wbfdm 2.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of wbfdm might be problematic. Click here for more details.
- wbfdm/__init__.py +2 -0
- wbfdm/admin/__init__.py +42 -0
- wbfdm/admin/classifications.py +39 -0
- wbfdm/admin/esg.py +23 -0
- wbfdm/admin/exchanges.py +53 -0
- wbfdm/admin/instrument_lists.py +23 -0
- wbfdm/admin/instrument_prices.py +62 -0
- wbfdm/admin/instrument_requests.py +33 -0
- wbfdm/admin/instruments.py +117 -0
- wbfdm/admin/instruments_relationships.py +25 -0
- wbfdm/admin/options.py +101 -0
- wbfdm/analysis/__init__.py +2 -0
- wbfdm/analysis/esg/__init__.py +0 -0
- wbfdm/analysis/esg/enums.py +82 -0
- wbfdm/analysis/esg/esg_analysis.py +217 -0
- wbfdm/analysis/esg/utils.py +13 -0
- wbfdm/analysis/financial_analysis/__init__.py +1 -0
- wbfdm/analysis/financial_analysis/financial_metric_analysis.py +88 -0
- wbfdm/analysis/financial_analysis/financial_ratio_analysis.py +125 -0
- wbfdm/analysis/financial_analysis/financial_statistics_analysis.py +271 -0
- wbfdm/analysis/financial_analysis/statement_with_estimates.py +558 -0
- wbfdm/analysis/financial_analysis/utils.py +316 -0
- wbfdm/analysis/technical_analysis/__init__.py +1 -0
- wbfdm/analysis/technical_analysis/technical_analysis.py +138 -0
- wbfdm/analysis/technical_analysis/traces.py +165 -0
- wbfdm/analysis/utils.py +32 -0
- wbfdm/apps.py +14 -0
- wbfdm/contrib/__init__.py +0 -0
- wbfdm/contrib/dsws/__init__.py +0 -0
- wbfdm/contrib/dsws/client.py +285 -0
- wbfdm/contrib/internal/__init__.py +0 -0
- wbfdm/contrib/internal/dataloaders/__init__.py +0 -0
- wbfdm/contrib/internal/dataloaders/market_data.py +87 -0
- wbfdm/contrib/metric/__init__.py +0 -0
- wbfdm/contrib/metric/admin/__init__.py +2 -0
- wbfdm/contrib/metric/admin/instruments.py +12 -0
- wbfdm/contrib/metric/admin/metrics.py +43 -0
- wbfdm/contrib/metric/apps.py +10 -0
- wbfdm/contrib/metric/backends/__init__.py +2 -0
- wbfdm/contrib/metric/backends/base.py +159 -0
- wbfdm/contrib/metric/backends/performances.py +265 -0
- wbfdm/contrib/metric/backends/statistics.py +182 -0
- wbfdm/contrib/metric/decorators.py +14 -0
- wbfdm/contrib/metric/dispatch.py +23 -0
- wbfdm/contrib/metric/dto.py +88 -0
- wbfdm/contrib/metric/exceptions.py +6 -0
- wbfdm/contrib/metric/factories.py +33 -0
- wbfdm/contrib/metric/filters.py +28 -0
- wbfdm/contrib/metric/migrations/0001_initial.py +88 -0
- wbfdm/contrib/metric/migrations/0002_remove_instrumentmetric_unique_instrument_metric_and_more.py +26 -0
- wbfdm/contrib/metric/migrations/__init__.py +0 -0
- wbfdm/contrib/metric/models.py +180 -0
- wbfdm/contrib/metric/orchestrators.py +94 -0
- wbfdm/contrib/metric/registry.py +80 -0
- wbfdm/contrib/metric/serializers.py +44 -0
- wbfdm/contrib/metric/tasks.py +27 -0
- wbfdm/contrib/metric/tests/__init__.py +0 -0
- wbfdm/contrib/metric/tests/backends/__init__.py +0 -0
- wbfdm/contrib/metric/tests/backends/test_performances.py +152 -0
- wbfdm/contrib/metric/tests/backends/test_statistics.py +48 -0
- wbfdm/contrib/metric/tests/conftest.py +92 -0
- wbfdm/contrib/metric/tests/test_dto.py +73 -0
- wbfdm/contrib/metric/tests/test_models.py +72 -0
- wbfdm/contrib/metric/tests/test_tasks.py +24 -0
- wbfdm/contrib/metric/tests/test_viewsets.py +79 -0
- wbfdm/contrib/metric/urls.py +19 -0
- wbfdm/contrib/metric/viewsets/__init__.py +1 -0
- wbfdm/contrib/metric/viewsets/configs/__init__.py +1 -0
- wbfdm/contrib/metric/viewsets/configs/display.py +92 -0
- wbfdm/contrib/metric/viewsets/configs/menus.py +11 -0
- wbfdm/contrib/metric/viewsets/configs/utils.py +137 -0
- wbfdm/contrib/metric/viewsets/mixins.py +245 -0
- wbfdm/contrib/metric/viewsets/viewsets.py +40 -0
- wbfdm/contrib/msci/__init__.py +0 -0
- wbfdm/contrib/msci/client.py +92 -0
- wbfdm/contrib/msci/dataloaders/__init__.py +0 -0
- wbfdm/contrib/msci/dataloaders/esg.py +87 -0
- wbfdm/contrib/msci/dataloaders/esg_controversies.py +81 -0
- wbfdm/contrib/msci/sync.py +58 -0
- wbfdm/contrib/msci/tests/__init__.py +0 -0
- wbfdm/contrib/msci/tests/conftest.py +1 -0
- wbfdm/contrib/msci/tests/test_client.py +70 -0
- wbfdm/contrib/qa/__init__.py +0 -0
- wbfdm/contrib/qa/apps.py +22 -0
- wbfdm/contrib/qa/database_routers.py +25 -0
- wbfdm/contrib/qa/dataloaders/__init__.py +0 -0
- wbfdm/contrib/qa/dataloaders/adjustments.py +56 -0
- wbfdm/contrib/qa/dataloaders/corporate_actions.py +59 -0
- wbfdm/contrib/qa/dataloaders/financials.py +83 -0
- wbfdm/contrib/qa/dataloaders/market_data.py +117 -0
- wbfdm/contrib/qa/dataloaders/officers.py +59 -0
- wbfdm/contrib/qa/dataloaders/reporting_dates.py +67 -0
- wbfdm/contrib/qa/dataloaders/statements.py +267 -0
- wbfdm/contrib/qa/tasks.py +0 -0
- wbfdm/dataloaders/__init__.py +0 -0
- wbfdm/dataloaders/cache.py +129 -0
- wbfdm/dataloaders/protocols.py +112 -0
