webscout 1.4.6__py3-none-any.whl → 2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

@@ -0,0 +1,437 @@
1
+ import time
2
+ import uuid
3
+ from selenium import webdriver
4
+ from selenium.webdriver.chrome.options import Options
5
+ from selenium.webdriver.common.by import By
6
+ from selenium.webdriver.support import expected_conditions as EC
7
+ from selenium.webdriver.support.ui import WebDriverWait
8
+ import click
9
+ import requests
10
+ from requests import get
11
+ from uuid import uuid4
12
+ from re import findall
13
+ from requests.exceptions import RequestException
14
+ from curl_cffi.requests import get, RequestsError
15
+ import g4f
16
+ from random import randint
17
+ from PIL import Image
18
+ import io
19
+ import re
20
+ import json
21
+ import yaml
22
+ from ..AIutel import Optimizers
23
+ from ..AIutel import Conversation
24
+ from ..AIutel import AwesomePrompts, sanitize_stream
25
+ from ..AIbase import Provider, AsyncProvider
26
+ from Helpingai_T2 import Perplexity
27
+ from webscout import exceptions
28
+ from typing import Any, AsyncGenerator, Dict
29
+ import logging
30
+ import httpx
31
+
32
+ class AsyncLLAMA2(AsyncProvider):
33
+ def __init__(
34
+ self,
35
+ is_conversation: bool = True,
36
+ max_tokens: int = 800,
37
+ temperature: float = 0.75,
38
+ presence_penalty: int = 0,
39
+ frequency_penalty: int = 0,
40
+ top_p: float = 0.9,
41
+ model: str = "meta/meta-llama-3-70b-instruct",
42
+ timeout: int = 30,
43
+ intro: str = None,
44
+ filepath: str = None,
45
+ update_file: bool = True,
46
+ proxies: dict = {},
47
+ history_offset: int = 10250,
48
+ act: str = None,
49
+ ):
50
+ """Instantiates LLAMA2
51
+
52
+ Args:
53
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
54
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 800.
55
+ temperature (float, optional): Charge of the generated text's randomness. Defaults to 0.75.
56
+ presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
57
+ frequency_penalty (int, optional): Chances of word being repeated. Defaults to 0.
58
+ top_p (float, optional): Sampling threshold during inference time. Defaults to 0.9.
59
+ model (str, optional): LLM model name. Defaults to "meta/llama-2-70b-chat".
60
+ timeout (int, optional): Http request timeout. Defaults to 30.
61
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
62
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
63
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
64
+ proxies (dict, optional): Http request proxies. Defaults to {}.
65
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
66
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
67
+ """
68
+ self.is_conversation = is_conversation
69
+ self.max_tokens_to_sample = max_tokens
70
+ self.model = model
71
+ self.temperature = temperature
72
+ self.presence_penalty = presence_penalty
73
+ self.frequency_penalty = frequency_penalty
74
+ self.top_p = top_p
75
+ self.chat_endpoint = "https://www.llama2.ai/api"
76
+ self.stream_chunk_size = 64
77
+ self.timeout = timeout
78
+ self.last_response = {}
79
+ self.headers = {
80
+ "Content-Type": "application/json",
81
+ "Referer": "https://www.llama2.ai/",
82
+ "Content-Type": "text/plain;charset=UTF-8",
83
+ "Origin": "https://www.llama2.ai",
84
+ }
85
+
86
+ self.__available_optimizers = (
87
+ method
88
+ for method in dir(Optimizers)
89
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
90
+ )
91
+ Conversation.intro = (
92
+ AwesomePrompts().get_act(
93
+ act, raise_not_found=True, default=None, case_insensitive=True
94
+ )
95
+ if act
96
+ else intro or Conversation.intro
97
+ )
98
+ self.conversation = Conversation(
99
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
100
+ )
101
+ self.conversation.history_offset = history_offset
102
+ self.session = httpx.AsyncClient(
103
+ headers=self.headers,
104
+ proxies=proxies,
105
+ )
106
+
107
+ async def ask(
108
+ self,
109
+ prompt: str,
110
+ stream: bool = False,
111
+ raw: bool = False,
112
+ optimizer: str = None,
113
+ conversationally: bool = False,
114
+ ) -> dict | AsyncGenerator:
115
+ """Chat with AI asynchronously.
116
+
117
+ Args:
118
+ prompt (str): Prompt to be send.
119
+ stream (bool, optional): Flag for streaming response. Defaults to False.
120
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
121
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
122
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
123
+ Returns:
124
+ dict|AsyncGeneraror[dict] : ai content
125
+ ```json
126
+ {
127
+ "text" : "How may I help you today?"
