:
106
- dict : {}
107
- ```json
108
- {
109
- "id": "chatcmpl-TaREJpBZsRVQFRFic1wIA7Q7XfnaD",
110
- "object": "chat.completion",
111
- "created": 1704623244,
112
- "model": "gpt-3.5-turbo",
113
- "usage": {
114
- "prompt_tokens": 0,
115
- "completion_tokens": 0,
116
- "total_tokens": 0
117
- },
118
- "choices": [
119
- {
120
- "message": {
121
- "role": "assistant",
122
- "content": "Hello! How can I assist you today?"
123
- },
124
- "finish_reason": "stop",
125
- "index": 0
126
- }
127
- ]
128
- }
129
- ```
130
- """
131
- conversation_prompt = self.conversation.gen_complete_prompt(prompt)
132
- if optimizer:
133
- if optimizer in self.__available_optimizers:
134
- conversation_prompt = getattr(Optimizers, optimizer)(
135
- conversation_prompt if conversationally else prompt
136
- )
137
- else:
138
- raise Exception(
139
- f"Optimizer is not one of {self.__available_optimizers}"
140
- )
141
-
142
- payload = {
143
- "messages": [
144
- {"role": "system", "content": self.system_prompt},
145
- {"role": "user", "content": conversation_prompt},
146
- ],
147
- }
148
-
149
- def for_stream():
150
- response = self.session.post(
151
- self.chat_endpoint, json=payload, stream=True, timeout=self.timeout
152
- )
153
- if not response.ok:
154
- raise exceptions.FailedToGenerateResponseError(
155
- f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
156
- )
157
-
158
- message_load = ""
159
- for value in response.iter_lines(
160
- decode_unicode=True,
161
- delimiter="",
162
- chunk_size=self.stream_chunk_size,
163
- ):
164
- try:
165
- message_load += value
166
- yield value if raw else dict(text=message_load)
167
- except json.decoder.JSONDecodeError:
168
- pass
169
- self.last_response.update(dict(text=message_load))
170
- self.conversation.update_chat_history(
171
- prompt, self.get_message(self.last_response)
172
- )
173
-
174
- def for_non_stream():
175
- for _ in for_stream():
176
- pass
177
- return self.last_response
178
-
179
- return for_stream() if stream else for_non_stream()
180
-
181
- def chat(
182
- self,
183
- prompt: str,
184
- stream: bool = False,
185
- optimizer: str = None,
186
- conversationally: bool = False,
187
- ) -> str:
188
- """Generate response `str`
189
- Args:
190
- prompt (str): Prompt to be send.
191
- stream (bool, optional): Flag for streaming response. Defaults to False.
192
- optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
193
- conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
194
- Returns:
195
- str: Response generated
196
- """
197
-
198
- def for_stream():
199
- for response in self.ask(
200
- prompt, True, optimizer=optimizer, conversationally=conversationally
201
- ):
202
- yield self.get_message(response)
203
-
204
- def for_non_stream():
205
- return self.get_message(
206
- self.ask(
207
- prompt,
208
- False,
209
- optimizer=optimizer,
210
- conversationally=conversationally,
211
- )
212
- )
213
-
214
- return for_stream() if stream else for_non_stream()
215
-
216
- def get_message(self, response: dict) -> str:
217
- """Retrieves message only from response
218
-
219
- Args:
220
- response (dict): Response generated by `self.ask`
221
-
222
- Returns:
223
- str: Message extracted
224
- """
225
- assert isinstance(response, dict), "Response should be of dict data-type only"
1
+ import time
2
+ import uuid
3
+ from selenium import webdriver
4
+ from selenium.webdriver.chrome.options import Options
5
+ from selenium.webdriver.common.by import By
6
+ from selenium.webdriver.support import expected_conditions as EC
7
+ from selenium.webdriver.support.ui import WebDriverWait
8
+ import click
9
+ import requests
10
+ from requests import get
11
+ from uuid import uuid4
12
+ from re import findall
13
+ from requests.exceptions import RequestException
14
+ from curl_cffi.requests import get, RequestsError
15
+ import g4f
16
+ from random import randint
17
+ from PIL import Image
18
+ import io
19
+ import re
20
+ import json
21
+ import yaml
22
+ from ..AIutel import Optimizers
23
+ from ..AIutel import Conversation
24
+ from ..AIutel import AwesomePrompts, sanitize_stream
25
+ from ..AIbase import Provider, AsyncProvider
26
+ from webscout import exceptions
27
+ from typing import Any, AsyncGenerator, Dict
28
+ import logging
29
+ import httpx
30
+
31
+ class BasedGPT(Provider):
32
+ def __init__(
33
+ self,
34
+ is_conversation: bool = True,
35
+ max_tokens: int = 600,
36
+ timeout: int = 30,
37
+ intro: str = None,
38
+ filepath: str = None,
39
+ update_file: bool = True,
40
+ proxies: dict = {},
41
+ history_offset: int = 10250,
42
+ act: str = None,
43
+ system_prompt: str = "Be Helpful and Friendly",
44
+ ):
45
+ """Instantiates BasedGPT
46
+
47
+ Args:
48
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
49
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
50
+ timeout (int, optional): Http request timeout. Defaults to 30.
51
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
52
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
53
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
54
+ proxies (dict, optional): Http request proxies. Defaults to {}.