- wbfdm/dataloaders/proxies.py +201 -0
- wbfdm/dataloaders/types.py +209 -0
- wbfdm/dynamic_preferences_registry.py +45 -0
- wbfdm/enums.py +657 -0
- wbfdm/factories/__init__.py +13 -0
- wbfdm/factories/classifications.py +56 -0
- wbfdm/factories/controversies.py +27 -0
- wbfdm/factories/exchanges.py +21 -0
- wbfdm/factories/instrument_list.py +22 -0
- wbfdm/factories/instrument_prices.py +79 -0
- wbfdm/factories/instruments.py +63 -0
- wbfdm/factories/instruments_relationships.py +31 -0
- wbfdm/factories/options.py +66 -0
- wbfdm/figures/__init__.py +1 -0
- wbfdm/figures/financials/__init__.py +1 -0
- wbfdm/figures/financials/financial_analysis_charts.py +469 -0
- wbfdm/figures/financials/financials_charts.py +711 -0
- wbfdm/filters/__init__.py +31 -0
- wbfdm/filters/classifications.py +100 -0
- wbfdm/filters/exchanges.py +22 -0
- wbfdm/filters/financials.py +95 -0
- wbfdm/filters/financials_analysis.py +119 -0
- wbfdm/filters/instrument_prices.py +112 -0
- wbfdm/filters/instruments.py +198 -0
- wbfdm/filters/utils.py +44 -0
- wbfdm/import_export/__init__.py +0 -0
- wbfdm/import_export/backends/__init__.py +0 -0
- wbfdm/import_export/backends/cbinsights/__init__.py +2 -0
- wbfdm/import_export/backends/cbinsights/deals.py +44 -0
- wbfdm/import_export/backends/cbinsights/equities.py +41 -0
- wbfdm/import_export/backends/cbinsights/mixin.py +15 -0
- wbfdm/import_export/backends/cbinsights/utils/__init__.py +0 -0
- wbfdm/import_export/backends/cbinsights/utils/classifications.py +4150 -0
- wbfdm/import_export/backends/cbinsights/utils/client.py +217 -0
- wbfdm/import_export/backends/refinitiv/__init__.py +5 -0
- wbfdm/import_export/backends/refinitiv/daily_fundamental.py +36 -0
- wbfdm/import_export/backends/refinitiv/fiscal_period.py +63 -0
- wbfdm/import_export/backends/refinitiv/forecast.py +178 -0
- wbfdm/import_export/backends/refinitiv/fundamental.py +103 -0
- wbfdm/import_export/backends/refinitiv/geographic_segment.py +32 -0
- wbfdm/import_export/backends/refinitiv/instrument.py +55 -0
- wbfdm/import_export/backends/refinitiv/instrument_price.py +77 -0
- wbfdm/import_export/backends/refinitiv/mixin.py +29 -0
- wbfdm/import_export/backends/refinitiv/utils/__init__.py +1 -0
- wbfdm/import_export/backends/refinitiv/utils/controller.py +182 -0
- wbfdm/import_export/handlers/__init__.py +0 -0
- wbfdm/import_export/handlers/instrument.py +253 -0
- wbfdm/import_export/handlers/instrument_list.py +101 -0
- wbfdm/import_export/handlers/instrument_price.py +71 -0
- wbfdm/import_export/handlers/option.py +54 -0
- wbfdm/import_export/handlers/private_equities.py +49 -0
- wbfdm/import_export/parsers/__init__.py +0 -0
- wbfdm/import_export/parsers/cbinsights/__init__.py +0 -0
- wbfdm/import_export/parsers/cbinsights/deals.py +39 -0
- wbfdm/import_export/parsers/cbinsights/equities.py +56 -0
- wbfdm/import_export/parsers/cbinsights/fundamentals.py +45 -0
- wbfdm/import_export/parsers/refinitiv/__init__.py +0 -0
- wbfdm/import_export/parsers/refinitiv/daily_fundamental.py +7 -0
- wbfdm/import_export/parsers/refinitiv/forecast.py +7 -0
- wbfdm/import_export/parsers/refinitiv/fundamental.py +9 -0
- wbfdm/import_export/parsers/refinitiv/geographic_segment.py +7 -0
- wbfdm/import_export/parsers/refinitiv/instrument.py +75 -0
- wbfdm/import_export/parsers/refinitiv/instrument_price.py +26 -0
- wbfdm/import_export/parsers/refinitiv/utils.py +96 -0
- wbfdm/import_export/resources/__init__.py +0 -0
- wbfdm/import_export/resources/classification.py +23 -0
- wbfdm/import_export/resources/instrument_prices.py +33 -0
- wbfdm/import_export/resources/instruments.py +176 -0
- wbfdm/jinja2.py +7 -0
- wbfdm/management/__init__.py +30 -0
- wbfdm/menu.py +11 -0
- wbfdm/migrations/0001_initial.py +71 -0
- wbfdm/migrations/0002_rename_statements_instrumentlookup_financials_and_more.py +144 -0
- wbfdm/migrations/0003_instrument_estimate_backend_and_more.py +34 -0
- wbfdm/migrations/0004_rename_financials_instrumentlookup_statements_and_more.py +86 -0
- wbfdm/migrations/0005_instrument_corporate_action_backend.py +29 -0
- wbfdm/migrations/0006_instrument_officer_backend.py +29 -0
- wbfdm/migrations/0007_instrument_country_instrument_currency_and_more.py +117 -0
- wbfdm/migrations/0008_controversy.py +75 -0
- wbfdm/migrations/0009_alter_controversy_flag_alter_controversy_initiated_and_more.py +85 -0
- wbfdm/migrations/0010_classification_classificationgroup_deal_exchange_and_more.py +1299 -0
- wbfdm/migrations/0011_delete_instrumentlookup_instrument_corporate_actions_and_more.py +169 -0
- wbfdm/migrations/0012_instrumentprice_created_instrumentprice_modified.py +564 -0
- wbfdm/migrations/0013_instrument_is_investable_universe_and_more.py +199 -0
- wbfdm/migrations/0014_alter_controversy_instrument.py +22 -0