128
+ }
129
+ ```
130
+ """
131
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
132
+ if optimizer:
133
+ if optimizer in self.__available_optimizers:
134
+ conversation_prompt = getattr(Optimizers, optimizer)(
135
+ conversation_prompt if conversationally else prompt
136
+ )
137
+ else:
138
+ raise Exception(
139
+ f"Optimizer is not one of {self.__available_optimizers}"
140
+ )
141
+
142
+ payload = {
143
+ "prompt": f"{conversation_prompt}<s>[INST] {prompt} [/INST]",
144
+ "model": self.model,
145
+ "systemPrompt": "You are a helpful assistant.",
146
+ "temperature": self.temperature,
147
+ "topP": self.top_p,
148
+ "maxTokens": self.max_tokens_to_sample,
149
+ "image": None,
150
+ "audio": None,
151
+ }
152
+
153
+ async def for_stream():
154
+ async with self.session.stream(
155
+ "POST", self.chat_endpoint, json=payload, timeout=self.timeout
156
+ ) as response:
157
+ if (
158
+ not response.is_success
159
+ or not response.headers.get("Content-Type")
160
+ == "text/plain; charset=utf-8"
161
+ ):
162
+ raise exceptions.FailedToGenerateResponseError(
163
+ f"Failed to generate response - ({response.status_code}, {response.reason_phrase})"
164
+ )
165
+ message_load: str = ""
166
+ async for value in response.aiter_lines():
167
+ try:
168
+ if bool(value.strip()):
169
+ message_load += value + "\n"
170
+ resp: dict = dict(text=message_load)
171
+ yield value if raw else resp
172
+ self.last_response.update(resp)
173
+ except json.decoder.JSONDecodeError:
174
+ pass
175
+ self.conversation.update_chat_history(
176
+ prompt, await self.get_message(self.last_response)
177
+ )
178
+
179
+ async def for_non_stream():
180
+ async for _ in for_stream():
181
+ pass
182
+ return self.last_response
183
+
184
+ return for_stream() if stream else await for_non_stream()
185
+
186
+ async def chat(
187
+ self,
188
+ prompt: str,
189
+ stream: bool = False,
190
+ optimizer: str = None,
191
+ conversationally: bool = False,
192
+ ) -> str | AsyncGenerator:
193
+ """Generate response `str` asynchronously.
194
+ Args:
195
+ prompt (str): Prompt to be send.
196
+ stream (bool, optional): Flag for streaming response. Defaults to False.
197
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
198
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
199
+ Returns:
200
+ str|AsyncGenerator: Response generated
201
+ """
202
+
203
+ async def for_stream():
204
+ async_ask = await self.ask(
205
+ prompt, True, optimizer=optimizer, conversationally=conversationally
206
+ )
207
+ async for response in async_ask:
208
+ yield await self.get_message(response)
209
+
210
+ async def for_non_stream():
211
+ return await self.get_message(
212
+ await self.ask(
213
+ prompt,
214
+ False,
215
+ optimizer=optimizer,
216
+ conversationally=conversationally,
217
+ )
218
+ )
219
+
220
+ return for_stream() if stream else await for_non_stream()
221
+
222
+ async def get_message(self, response: dict) -> str:
223
+ """Retrieves message only from response
224
+
225
+ Args:
226
+ response (str): Response generated by `self.ask`
227
+
228
+ Returns:
229
+ str: Message extracted
230
+ """
231
+ assert isinstance(response, dict), "Response should be of dict data-type only"
232
+ return response["text"]
233
+ class LLAMA2(Provider):
234
+ def __init__(
235
+ self,
236
+ is_conversation: bool = True,
237
+ max_tokens: int = 800,
238
+ temperature: float = 0.75,
239
+ presence_penalty: int = 0,
240
+ frequency_penalty: int = 0,
241
+ top_p: float = 0.9,
242
+ model: str = "meta/meta-llama-3-70b-instruct",
243
+ timeout: int = 30,
244
+ intro: str = None,
245
+ filepath: str = None,
246
+ update_file: bool = True,
247
+ proxies: dict = {},
248
+ history_offset: int = 10250,
249
+ act: str = None,
250
+ ):
251
+ """Instantiates LLAMA2
252
+
253
+ Args:
254
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
255
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 800.
256
+ temperature (float, optional): Charge of the generated text's randomness. Defaults to 0.75.
257
+ presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
258
+ frequency_penalty (int, optional): Chances of word being repeated. Defaults to 0.
259
+ top_p (float, optional): Sampling threshold during inference time. Defaults to 0.9.
260
+ model (str, optional): LLM model name. Defaults to "meta/llama-2-70b-chat".
261
+ timeout (int, optional): Http request timeout. Defaults to 30.
262
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
263
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
264
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
265
+ proxies (dict, optional): Http request proxies. Defaults to {}.
