webscout 1.4.6__py3-none-any.whl → 2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

@@ -0,0 +1,511 @@
1
+ import time
2
+ import uuid
3
+ from selenium import webdriver
4
+ from selenium.webdriver.chrome.options import Options
5
+ from selenium.webdriver.common.by import By
6
+ from selenium.webdriver.support import expected_conditions as EC
7
+ from selenium.webdriver.support.ui import WebDriverWait
8
+ import click
9
+ import requests
10
+ from requests import get
11
+ from uuid import uuid4
12
+ from re import findall
13
+ from requests.exceptions import RequestException
14
+ from curl_cffi.requests import get, RequestsError
15
+ import g4f
16
+ from random import randint
17
+ from PIL import Image
18
+ import io
19
+ import re
20
+ import json
21
+ import yaml
22
+ from ..AIutel import Optimizers
23
+ from ..AIutel import Conversation
24
+ from ..AIutel import AwesomePrompts, sanitize_stream
25
+ from ..AIbase import Provider, AsyncProvider
26
+ from Helpingai_T2 import Perplexity
27
+ from webscout import exceptions
28
+ from typing import Any, AsyncGenerator, Dict
29
+ import logging
30
+ import httpx
31
+ #----------------------------------------------------------OpenAI-----------------------------------
32
+ class OPENAI(Provider):
33
+ def __init__(
34
+ self,
35
+ api_key: str,
36
+ is_conversation: bool = True,
37
+ max_tokens: int = 600,
38
+ temperature: float = 1,
39
+ presence_penalty: int = 0,
40
+ frequency_penalty: int = 0,
41
+ top_p: float = 1,
42
+ model: str = "gpt-3.5-turbo",
43
+ timeout: int = 30,
44
+ intro: str = None,
45
+ filepath: str = None,
46
+ update_file: bool = True,
47
+ proxies: dict = {},
48
+ history_offset: int = 10250,
49
+ act: str = None,
50
+ ):
51
+ """Instantiates OPENAI
52
+
53
+ Args:
54
+ api_key (key): OpenAI's API key.
55
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
56
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
57
+ temperature (float, optional): Charge of the generated text's randomness. Defaults to 1.
58
+ presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
59
+ frequency_penalty (int, optional): Chances of word being repeated. Defaults to 0.
60
+ top_p (float, optional): Sampling threshold during inference time. Defaults to 0.999.
61
+ model (str, optional): LLM model name. Defaults to "gpt-3.5-turbo".
62
+ timeout (int, optional): Http request timeout. Defaults to 30.
63
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
64
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
65
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
66
+ proxies (dict, optional): Http request proxies. Defaults to {}.
67
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
68
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
69
+ """
70
+ self.is_conversation = is_conversation
71
+ self.max_tokens_to_sample = max_tokens
72
+ self.api_key = api_key
73
+ self.model = model
74
+ self.temperature = temperature
75
+ self.presence_penalty = presence_penalty
76
+ self.frequency_penalty = frequency_penalty
77
+ self.top_p = top_p
78
+ self.chat_endpoint = "https://api.openai.com/v1/chat/completions"
79
+ self.stream_chunk_size = 64
80
+ self.timeout = timeout
81
+ self.last_response = {}
82
+ self.headers = {
83
+ "Content-Type": "application/json",
84
+ "Authorization": f"Bearer {self.api_key}",
85
+ }
86
+
87
+ self.__available_optimizers = (
88
+ method
89
+ for method in dir(Optimizers)
90
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
91
+ )
92
+ self.session.headers.update(self.headers)
93
+ Conversation.intro = (
94
+ AwesomePrompts().get_act(
95
+ act, raise_not_found=True, default=None, case_insensitive=True
96
+ )
97
+ if act
98
+ else intro or Conversation.intro
99
+ )
100
+ self.conversation = Conversation(
101
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
102
+ )
103
+ self.conversation.history_offset = history_offset
104
+ self.session.proxies = proxies
105
+
106
+ def ask(
107
+ self,
108
+ prompt: str,
109
+ stream: bool = False,
110
+ raw: bool = False,
111
+ optimizer: str = None,
112
+ conversationally: bool = False,
113
+ ) -> dict:
114
+ """Chat with AI
115
+
116
+ Args:
117
+ prompt (str): Prompt to be send.
118
+ stream (bool, optional): Flag for streaming response. Defaults to False.