- wbfdm/migrations/0015_instrument_instrument_investible_index.py +16 -0
- wbfdm/migrations/0016_instrumenttype_name_repr.py +18 -0
- wbfdm/migrations/0017_instrument_instrument_security_index.py +16 -0
- wbfdm/migrations/0018_instrument_instrument_level_index.py +20 -0
- wbfdm/migrations/0019_alter_controversy_source.py +17 -0
- wbfdm/migrations/0020_optionaggregate_option_and_more.py +249 -0
- wbfdm/migrations/0021_delete_instrumentdailystatistics.py +15 -0
- wbfdm/migrations/0022_instrument_cusip_option_open_interest_20d_and_more.py +91 -0
- wbfdm/migrations/0023_instrument_unique_ric_instrument_unique_rmc_and_more.py +53 -0
- wbfdm/migrations/0024_option_open_interest_10d_option_volume_10d_and_more.py +36 -0
- wbfdm/migrations/0025_instrument_is_primary_and_more.py +29 -0
- wbfdm/migrations/0026_instrument_is_cash_equivalent.py +30 -0
- wbfdm/migrations/0027_remove_instrument_unique_ric_and_more.py +100 -0
- wbfdm/migrations/__init__.py +0 -0
- wbfdm/models/__init__.py +4 -0
- wbfdm/models/esg/__init__.py +1 -0
- wbfdm/models/esg/controversies.py +81 -0
- wbfdm/models/exchanges/__init__.py +1 -0
- wbfdm/models/exchanges/exchanges.py +223 -0
- wbfdm/models/fields.py +117 -0
- wbfdm/models/fk_fields.py +403 -0
- wbfdm/models/indicators.py +0 -0
- wbfdm/models/instruments/__init__.py +19 -0
- wbfdm/models/instruments/classifications.py +265 -0
- wbfdm/models/instruments/instrument_lists.py +120 -0
- wbfdm/models/instruments/instrument_prices.py +540 -0
- wbfdm/models/instruments/instrument_relationships.py +251 -0
- wbfdm/models/instruments/instrument_requests.py +196 -0
- wbfdm/models/instruments/instruments.py +991 -0
- wbfdm/models/instruments/llm/__init__.py +1 -0
- wbfdm/models/instruments/llm/create_instrument_news_relationships.py +78 -0
- wbfdm/models/instruments/mixin/__init__.py +0 -0
- wbfdm/models/instruments/mixin/financials_computed.py +804 -0
- wbfdm/models/instruments/mixin/financials_serializer_fields.py +1407 -0
- wbfdm/models/instruments/mixin/instruments.py +294 -0
- wbfdm/models/instruments/options.py +225 -0
- wbfdm/models/instruments/private_equities.py +59 -0
- wbfdm/models/instruments/querysets.py +73 -0
- wbfdm/models/instruments/utils.py +41 -0
- wbfdm/preferences.py +21 -0
- wbfdm/serializers/__init__.py +4 -0
- wbfdm/serializers/esg.py +36 -0
- wbfdm/serializers/exchanges.py +39 -0
- wbfdm/serializers/instruments/__init__.py +37 -0
- wbfdm/serializers/instruments/classifications.py +139 -0
- wbfdm/serializers/instruments/instrument_lists.py +61 -0
- wbfdm/serializers/instruments/instrument_prices.py +73 -0
- wbfdm/serializers/instruments/instrument_relationships.py +170 -0
- wbfdm/serializers/instruments/instrument_requests.py +61 -0
- wbfdm/serializers/instruments/instruments.py +274 -0
- wbfdm/serializers/instruments/mixins.py +104 -0
- wbfdm/serializers/officers.py +20 -0
- wbfdm/signals.py +7 -0
- wbfdm/sync/__init__.py +0 -0
- wbfdm/sync/abstract.py +31 -0
- wbfdm/sync/runner.py +22 -0
- wbfdm/tasks.py +69 -0
- wbfdm/tests/__init__.py +0 -0
- wbfdm/tests/analysis/__init__.py +0 -0
- wbfdm/tests/analysis/financial_analysis/__init__.py +0 -0
- wbfdm/tests/analysis/financial_analysis/test_statement_with_estimates.py +392 -0
- wbfdm/tests/analysis/financial_analysis/test_utils.py +322 -0
- wbfdm/tests/analysis/test_esg.py +159 -0
- wbfdm/tests/conftest.py +92 -0
- wbfdm/tests/dataloaders/__init__.py +0 -0
- wbfdm/tests/dataloaders/test_cache.py +73 -0
- wbfdm/tests/models/__init__.py +0 -0
- wbfdm/tests/models/test_classifications.py +99 -0
- wbfdm/tests/models/test_exchanges.py +7 -0
- wbfdm/tests/models/test_instrument_list.py +117 -0
- wbfdm/tests/models/test_instrument_prices.py +306 -0
- wbfdm/tests/models/test_instruments.py +202 -0
- wbfdm/tests/models/test_merge.py +99 -0
- wbfdm/tests/models/test_options.py +69 -0
- wbfdm/tests/test_tasks.py +6 -0
- wbfdm/tests/tests.py +10 -0
- wbfdm/urls.py +222 -0
- wbfdm/utils.py +54 -0
- wbfdm/viewsets/__init__.py +10 -0
- wbfdm/viewsets/configs/__init__.py +5 -0
- wbfdm/viewsets/configs/buttons/__init__.py +8 -0
- wbfdm/viewsets/configs/buttons/classifications.py +23 -0
- wbfdm/viewsets/configs/buttons/exchanges.py +9 -0
- wbfdm/viewsets/configs/buttons/instrument_prices.py +49 -0
- wbfdm/viewsets/configs/buttons/instruments.py +283 -0
- wbfdm/viewsets/configs/display/__init__.py +22 -0
- wbfdm/viewsets/configs/display/classifications.py +138 -0
- wbfdm/viewsets/configs/display/esg.py +75 -0
- wbfdm/viewsets/configs/display/exchanges.py +42 -0
- wbfdm/viewsets/configs/display/instrument_lists.py +137 -0
- wbfdm/viewsets/configs/display/instrument_prices.py +199 -0
- wbfdm/viewsets/configs/display/instrument_requests.py +116 -0