266
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
267
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
268
+ """
269
+ self.session = requests.Session()
270
+ self.is_conversation = is_conversation
271
+ self.max_tokens_to_sample = max_tokens
272
+ self.model = model
273
+ self.temperature = temperature
274
+ self.presence_penalty = presence_penalty
275
+ self.frequency_penalty = frequency_penalty
276
+ self.top_p = top_p
277
+ self.chat_endpoint = "https://www.llama2.ai/api"
278
+ self.stream_chunk_size = 64
279
+ self.timeout = timeout
280
+ self.last_response = {}
281
+ self.headers = {
282
+ "Content-Type": "application/json",
283
+ "Referer": "https://www.llama2.ai/",
284
+ "Content-Type": "text/plain;charset=UTF-8",
285
+ "Origin": "https://www.llama2.ai",
286
+ }
287
+
288
+ self.__available_optimizers = (
289
+ method
290
+ for method in dir(Optimizers)
291
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
292
+ )
293
+ self.session.headers.update(self.headers)
294
+ Conversation.intro = (
295
+ AwesomePrompts().get_act(
296
+ act, raise_not_found=True, default=None, case_insensitive=True
297
+ )
298
+ if act
299
+ else intro or Conversation.intro
300
+ )
301
+ self.conversation = Conversation(
302
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
303
+ )
304
+ self.conversation.history_offset = history_offset
305
+ self.session.proxies = proxies
306
+
307
+ def ask(
308
+ self,
309
+ prompt: str,
310
+ stream: bool = False,
311
+ raw: bool = False,
312
+ optimizer: str = None,
313
+ conversationally: bool = False,
314
+ ) -> dict:
315
+ """Chat with AI
316
+
317
+ Args:
318
+ prompt (str): Prompt to be send.
319
+ stream (bool, optional): Flag for streaming response. Defaults to False.
320
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
321
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
322
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
323
+ Returns:
324
+ dict : {}
325
+ ```json
326
+ {
327
+ "text" : "How may I help you today?"
328
+ }
329
+ ```
330
+ """
331
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
332
+ if optimizer:
333
+ if optimizer in self.__available_optimizers:
334
+ conversation_prompt = getattr(Optimizers, optimizer)(
335
+ conversation_prompt if conversationally else prompt
336
+ )
337
+ else:
338
+ raise Exception(
339
+ f"Optimizer is not one of {self.__available_optimizers}"
340
+ )
341
+ self.session.headers.update(self.headers)
342
+
343
+ payload = {
344
+ "prompt": f"{conversation_prompt}<s>[INST] {prompt} [/INST]",
345
+ "model": self.model,
346
+ "systemPrompt": "You are a helpful assistant.",
347
+ "temperature": self.temperature,
348
+ "topP": self.top_p,
349
+ "maxTokens": self.max_tokens_to_sample,
350
+ "image": None,
351
+ "audio": None,
352
+ }
353
+
354
+ def for_stream():
355
+ response = self.session.post(
356
+ self.chat_endpoint, json=payload, stream=True, timeout=self.timeout
357
+ )
358
+ if (
359
+ not response.ok
360
+ or not response.headers.get("Content-Type")
361
+ == "text/plain; charset=utf-8"
362
+ ):
363
+ raise exceptions.FailedToGenerateResponseError(
364
+ f"Failed to generate response - ({response.status_code}, {response.reason})"
365
+ )
366
+
367
+ message_load: str = ""
368
+ for value in response.iter_lines(
369
+ decode_unicode=True,
370
+ delimiter="\n",
371
+ chunk_size=self.stream_chunk_size,
372
+ ):
373
+ try:
374
+ if bool(value.strip()):
375
+ message_load += value + "\n"
376
+ resp: dict = dict(text=message_load)
377
+ yield value if raw else resp
378
+ self.last_response.update(resp)
379
+ except json.decoder.JSONDecodeError:
380
+ pass
381
+ self.conversation.update_chat_history(
382
+ prompt, self.get_message(self.last_response)
383
+ )
384
+
385
+ def for_non_stream():
386
+ for _ in for_stream():
387
+ pass
388
+ return self.last_response
389
+
390
+ return for_stream() if stream else for_non_stream()
391
+
392
+ def chat(
393
+ self,
394
+ prompt: str,
395
+ stream: bool = False,
396
+ optimizer: str = None,
397
+ conversationally: bool = False,
398
+ ) -> str:
399
+ """Generate response `str`
400
+ Args:
401
+ prompt (str): Prompt to be send.
402
+ stream (bool, optional): Flag for streaming response. Defaults to False.
403
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
404
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
405
+ Returns:
406
+ str: Response generated
407
+ """
408
+
409
+ def for_stream():
410
+ for response in self.ask(
411
+ prompt, True, optimizer=optimizer, conversationally=conversationally
412
+ ):
413
+ yield self.get_message(response)
414
+
415
+ def for_non_stream():
416
+ return self.get_message(
417
+ self.ask(
418
+ prompt,
419
+ False,
420
+ optimizer=optimizer,
421
+ conversationally=conversationally,
422
+ )
423
+ )
424
+
425
+ return for_stream() if stream else for_non_stream()
426
+
427
+ def get_message(self, response: dict) -> str:
428
+ """Retrieves message only from response
429
+
430
+ Args:
431
+ response (str): Response generated by `self.ask`
432
+
433
+ Returns:
434
+ str: Message extracted
435
+ """
436
+ assert isinstance(response, dict), "Response should be of dict data-type only"
437
+ return response["text"]