119
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
120
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
121
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
122
+ Returns:
123
+ dict : {}
124
+ ```json
125
+ {
126
+ "id": "chatcmpl-TaREJpBZsRVQFRFic1wIA7Q7XfnaD",
127
+ "object": "chat.completion",
128
+ "created": 1704623244,
129
+ "model": "gpt-3.5-turbo",
130
+ "usage": {
131
+ "prompt_tokens": 0,
132
+ "completion_tokens": 0,
133
+ "total_tokens": 0
134
+ },
135
+ "choices": [
136
+ {
137
+ "message": {
138
+ "role": "assistant",
139
+ "content": "Hello! How can I assist you today?"
140
+ },
141
+ "finish_reason": "stop",
142
+ "index": 0
143
+ }
144
+ ]
145
+ }
146
+ ```
147
+ """
148
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
149
+ if optimizer:
150
+ if optimizer in self.__available_optimizers:
151
+ conversation_prompt = getattr(Optimizers, optimizer)(
152
+ conversation_prompt if conversationally else prompt
153
+ )
154
+ else:
155
+ raise exceptions.FailedToGenerateResponseError(
156
+ f"Optimizer is not one of {self.__available_optimizers}"
157
+ )
158
+ self.session.headers.update(self.headers)
159
+ payload = {
160
+ "frequency_penalty": self.frequency_penalty,
161
+ "messages": [{"content": conversation_prompt, "role": "user"}],
162
+ "model": self.model,
163
+ "presence_penalty": self.presence_penalty,
164
+ "stream": stream,
165
+ "temperature": self.temperature,
166
+ "top_p": self.top_p,
167
+ }
168
+
169
+ def for_stream():
170
+ response = self.session.post(
171
+ self.chat_endpoint, json=payload, stream=True, timeout=self.timeout
172
+ )
173
+ if not response.ok:
174
+ raise exceptions.FailedToGenerateResponseError(
175
+ f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
176
+ )
177
+
178
+ message_load = ""
179
+ for value in response.iter_lines(
180
+ decode_unicode=True,
181
+ delimiter="" if raw else "data:",
182
+ chunk_size=self.stream_chunk_size,
183
+ ):
184
+ try:
185
+ resp = json.loads(value)
186
+ incomplete_message = self.get_message(resp)
187
+ if incomplete_message:
188
+ message_load += incomplete_message
189
+ resp["choices"][0]["delta"]["content"] = message_load
190
+ self.last_response.update(resp)
191
+ yield value if raw else resp
192
+ elif raw:
193
+ yield value
194
+ except json.decoder.JSONDecodeError:
195
+ pass
196
+ self.conversation.update_chat_history(
197
+ prompt, self.get_message(self.last_response)
198
+ )
199
+
200
+ def for_non_stream():
201
+ response = self.session.post(
202
+ self.chat_endpoint, json=payload, stream=False, timeout=self.timeout
203
+ )
204
+ if (
205
+ not response.ok
206
+ or not response.headers.get("Content-Type", "") == "application/json"
207
+ ):
208
+ raise exceptions.FailedToGenerateResponseError(
209
+ f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
210
+ )
211
+ resp = response.json()
212
+ self.last_response.update(resp)
213
+ self.conversation.update_chat_history(
214
+ prompt, self.get_message(self.last_response)
215
+ )
216
+ return resp
217
+
218
+ return for_stream() if stream else for_non_stream()
219
+
220
+ def chat(
221
+ self,
222
+ prompt: str,
223
+ stream: bool = False,
224
+ optimizer: str = None,
225
+ conversationally: bool = False,
226
+ ) -> str:
227
+ """Generate response `str`
228
+ Args:
229
+ prompt (str): Prompt to be send.
230
+ stream (bool, optional): Flag for streaming response. Defaults to False.