- wbfdm/viewsets/configs/display/instruments.py +618 -0
- wbfdm/viewsets/configs/display/instruments_relationships.py +65 -0
- wbfdm/viewsets/configs/display/monthly_performances.py +72 -0
- wbfdm/viewsets/configs/display/officers.py +16 -0
- wbfdm/viewsets/configs/display/prices.py +21 -0
- wbfdm/viewsets/configs/display/statement_with_estimates.py +101 -0
- wbfdm/viewsets/configs/display/statements.py +48 -0
- wbfdm/viewsets/configs/endpoints/__init__.py +41 -0
- wbfdm/viewsets/configs/endpoints/classifications.py +87 -0
- wbfdm/viewsets/configs/endpoints/esg.py +20 -0
- wbfdm/viewsets/configs/endpoints/exchanges.py +6 -0
- wbfdm/viewsets/configs/endpoints/financials_analysis.py +65 -0
- wbfdm/viewsets/configs/endpoints/instrument_lists.py +38 -0
- wbfdm/viewsets/configs/endpoints/instrument_prices.py +51 -0
- wbfdm/viewsets/configs/endpoints/instrument_requests.py +20 -0
- wbfdm/viewsets/configs/endpoints/instruments.py +13 -0
- wbfdm/viewsets/configs/endpoints/instruments_relationships.py +31 -0
- wbfdm/viewsets/configs/endpoints/statements.py +6 -0
- wbfdm/viewsets/configs/menus/__init__.py +9 -0
- wbfdm/viewsets/configs/menus/classifications.py +19 -0
- wbfdm/viewsets/configs/menus/exchanges.py +10 -0
- wbfdm/viewsets/configs/menus/instrument_lists.py +10 -0
- wbfdm/viewsets/configs/menus/instruments.py +20 -0
- wbfdm/viewsets/configs/menus/instruments_relationships.py +33 -0
- wbfdm/viewsets/configs/titles/__init__.py +42 -0
- wbfdm/viewsets/configs/titles/classifications.py +79 -0
- wbfdm/viewsets/configs/titles/esg.py +11 -0
- wbfdm/viewsets/configs/titles/exchanges.py +12 -0
- wbfdm/viewsets/configs/titles/financial_ratio_analysis.py +6 -0
- wbfdm/viewsets/configs/titles/financials_analysis.py +50 -0
- wbfdm/viewsets/configs/titles/instrument_prices.py +50 -0
- wbfdm/viewsets/configs/titles/instrument_requests.py +16 -0
- wbfdm/viewsets/configs/titles/instruments.py +31 -0
- wbfdm/viewsets/configs/titles/instruments_relationships.py +21 -0
- wbfdm/viewsets/configs/titles/market_data.py +13 -0
- wbfdm/viewsets/configs/titles/prices.py +15 -0
- wbfdm/viewsets/configs/titles/statement_with_estimates.py +10 -0
- wbfdm/viewsets/esg.py +72 -0
- wbfdm/viewsets/exchanges.py +63 -0
- wbfdm/viewsets/financial_analysis/__init__.py +3 -0
- wbfdm/viewsets/financial_analysis/financial_metric_analysis.py +85 -0
- wbfdm/viewsets/financial_analysis/financial_ratio_analysis.py +85 -0
- wbfdm/viewsets/financial_analysis/statement_with_estimates.py +145 -0
- wbfdm/viewsets/instruments/__init__.py +80 -0
- wbfdm/viewsets/instruments/classifications.py +279 -0
- wbfdm/viewsets/instruments/financials_analysis.py +614 -0
- wbfdm/viewsets/instruments/instrument_lists.py +77 -0
- wbfdm/viewsets/instruments/instrument_prices.py +542 -0
- wbfdm/viewsets/instruments/instrument_requests.py +51 -0
- wbfdm/viewsets/instruments/instruments.py +106 -0
- wbfdm/viewsets/instruments/instruments_relationships.py +235 -0
- wbfdm/viewsets/instruments/utils.py +27 -0
- wbfdm/viewsets/market_data.py +172 -0
- wbfdm/viewsets/mixins.py +9 -0
- wbfdm/viewsets/officers.py +27 -0
- wbfdm/viewsets/prices.py +62 -0
- wbfdm/viewsets/statements/__init__.py +1 -0
- wbfdm/viewsets/statements/statements.py +100 -0
- wbfdm/viewsets/technical_analysis/__init__.py +1 -0
- wbfdm/viewsets/technical_analysis/monthly_performances.py +93 -0
- wbfdm-2.2.1.dist-info/METADATA +15 -0
- wbfdm-2.2.1.dist-info/RECORD +337 -0
- wbfdm-2.2.1.dist-info/WHEEL +5 -0
|
@@ -0,0 +1,217 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from datetime import date
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import pandas as pd
|
|
6
|
+
from django.utils.functional import cached_property
|
|
7
|
+
from wbcore.contrib.currency.models import Currency, CurrencyFXRates
|
|
8
|
+
from wbfdm.enums import ESG
|
|
9
|
+
from wbfdm.models import Instrument
|
|
10
|
+
|
|
11
|
+
from .enums import AggregationMethod, ESGAggregation
|
|
12
|
+
from .utils import get_esg_df
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@dataclass
|
|
16
|
+
class Log:
|
|
17
|
+
series: pd.Series
|
|
18
|
+
label: str
|
|
19
|
+
is_percent: bool = False
|
|
20
|
+
precision: int = 4
|
|
21
|
+
group: str | None = None
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class DataLoader:
|
|
25
|
+
def __init__(
|
|
26
|
+
self, weights: pd.Series, esg_data: pd.Series, val_date: date, total_value_fx_usd: pd.Series | None = None
|
|
27
|
+
):
|
|
28
|
+
self.weights = weights
|
|
29
|
+
self.val_date = val_date
|
|
30
|
+
try:
|
|
31
|
+
self.fx_rate_usd_to_eur = float(
|
|
32
|
+
CurrencyFXRates.objects.get(currency=Currency.objects.get(key="EUR"), date=val_date).value
|
|
33
|
+
)
|
|
34
|
+
except (CurrencyFXRates.DoesNotExist, Currency.DoesNotExist):
|
|
35