55
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
56
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
57
+ system_prompt (str, optional): System prompt for BasedGPT. Defaults to "Be Helpful and Friendly".
58
+ """
59
+ self.session = requests.Session()
60
+ self.is_conversation = is_conversation
61
+ self.max_tokens_to_sample = max_tokens
62
+ self.chat_endpoint = "https://www.basedgpt.chat/api/chat"
63
+ self.stream_chunk_size = 64
64
+ self.timeout = timeout
65
+ self.last_response = {}
66
+ self.system_prompt = system_prompt
67
+
68
+ self.__available_optimizers = (
69
+ method
70
+ for method in dir(Optimizers)
71
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
72
+ )
73
+ self.session.headers.update(
74
+ {"Content-Type": "application/json"}
75
+ )
76
+ Conversation.intro = (
77
+ AwesomePrompts().get_act(
78
+ act, raise_not_found=True, default=None, case_insensitive=True
79
+ )
80
+ if act
81
+ else intro or Conversation.intro
82
+ )
83
+ self.conversation = Conversation(
84
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
85
+ )
86
+ self.conversation.history_offset = history_offset
87
+ self.session.proxies = proxies
88
+
89
+ def ask(
90
+ self,
91
+ prompt: str,
92
+ stream: bool = False,
93
+ raw: bool = False,
94
+ optimizer: str = None,
95
+ conversationally: bool = False,
96
+ ) -> dict:
97
+ """Chat with AI
98
+
99
+ Args:
100
+ prompt (str): Prompt to be send.
101
+ stream (bool, optional): Flag for streaming response. Defaults to False.
102
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
103
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
104
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
105
+ Returns:
106
+ dict : {}
107
+ ```json
108
+ {
109
+ "id": "chatcmpl-TaREJpBZsRVQFRFic1wIA7Q7XfnaD",
110
+ "object": "chat.completion",
111
+ "created": 1704623244,
112
+ "model": "gpt-3.5-turbo",
113
+ "usage": {
114
+ "prompt_tokens": 0,
115
+ "completion_tokens": 0,
116
+ "total_tokens": 0
117
+ },
118
+ "choices": [
119
+ {
120
+ "message": {
121
+ "role": "assistant",
122
+ "content": "Hello! How can I assist you today?"
123
+ },
124
+ "finish_reason": "stop",
125
+ "index": 0
126
+ }
127
+ ]
128
+ }
129
+ ```
130
+ """
131
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
132
+ if optimizer:
133
+ if optimizer in self.__available_optimizers:
134
+ conversation_prompt = getattr(Optimizers, optimizer)(
135
+ conversation_prompt if conversationally else prompt
136
+ )
137
+ else:
138
+ raise Exception(
139
+ f"Optimizer is not one of {self.__available_optimizers}"
140
+ )
141
+
142
+ payload = {
143
+ "messages": [
144
+ {"role": "system", "content": self.system_prompt},
145
+ {"role": "user", "content": conversation_prompt},
146
+ ],
147
+ }
148
+
149
+ def for_stream():
150
+ response = self.session.post(
151
+ self.chat_endpoint, json=payload, stream=True, timeout=self.timeout
152
+ )
153
+ if not response.ok:
154
+ raise exceptions.FailedToGenerateResponseError(
155
+ f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
156
+ )
157
+
158
+ message_load = ""
159
+ for value in response.iter_lines(
160
+ decode_unicode=True,
161
+ delimiter="",
162
+ chunk_size=self.stream_chunk_size,
163
+ ):
164
+ try:
165
+ message_load += value
166
+ yield value if raw else dict(text=message_load)
167
+ except json.decoder.JSONDecodeError:
168
+ pass
169
+ self.last_response.update(dict(text=message_load))
170
+ self.conversation.update_chat_history(
171
+ prompt, self.get_message(self.last_response)
172
+ )
173
+
174
+ def for_non_stream():
175
+ for _ in for_stream():
176
+ pass
177
+ return self.last_response
178
+
179
+ return for_stream() if stream else for_non_stream()
180
+
181
+ def chat(
182
+ self,
183
+ prompt: str,
184
+ stream: bool = False,
185
+ optimizer: str = None,
186
+ conversationally: bool = False,
187
+ ) -> str:
188
+ """Generate response `str`
189
+ Args:
190
+ prompt (str): Prompt to be send.
191
+ stream (bool, optional): Flag for streaming response. Defaults to False.
192
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
193
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
194
+ Returns:
195
+ str: Response generated
196
+ """
197
+
198
+ def for_stream():
199
+ for response in self.ask(
200
+ prompt, True, optimizer=optimizer, conversationally=conversationally
201
+ ):
202
+ yield self.get_message(response)
203
+
204
+ def for_non_stream():
205
+ return self.get_message(
206
+ self.ask(
207
+ prompt,
208
+ False,
209
+ optimizer=optimizer,
210
+ conversationally=conversationally,
211
+ )
212
+ )
213
+
214
+ return for_stream() if stream else for_non_stream()
215
+
216
+ def get_message(self, response: dict) -> str:
217
+ """Retrieves message only from response
218
+
219
+ Args:
220
+ response (dict): Response generated by `self.ask`
221
+
222
+ Returns:
223
+ str: Message extracted
224
+ """
225
+ assert isinstance(response, dict), "Response should be of dict data-type only"
226
226
  return response["text"]