231
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
232
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
233
+ Returns:
234
+ str: Response generated
235
+ """
236
+
237
+ def for_stream():
238
+ for response in self.ask(
239
+ prompt, True, optimizer=optimizer, conversationally=conversationally
240
+ ):
241
+ yield self.get_message(response)
242
+
243
+ def for_non_stream():
244
+ return self.get_message(
245
+ self.ask(
246
+ prompt,
247
+ False,
248
+ optimizer=optimizer,
249
+ conversationally=conversationally,
250
+ )
251
+ )
252
+
253
+ return for_stream() if stream else for_non_stream()
254
+
255
+ def get_message(self, response: dict) -> str:
256
+ """Retrieves message only from response
257
+
258
+ Args:
259
+ response (dict): Response generated by `self.ask`
260
+
261
+ Returns:
262
+ str: Message extracted
263
+ """
264
+ assert isinstance(response, dict), "Response should be of dict data-type only"
265
+ try:
266
+ if response["choices"][0].get("delta"):
267
+ return response["choices"][0]["delta"]["content"]
268
+ return response["choices"][0]["message"]["content"]
269
+ except KeyError:
270
+ return ""
271
+ class AsyncOPENAI(AsyncProvider):
272
+ def __init__(
273
+ self,
274
+ api_key: str,
275
+ is_conversation: bool = True,
276
+ max_tokens: int = 600,
277
+ temperature: float = 1,
278
+ presence_penalty: int = 0,
279
+ frequency_penalty: int = 0,
280
+ top_p: float = 1,
281
+ model: str = "gpt-3.5-turbo",
282
+ timeout: int = 30,
283
+ intro: str = None,
284
+ filepath: str = None,
285
+ update_file: bool = True,
286
+ proxies: dict = {},
287
+ history_offset: int = 10250,
288
+ act: str = None,
289
+ ):
290
+ """Instantiates OPENAI
291
+
292
+ Args:
293
+ api_key (key): OpenAI's API key.
294
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
295
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
296
+ temperature (float, optional): Charge of the generated text's randomness. Defaults to 1.
297
+ presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
298
+ frequency_penalty (int, optional): Chances of word being repeated. Defaults to 0.
299
+ top_p (float, optional): Sampling threshold during inference time. Defaults to 0.999.
300
+ model (str, optional): LLM model name. Defaults to "gpt-3.5-turbo".
301
+ timeout (int, optional): Http request timeout. Defaults to 30.
302
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
303
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
304
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
305
+ proxies (dict, optional): Http request proxies. Defaults to {}.
306
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
307
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
308
+ """
309
+ self.is_conversation = is_conversation
310
+ self.max_tokens_to_sample = max_tokens
311
+ self.api_key = api_key
312
+ self.model = model
313
+ self.temperature = temperature
314
+ self.presence_penalty = presence_penalty
315
+ self.frequency_penalty = frequency_penalty
316
+ self.top_p = top_p
317
+ self.chat_endpoint = "https://api.openai.com/v1/chat/completions"
318
+ self.stream_chunk_size = 64
319
+ self.timeout = timeout
320
+ self.last_response = {}
321
+ self.headers = {
322
+ "Content-Type": "application/json",
323
+ "Authorization": f"Bearer {self.api_key}",
324
+ }
325
+
326
+ self.__available_optimizers = (
327
+ method
328
+ for method in dir(Optimizers)
329
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
330
+ )
331
+ Conversation.intro = (
332
+ AwesomePrompts().get_act(
333
+ act, raise_not_found=True, default=None, case_insensitive=True
334
+ )
335
+ if act
336
+ else intro or Conversation.intro
337
+ )
338
+ self.conversation = Conversation(
339
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
340
+ )
341
+ self.conversation.history_offset = history_offset
342
+ self.session = httpx.AsyncClient(
343
+ headers=self.headers,
344
+ proxies=proxies,
345
+ )
346
+
347
+ async def ask(
348
+ self,
349
+ prompt: str,
350
+ stream: bool = False,
351
+ raw: bool = False,
352
+ optimizer: str = None,
353
+ conversationally: bool = False,
354
+ ) -> dict | AsyncGenerator:
355
+ """Chat with AI asynchronously.
356
+
357
+ Args:
358
+ prompt (str): Prompt to be send.
359
+ stream (bool, optional): Flag for streaming response. Defaults to False.
360
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
361
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
362
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
363
+ Returns:
364
+ dict|AsyncGenerator : ai content.
365
+ ```json
366
+ {
367
+ "id": "chatcmpl-TaREJpBZsRVQFRFic1wIA7Q7XfnaD",
368
+ "object": "chat.completion",
369
+ "created": 1704623244,
370
+ "model": "gpt-3.5-turbo",
371
+ "usage": {
372
+ "prompt_tokens": 0,
373
+ "completion_tokens": 0,
374
+ "total_tokens": 0
375
+ },
376
+ "choices": [
377
+ {
378
+ "message": {
379
+ "role": "assistant",
380
+ "content": "Hello! How can I assist you today?"