|
+
self.fx_rate_usd_to_eur = 1.0
|
|
36
|
+
self.total_value_fx_usd = total_value_fx_usd
|
|
37
|
+
self.instruments = Instrument.objects.filter(id__in=self.weights.index)
|
|
38
|
+
self.empty_series = pd.Series(1.0, index=weights.index, dtype="float64")
|
|
39
|
+
self.esg_data = esg_data
|
|
40
|
+
self.weights_in_coverage = (
|
|
41
|
+
self.weights.loc[~esg_data.reindex(self.weights.index, fill_value=None).isnull()]
|
|
42
|
+
).rename("weights_in_coverage")
|
|
43
|
+
self.intermediary_logs: list[Log] = []
|
|
44
|
+
self.extra_esg_data_logs: list[Log] = []
|
|
45
|
+
|
|
46
|
+
@cached_property
|
|
47
|
+
def enterprise_value_included_cash(self) -> pd.Series:
|
|
48
|
+
data = get_esg_df(self.instruments, ESG.EVIC_EUR) * 1000000
|
|
49
|
+
self.extra_esg_data_logs.append(Log(series=data.rename("enterprise_value_included_cash"), label="EVIC (EUR)"))
|
|
50
|
+
return data
|
|
51
|
+
|
|
52
|
+
@cached_property
|
|
53
|
+
def current_value_investment_factor(self) -> pd.Series:
|
|
54
|
+
data = get_esg_df(self.instruments, ESG.CVI_FACTOR)
|
|
55
|
+
data = data.reindex(self.weights.index, fill_value=1.0)
|
|
56
|
+
self.extra_esg_data_logs.append(Log(series=data.rename("current_value_investment_factor"), label="CVI Factor"))
|
|
57
|
+
return data
|
|
58
|
+
|
|
59
|
+
@cached_property
|
|
60
|
+
def nace_section_code(self) -> pd.Series:
|
|
61
|
+
data = get_esg_df(self.instruments, ESG.NACE_SECTION_CODE)
|
|
62
|
+
self.extra_esg_data_logs.append(Log(series=data.rename("nace_section_code"), label="NACE_SECTION_CODE"))
|
|
63
|
+
return data
|
|
64
|
+
|
|
65
|
+
def _get_percentage_sum(self, mask_value: str) -> pd.Series:
|
|
66
|
+
df = self.weights_in_coverage.copy()
|
|
67
|
+
df.loc[self.esg_data != mask_value] = 0.0
|
|
68
|
+
return df.dropna()
|
|
69
|
+
|
|
70
|
+
def _get_weighted_avg_normalized(self) -> pd.Series:
|
|
71
|
+
weights_normalized = self.weights_in_coverage / self.weights_in_coverage.sum()
|
|
72
|
+
self.intermediary_logs.append(
|
|
73
|
+
Log(
|
|
74
|
+
series=weights_normalized.rename("weights_normalized"),
|
|
75
|
+
label="Rebased Weights",
|
|
76
|
+
is_percent=True,
|
|
77
|
+
precision=2,
|
|
78
|
+
)
|
|
79
|
+
)
|
|
80
|
+
return (weights_normalized * self.esg_data).dropna()
|
|
81
|
+
|
|
82
|
+
def _get_weighted_avg_normalized_per_category(self) -> pd.Series:
|
|
83
|
+
df = pd.concat([self.weights, self.nace_section_code], keys=["weighting", "nace_section_code"], axis=1)
|
|
84
|
+
sector_codes = ["C", "D", "F", "G", "J", "K", "M", "N", "Q", "S"]
|
|
85
|
+
res = pd.Series(np.nan, index=df.index)
|
|
86
|
+
rebased_weights_logs_per_sector = []
|
|
87
|
+
weighted_average_logs_per_sector = []
|
|
88
|
+
for sector_code in sector_codes:
|
|
89
|
+
try:
|
|
90
|
+
dff = df[df["nace_section_code"] == sector_code]
|
|
91
|
+
weights_normalized_per_sector = dff["weighting"] / dff["weighting"].sum()
|
|
92
|
+
except (TypeError, KeyError):
|
|
93
|
+
weights_normalized_per_sector = pd.Series(np.nan, index=self.weights.index)
|
|
94
|
+
|
|
95
|
+
rebased_weights_logs_per_sector.append(
|
|
96
|
+
Log(
|
|
97
|
+
series=weights_normalized_per_sector.rename(f"weights_normalized_sector_{sector_code.lower()}"),
|
|
98
|
+
label=sector_code,
|
|
99
|
+
group="Weight rebased per NACE sector",
|
|
100
|
+
is_percent=True,
|
|
101
|
+
precision=2,
|
|
102
|
+
)
|
|
103
|
+
)
|
|
104
|
+
weighted_average_per_sector = weights_normalized_per_sector * self.esg_data
|
|
105
|
+
weighted_average_logs_per_sector.append(
|
|
106
|
+
Log(
|
|
107
|
+
series=weighted_average_per_sector.rename(f"weighted_average_sector_{sector_code.lower()}"),
|
|
108
|
+
label=sector_code,
|
|
109
|
+
group="Weight Average per NACE sector",
|
|
110
|
+
precision=4,
|
|
111
|
+
)
|
|
112
|
+
)
|
|
113
|
+
|
|
114
|
+
res[weighted_average_per_sector.dropna().index] = weighted_average_per_sector.dropna()
|
|
115
|
+
self.intermediary_logs.extend(rebased_weights_logs_per_sector)
|
|
116
|
+
self.intermediary_logs.extend(weighted_average_logs_per_sector)
|
|
117
|
+
return res.dropna()
|
|
118
|
+
|
|
119
|
+
def _get_investor_allocation(self, exposure: pd.Series) -> pd.Series:
|
|
120
|
+
exposure_eur = exposure * self.fx_rate_usd_to_eur
|
|
121
|
+
self.intermediary_logs.append(Log(series=exposure.rename("exposure"), label="Exposure"))
|
|
122
|
+
self.intermediary_logs.append(Log(series=exposure_eur.rename("exposure_eur"), label="Exposure (EUR)"))
|
|
123
|
+
|
|
124
|
+
evic_eur = self.enterprise_value_included_cash
|
|
125
|
+
cvi_factor = self.current_value_investment_factor
|
|
126
|
+
|
|
127
|
+
exposure_with_cvi = exposure_eur * cvi_factor
|
|
128
|
+
self.intermediary_logs.append(
|
|
129
|
+
Log(series=exposure_with_cvi.rename("exposure_with_cvi"), label="Exposure With CVI")