381
+ },
382
+ "finish_reason": "stop",
383
+ "index": 0
384
+ }
385
+ ]
386
+ }
387
+ ```
388
+ """
389
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
390
+ if optimizer:
391
+ if optimizer in self.__available_optimizers:
392
+ conversation_prompt = getattr(Optimizers, optimizer)(
393
+ conversation_prompt if conversationally else prompt
394
+ )
395
+ else:
396
+ raise Exception(
397
+ f"Optimizer is not one of {self.__available_optimizers}"
398
+ )
399
+ payload = {
400
+ "frequency_penalty": self.frequency_penalty,
401
+ "messages": [{"content": conversation_prompt, "role": "user"}],
402
+ "model": self.model,
403
+ "presence_penalty": self.presence_penalty,
404
+ "stream": stream,
405
+ "temperature": self.temperature,
406
+ "top_p": self.top_p,
407
+ }
408
+
409
+ async def for_stream():
410
+ async with self.session.stream(
411
+ "POST", self.chat_endpoint, json=payload, timeout=self.timeout
412
+ ) as response:
413
+ if not response.is_success:
414
+ raise Exception(
415
+ f"Failed to generate response - ({response.status_code}, {response.reason_phrase})"
416
+ )
417
+
418
+ message_load = ""
419
+ async for value in response.aiter_lines():
420
+ try:
421
+
422
+ resp = sanitize_stream(value)
423
+ incomplete_message = await self.get_message(resp)
424
+ if incomplete_message:
425
+ message_load += incomplete_message
426
+ resp["choices"][0]["delta"]["content"] = message_load
427
+ self.last_response.update(resp)
428
+ yield value if raw else resp
429
+ elif raw:
430
+ yield value
431
+ except json.decoder.JSONDecodeError:
432
+ pass
433
+ self.conversation.update_chat_history(
434
+ prompt, await self.get_message(self.last_response)
435
+ )
436
+
437
+ async def for_non_stream():
438
+ response = httpx.post(
439
+ self.chat_endpoint,
440
+ json=payload,
441
+ timeout=self.timeout,
442
+ headers=self.headers,
443
+ )
444
+ if (
445
+ not response.is_success
446
+ or not response.headers.get("Content-Type", "") == "application/json"
447
+ ):
448
+ raise Exception(
449
+ f"Failed to generate response - ({response.status_code}, {response.reason_phrase})"
450
+ )
451
+ resp = response.json()
452
+ self.last_response.update(resp)
453
+ self.conversation.update_chat_history(
454
+ prompt, await self.get_message(self.last_response)
455
+ )
456
+ return resp
457
+
458
+ return for_stream() if stream else await for_non_stream()
459
+
460
+ async def chat(
461
+ self,
462
+ prompt: str,
463
+ stream: bool = False,
464
+ optimizer: str = None,
465
+ conversationally: bool = False,
466
+ ) -> str | AsyncGenerator:
467
+ """Generate response `str` asynchronously.
468
+ Args:
469
+ prompt (str): Prompt to be send.
470
+ stream (bool, optional): Flag for streaming response. Defaults to False.
471
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
472
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
473
+ Returns:
474
+ str|AsyncGenerator: Response generated
475
+ """
476
+
477
+ async def for_stream():
478
+ async_ask = await self.ask(
479
+ prompt, True, optimizer=optimizer, conversationally=conversationally
480
+ )
481
+ async for response in async_ask:
482
+ yield await self.get_message(response)
483
+
484
+ async def for_non_stream():
485
+ return await self.get_message(
486
+ await self.ask(
487
+ prompt,
488
+ False,
489
+ optimizer=optimizer,
490
+ conversationally=conversationally,
491
+ )
492
+ )
493
+
494
+ return for_stream() if stream else await for_non_stream()
495
+
496
+ async def get_message(self, response: dict) -> str:
497
+ """Retrieves message only from response asynchronously.
498
+
499
+ Args:
500
+ response (dict): Response generated by `self.ask`
501
+
502
+ Returns:
503
+ str: Message extracted
504
+ """
505
+ assert isinstance(response, dict), "Response should be of dict data-type only"
506
+ try:
507
+ if response["choices"][0].get("delta"):
508
+ return response["choices"][0]["delta"]["content"]
509
+ return response["choices"][0]["message"]["content"]
510
+ except KeyError:
511
+ return ""