|
|
130
|
+
)
|
|
131
|
+
try:
|
|
132
|
+
rebase_factor = exposure_with_cvi.loc[self.weights_in_coverage.index].sum() / exposure_with_cvi.sum()
|
|
133
|
+
exposure_with_cvi_normalized = exposure_with_cvi.loc[self.weights_in_coverage.index] / rebase_factor
|
|
134
|
+
except ZeroDivisionError:
|
|
135
|
+
exposure_with_cvi_normalized = exposure_with_cvi
|
|
136
|
+
|
|
137
|
+
self.intermediary_logs.append(
|
|
138
|
+
Log(
|
|
139
|
+
series=exposure_with_cvi_normalized.rename("exposure_with_cvi_normalized"),
|
|
140
|
+
label="Exposure With CVI (Normalized)",
|
|
141
|
+
)
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
attribution_factor = exposure_with_cvi_normalized / evic_eur
|
|
145
|
+
self.intermediary_logs.append(
|
|
146
|
+
Log(series=attribution_factor.rename("attribution_factor"), label="Attribution Factor", is_percent=True)
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
return (self.esg_data * attribution_factor).dropna()
|
|
150
|
+
|
|
151
|
+
def _get_investor_allocation_per_million(self, exposure: pd.Series) -> pd.Series:
|
|
152
|
+
self.intermediary_logs.append(Log(series=exposure.rename("exposure"), label="Exposure"))
|
|
153
|
+
|
|
154
|
+
evic_eur = self.enterprise_value_included_cash
|
|
155
|
+
cvi_factor = self.current_value_investment_factor
|
|
156
|
+
|
|
157
|
+
exposure_with_cvi = exposure * cvi_factor
|
|
158
|
+
self.intermediary_logs.append(
|
|
159
|
+
Log(series=exposure_with_cvi.rename("exposure_with_cvi"), label="Exposure With CVI")
|
|
160
|
+
)
|
|
161
|
+
try:
|
|
162
|
+
rebase_factor = exposure_with_cvi.loc[self.weights_in_coverage.index].sum() / exposure_with_cvi.sum()
|
|
163
|
+
exposure_with_cvi_normalized = exposure_with_cvi.loc[self.weights_in_coverage.index] / rebase_factor
|
|
164
|
+
except ZeroDivisionError:
|
|
165
|
+
exposure_with_cvi_normalized = exposure_with_cvi
|
|
166
|
+
|
|
167
|
+
self.intermediary_logs.append(
|
|
168
|
+
Log(
|
|
169
|
+
series=exposure_with_cvi_normalized.rename("exposure_with_cvi_normalized"),
|
|
170
|
+
label="Exposure With CVI (Normalized)",
|
|
171
|
+
)
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
weights_normalized = exposure_with_cvi_normalized / exposure_with_cvi_normalized.sum()
|
|
175
|
+
self.intermediary_logs.append(
|
|
176
|
+
Log(
|
|
177
|
+
series=weights_normalized.rename("weights_normalized"),
|
|
178
|
+
label="Weight based on CVI",
|
|
179
|
+
is_percent=True,
|
|
180
|
+
precision=2,
|
|
181
|
+
)
|
|
182
|
+
)
|
|
183
|
+
cvi_based_exposure_per_million = weights_normalized * 1e6
|
|
184
|
+
self.intermediary_logs.append(
|
|
185
|
+
Log(
|
|
186
|
+
series=cvi_based_exposure_per_million.rename("cvi_based_exposure_per_million"),
|
|
187
|
+
label="CVI-based exposure for EUR 1mn",
|
|
188
|
+
)
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
attribution_factor = cvi_based_exposure_per_million / evic_eur
|
|
192
|
+
self.intermediary_logs.append(
|
|
193
|
+
Log(series=attribution_factor.rename("attribution_factor"), label="Attribution Factor", is_percent=True)
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
return (self.esg_data * attribution_factor).dropna()
|
|
197
|
+
|
|
198
|
+
def compute(self, esg_aggregation: ESGAggregation):
|
|
199
|
+
aggregation_method = esg_aggregation.get_aggregation()
|
|
200
|
+
if aggregation_method == AggregationMethod.PERCENTAGE_SUM:
|
|
201
|
+
# we need to apply a mask
|
|
202
|
+
if esg_aggregation in [ESGAggregation.LACK_OF_PROCESS_AND_COMPLIANCE_OF_UN_PRINCIPLES]:
|
|
203
|
+
mask = "No Evidence"
|
|
204
|
+
else:
|
|
205
|
+
mask = "Yes"
|
|
206
|
+
|
|
207
|
+
return self._get_percentage_sum(mask)
|
|
208
|
+
if aggregation_method == AggregationMethod.WEIGHTED_AVG_NORMALIZED:
|
|
209
|
+
return self._get_weighted_avg_normalized()
|
|
210
|
+
if aggregation_method == AggregationMethod.WEIGHTED_AVG_CATEGORY_NORMALIZED:
|
|
211
|
+
return self._get_weighted_avg_normalized_per_category()
|
|
212
|
+
if aggregation_method == AggregationMethod.INVESTOR_ALLOCATION:
|
|
213
|
+
return self._get_investor_allocation(self.total_value_fx_usd)
|
|
214
|
+
if aggregation_method == AggregationMethod.INVESTOR_ALLOCATION_PER_MILLION:
|
|
215
|
+
return self._get_investor_allocation_per_million(self.weights * 1000000)
|
|
216
|
+
else:
|
|
217
|
+
raise ValueError("Aggregation Method not supported")
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from wbfdm.enums import ESG
|
|
3
|
+
from wbfdm.models.instruments.instruments import InstrumentQuerySet
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def get_esg_df(instruments: InstrumentQuerySet, esg: ESG, **kwargs) -> pd.Series:
|
|
7
|
+
df = pd.DataFrame(instruments.dl.esg(values=[esg]))
|
|
8
|
+
if not df.empty:
|
|
9
|
+
return df.pivot_table(
|
|
10
|
+
index="instrument_id", values="value", columns="factor_code", aggfunc="first", dropna=False
|
|
11
|
+
)[esg.value]
|
|
12
|
+
else:
|
|
13
|
+
return pd.Series(dtype="float64")
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from .financial_statistics_analysis import FinancialStatistics
|
|
@@ -0,0 +1,88 @@
|
|
|
1
|
+
from datetime import date
|
|
2
|
+
|
|
3
|
+
import pandas as pd
|
|
4
|
+
from wbfdm.enums import Financial, PeriodType, SeriesType
|
|
5
|
+
from wbfdm.models import Instrument
|
|
6
|
+
from wbfdm.utils import rename_period_index_level_to_repr
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def financial_metric_estimate_analysis(instrument_id: int, financial: Financial) -> tuple[pd.DataFrame, dict, list]:
|
|
10
|
+
estimate_mapping = {}
|
|
11
|
+
columns = []
|
|
12
|
+
if not (
|
|
13
|
+
df := pd.DataFrame(
|
|
14
|
+
Instrument.objects.filter(id=instrument_id).dl.financials(
|
|
15
|
+
values=[financial],
|
|
16
|
+
series_type=SeriesType.FULL_ESTIMATE,
|
|
17
|
+
period_type=PeriodType.ALL,
|
|
18
|
+
from_year=date.today().year - 5,
|
|
19
|
+
),
|
|
20
|
+
)
|
|
21
|
+
).empty:
|
|
22
|
+
df = df.pivot_table(
|
|
23
|
+
index=["year", "interim", "period_type", "estimate"],
|
|
24
|
+
columns=["financial"],
|
|
25
|
+
values=["value", "difference_pct", "value_high", "value_low", "value_amount", "value_stdev"],
|
|
26
|
+
dropna=False,
|
|
27
|
+
)
|
|
28
|
+
df["difference_pct"] = df["difference_pct"] * 100
|
|
29
|
+
df = rename_period_index_level_to_repr(df)
|
|
30
|
+
df = df.set_index([[f"{index[0]}-{index[1]}" for index in df.index]])
|
|
31
|
+
|
|
32
|
+
columns = list(df.index)
|
|
33
|
+
|
|
34
|
+
df = df[["value", "difference_pct", "value_high", "value_low", "value_stdev", "value_amount"]]
|
|
35
|
+
df = df.rename(
|
|
36
|
+
columns={
|
|
37
|
+
"difference_pct": "Diff (%)",
|
|
38
|
+
"value": "Estimate",
|
|
39
|
+
"value_amount": "#",
|
|
40
|
+
"value_high": "High Est.",
|
|
41
|
+
"value_low": "Low Est.",
|
|
42
|
+
"value_stdev": "St.Dev. Est.",
|
|
43
|
+
}
|
|
44
|
+
)
|
|
45
|
+
df = df.T
|
|
46
|
+
|
|
47
|
+
df["financial"] = [index[0] for index in df.index]
|
|
48
|
+
df = df.set_index([[f"{index[0]}-{index[1]}" for index in df.index]])
|
|
49
|
+
df = df.reset_index()
|
|
50
|
+
|
|
51
|
+
return df, estimate_mapping, columns
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def financial_metric_growths(instrument_id: int, financial: Financial):
|
|
55
|
+
# Get the base dataframe from a dataloader with the given financial
|
|
56
|
+
if not (
|
|
57
|
+
df := pd.DataFrame(
|
|
58
|
+
Instrument.objects.filter(id=instrument_id).dl.financials(
|
|
59
|
+
values=[financial],
|
|
60
|
+
series_type=SeriesType.COMPLETE,
|
|
61
|
+
period_type=PeriodType.ALL,
|
|
62
|
+
from_year=date.today().year - 5,
|
|
63
|
+
)
|
|
64
|
+
)
|
|
65
|
+
).empty:
|
|
66
|
+
# Pivot the dataframe to get the financial in the correct format
|
|
67
|
+
df = df.pivot_table(index=["year", "interim", "period_type"], columns="financial", values="value")
|
|
68
|
+
|
|
69
|
+
# Compute the growth factors
|
|
70
|
+
df[f"{financial.value}_qq"] = df.loc[df.index.get_level_values("interim") != 0].pct_change() * 100
|
|
71
|
+
df[f"{financial.value}_yy_y"] = (
|
|
72
|
+
df.loc[df.index.get_level_values("interim") == 0, financial.value].pct_change() * 100
|
|
73
|
+
)
|
|
74
|
+
df[f"{financial.value}_yy_q"] = (
|
|
75
|
+
df.loc[df.index.get_level_values("interim") != 0, financial.value].pct_change(4) * 100
|
|
76
|
+
)
|
|
77
|
+
df[f"{financial.value}_yy"] = df[f"{financial.value}_yy_y"].combine_first(df[f"{financial.value}_yy_q"])
|
|
78
|
+
|
|
79
|
+
# Select on the two growth columns
|
|
80
|
+
df = df[[f"{financial.value}_yy", f"{financial.value}_qq"]]
|
|
81
|
+
|
|
82
|
+
df = rename_period_index_level_to_repr(df)
|
|
83
|
+
df = df.set_index([[f"{index[0]}-{index[1]}" for index in df.index]])
|
|
84
|
+
df = df.rename(columns={f"{financial.value}_yy": "YoY Growth (%)", f"{financial.value}_qq": "QoQ Growth (%)"})
|
|
85
|
+
df = df.T
|
|
86
|
+
df = df.reset_index().reset_index()
|
|
87
|
+
|
|
88
|
+
return df
|
|
@@ -0,0 +1,125 @@
|
|
|
1
|
+
from contextlib import suppress
|
|
2
|
+
from datetime import date
|
|
3
|
+
|
|
4
|
+
import pandas as pd
|
|
5
|
+
from django.db.models import TextChoices
|
|
6
|
+
from wbfdm.enums import Financial, MarketData, PeriodType
|
|
7
|
+
from wbfdm.models import Instrument
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class FinancialRatio(TextChoices):
|
|
11
|
+
PE = "pe", "P/E"
|
|
12
|
+
PS = "ps", "P/S"
|
|
13
|
+
PB = "pb", "P/B"
|
|
14
|
+
PFCF = "pfcf", "P/FCF"
|
|
15
|
+
|
|
16
|
+
@classmethod
|
|
17
|
+
def get_financials_for_ratio(cls, ratio: "FinancialRatio") -> list[Financial]:
|
|
18
|
+
financials = {
|
|
19
|
+
cls.PE: [Financial.EPS],
|
|
20
|
+
cls.PS: [Financial.REVENUE, Financial.SHARES_OUTSTANDING],
|
|
21
|
+
cls.PB: [Financial.TANGIBLE_BOOK_VALUE_PER_SHARE],
|
|
22
|
+
cls.PFCF: [Financial.CASH_FLOW_FROM_OPERATIONS, Financial.CAPEX],
|
|
23
|
+
}
|
|
24
|
+
|
|
25
|
+
return financials[ratio]
|
|
26
|
+
|
|
27
|
+
@classmethod
|
|
28
|
+
def get_financials(cls, ratios: list["FinancialRatio"]) -> list[Financial]:
|
|
29
|
+
financials = list()
|
|
30
|
+
for ratio in ratios:
|
|
31
|
+
financials.extend(cls.get_financials_for_ratio(ratio))
|
|
32
|
+
return list(set(financials))
|
|
33
|
+
|
|
34
|
+
def compute_pe(self, df: pd.DataFrame) -> pd.DataFrame:
|
|
35
|
+
if Financial.EPS.value in df:
|
|
36
|
+
df[self.value] = df["close"] / df[Financial.EPS.value]
|
|
37
|
+
return df
|
|
38
|
+
|
|
39
|
+
def compute_ps(self, df: pd.DataFrame) -> pd.DataFrame:
|
|
40
|
+
if "revenue_per_share" in df:
|
|
41
|
+
df[self.value] = df["close"] / df["revenue_per_share"]
|
|
42
|
+
return df
|
|
43
|
+
|
|
44
|
+
def compute_pb(self, df: pd.DataFrame) -> pd.DataFrame:
|
|
45
|
+
if Financial.TANGIBLE_BOOK_VALUE_PER_SHARE.value in df:
|
|
46
|
+
df[self.value] = df["close"] / df[Financial.TANGIBLE_BOOK_VALUE_PER_SHARE.value]
|
|
47
|
+
return df
|
|
48
|
+
|
|
49
|
+
def compute_pfcf(self, df: pd.DataFrame) -> pd.DataFrame:
|
|
50
|
+
if Financial.FREE_CASH_FLOW_PER_SHARE.value in df:
|
|
51
|
+
df[self.value] = df["close"] / df[Financial.FREE_CASH_FLOW_PER_SHARE.value]
|
|
52
|
+
return df
|
|
53
|
+
|
|
54
|
+
def compute(self, df: pd.DataFrame) -> pd.DataFrame:
|
|
55
|
+
compute_methods = {
|
|
56
|
+
self.PE: self.compute_pe,
|
|
57
|
+
self.PS: self.compute_ps,
|
|
58
|
+
self.PB: self.compute_pb,
|
|
59
|
+
self.PFCF: self.compute_pfcf,
|
|
60
|
+
}
|
|
61
|
+
return compute_methods[self](df)
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def get_financial_ratios(
|
|
65
|
+
instrument_id: int, ratios: list[FinancialRatio], from_date: date, to_date: date, ttm: bool = True
|
|
66
|
+
):
|
|
67
|
+
"""Computes financial ratios and adds them to the dataframe"""
|
|
68
|
+
if ttm:
|
|
69
|
+
financials_df = pd.DataFrame(
|
|
70
|
+
Instrument.objects.filter(id=instrument_id).dl.statements(
|
|
71
|
+
financials=FinancialRatio.get_financials(ratios),
|
|
72
|
+
period_type=PeriodType.INTERIM,
|
|
73
|
+
)
|
|
74
|
+
)
|
|
75
|
+
else:
|
|
76
|
+
financials_df = pd.DataFrame(
|
|
77
|
+
Instrument.objects.filter(id=instrument_id).dl.financials(
|
|
78
|
+
values=FinancialRatio.get_financials(ratios),
|
|
79
|
+
period_type=PeriodType.INTERIM,
|
|
80
|
+
)
|
|
81
|
+
)
|
|
82
|
+
if financials_df.empty:
|
|
83
|
+
return pd.DataFrame()
|
|
84
|
+
financials_df = financials_df.pivot_table(
|
|
85
|
+
index="period_end_date",
|
|
86
|
+
columns="financial",
|
|
87
|
+
values="value",
|
|
88
|
+
).sort_index()
|
|
89
|
+
financials_df.index = pd.to_datetime(financials_df.index)
|
|
90
|
+
if (
|
|
91
|
+
FinancialRatio.PS in ratios
|
|
92
|
+
and Financial.REVENUE.value in financials_df
|
|
93
|
+
and Financial.SHARES_OUTSTANDING.value in financials_df
|
|
94
|
+
):
|
|
95
|
+
financials_df["revenue_per_share"] = (
|
|
96
|
+
financials_df[Financial.REVENUE.value] / financials_df[Financial.SHARES_OUTSTANDING.value]
|
|
97
|
+
)
|
|
98
|
+
if (
|
|
99
|
+
FinancialRatio.PFCF in ratios
|
|
100
|
+
and Financial.FREE_CASH_FLOW_PER_SHARE.value not in financials_df.columns
|
|
101
|
+
and Financial.CASH_FLOW_FROM_OPERATIONS.value in financials_df
|
|
102
|
+
and Financial.CAPEX.value in financials_df
|
|
103
|
+
):
|
|
104
|
+
financials_df[Financial.FREE_CASH_FLOW_PER_SHARE.value] = (
|
|
105
|
+
financials_df[Financial.CASH_FLOW_FROM_OPERATIONS.value] - financials_df[Financial.CAPEX.value]
|
|
106
|
+
)
|
|
107
|
+
financials_df = financials_df.rolling("365d").sum()
|
|
108
|
+
prices_df = pd.DataFrame(
|
|
109
|
+
Instrument.objects.filter(id=instrument_id).dl.market_data(
|
|
110
|
+
values=[MarketData.CLOSE], from_date=from_date, to_date=to_date
|
|
111
|
+
)
|
|
112
|
+
)
|
|
113
|
+
if not prices_df.empty:
|
|
114
|
+
prices_df = prices_df.set_index("valuation_date").sort_index()[["close"]]
|
|
115
|
+
prices_df.index = pd.to_datetime(prices_df.index)
|
|
116
|
+
|
|
117
|
+
financials_df = pd.merge_asof(
|
|
118
|
+
prices_df, financials_df, left_index=True, right_index=True, direction="backward" if ttm else "forward"
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
for ratio in ratios:
|
|
122
|
+
with suppress(KeyError):
|
|
123
|
+
financials_df = ratio.compute(financials_df)
|
|
124
|
+
|
|
125
|
+
return financials_df
|