wbfdm 2.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of wbfdm might be problematic. Click here for more details.
- wbfdm/__init__.py +2 -0
- wbfdm/admin/__init__.py +42 -0
- wbfdm/admin/classifications.py +39 -0
- wbfdm/admin/esg.py +23 -0
- wbfdm/admin/exchanges.py +53 -0
- wbfdm/admin/instrument_lists.py +23 -0
- wbfdm/admin/instrument_prices.py +62 -0
- wbfdm/admin/instrument_requests.py +33 -0
- wbfdm/admin/instruments.py +117 -0
- wbfdm/admin/instruments_relationships.py +25 -0
- wbfdm/admin/options.py +101 -0
- wbfdm/analysis/__init__.py +2 -0
- wbfdm/analysis/esg/__init__.py +0 -0
- wbfdm/analysis/esg/enums.py +82 -0
- wbfdm/analysis/esg/esg_analysis.py +217 -0
- wbfdm/analysis/esg/utils.py +13 -0
- wbfdm/analysis/financial_analysis/__init__.py +1 -0
- wbfdm/analysis/financial_analysis/financial_metric_analysis.py +88 -0
- wbfdm/analysis/financial_analysis/financial_ratio_analysis.py +125 -0
- wbfdm/analysis/financial_analysis/financial_statistics_analysis.py +271 -0
- wbfdm/analysis/financial_analysis/statement_with_estimates.py +558 -0
- wbfdm/analysis/financial_analysis/utils.py +316 -0
- wbfdm/analysis/technical_analysis/__init__.py +1 -0
- wbfdm/analysis/technical_analysis/technical_analysis.py +138 -0
- wbfdm/analysis/technical_analysis/traces.py +165 -0
- wbfdm/analysis/utils.py +32 -0
- wbfdm/apps.py +14 -0
- wbfdm/contrib/__init__.py +0 -0
- wbfdm/contrib/dsws/__init__.py +0 -0
- wbfdm/contrib/dsws/client.py +285 -0
- wbfdm/contrib/internal/__init__.py +0 -0
- wbfdm/contrib/internal/dataloaders/__init__.py +0 -0
- wbfdm/contrib/internal/dataloaders/market_data.py +87 -0
- wbfdm/contrib/metric/__init__.py +0 -0
- wbfdm/contrib/metric/admin/__init__.py +2 -0
- wbfdm/contrib/metric/admin/instruments.py +12 -0
- wbfdm/contrib/metric/admin/metrics.py +43 -0
- wbfdm/contrib/metric/apps.py +10 -0
- wbfdm/contrib/metric/backends/__init__.py +2 -0
- wbfdm/contrib/metric/backends/base.py +159 -0
- wbfdm/contrib/metric/backends/performances.py +265 -0
- wbfdm/contrib/metric/backends/statistics.py +182 -0
- wbfdm/contrib/metric/decorators.py +14 -0
- wbfdm/contrib/metric/dispatch.py +23 -0
- wbfdm/contrib/metric/dto.py +88 -0
- wbfdm/contrib/metric/exceptions.py +6 -0
- wbfdm/contrib/metric/factories.py +33 -0
- wbfdm/contrib/metric/filters.py +28 -0
- wbfdm/contrib/metric/migrations/0001_initial.py +88 -0
- wbfdm/contrib/metric/migrations/0002_remove_instrumentmetric_unique_instrument_metric_and_more.py +26 -0
- wbfdm/contrib/metric/migrations/__init__.py +0 -0
- wbfdm/contrib/metric/models.py +180 -0
- wbfdm/contrib/metric/orchestrators.py +94 -0
- wbfdm/contrib/metric/registry.py +80 -0
- wbfdm/contrib/metric/serializers.py +44 -0
- wbfdm/contrib/metric/tasks.py +27 -0
- wbfdm/contrib/metric/tests/__init__.py +0 -0
- wbfdm/contrib/metric/tests/backends/__init__.py +0 -0
- wbfdm/contrib/metric/tests/backends/test_performances.py +152 -0
- wbfdm/contrib/metric/tests/backends/test_statistics.py +48 -0
- wbfdm/contrib/metric/tests/conftest.py +92 -0
- wbfdm/contrib/metric/tests/test_dto.py +73 -0
- wbfdm/contrib/metric/tests/test_models.py +72 -0
- wbfdm/contrib/metric/tests/test_tasks.py +24 -0
- wbfdm/contrib/metric/tests/test_viewsets.py +79 -0
- wbfdm/contrib/metric/urls.py +19 -0
- wbfdm/contrib/metric/viewsets/__init__.py +1 -0
- wbfdm/contrib/metric/viewsets/configs/__init__.py +1 -0
- wbfdm/contrib/metric/viewsets/configs/display.py +92 -0
- wbfdm/contrib/metric/viewsets/configs/menus.py +11 -0
- wbfdm/contrib/metric/viewsets/configs/utils.py +137 -0
- wbfdm/contrib/metric/viewsets/mixins.py +245 -0
- wbfdm/contrib/metric/viewsets/viewsets.py +40 -0
- wbfdm/contrib/msci/__init__.py +0 -0
- wbfdm/contrib/msci/client.py +92 -0
- wbfdm/contrib/msci/dataloaders/__init__.py +0 -0
- wbfdm/contrib/msci/dataloaders/esg.py +87 -0
- wbfdm/contrib/msci/dataloaders/esg_controversies.py +81 -0
- wbfdm/contrib/msci/sync.py +58 -0
- wbfdm/contrib/msci/tests/__init__.py +0 -0
- wbfdm/contrib/msci/tests/conftest.py +1 -0
- wbfdm/contrib/msci/tests/test_client.py +70 -0
- wbfdm/contrib/qa/__init__.py +0 -0
- wbfdm/contrib/qa/apps.py +22 -0
- wbfdm/contrib/qa/database_routers.py +25 -0
- wbfdm/contrib/qa/dataloaders/__init__.py +0 -0
- wbfdm/contrib/qa/dataloaders/adjustments.py +56 -0
- wbfdm/contrib/qa/dataloaders/corporate_actions.py +59 -0
- wbfdm/contrib/qa/dataloaders/financials.py +83 -0
- wbfdm/contrib/qa/dataloaders/market_data.py +117 -0
- wbfdm/contrib/qa/dataloaders/officers.py +59 -0
- wbfdm/contrib/qa/dataloaders/reporting_dates.py +67 -0
- wbfdm/contrib/qa/dataloaders/statements.py +267 -0
- wbfdm/contrib/qa/tasks.py +0 -0
- wbfdm/dataloaders/__init__.py +0 -0
- wbfdm/dataloaders/cache.py +129 -0
- wbfdm/dataloaders/protocols.py +112 -0
- wbfdm/dataloaders/proxies.py +201 -0
- wbfdm/dataloaders/types.py +209 -0
- wbfdm/dynamic_preferences_registry.py +45 -0
- wbfdm/enums.py +657 -0
- wbfdm/factories/__init__.py +13 -0
- wbfdm/factories/classifications.py +56 -0
- wbfdm/factories/controversies.py +27 -0
- wbfdm/factories/exchanges.py +21 -0
- wbfdm/factories/instrument_list.py +22 -0
- wbfdm/factories/instrument_prices.py +79 -0
- wbfdm/factories/instruments.py +63 -0
- wbfdm/factories/instruments_relationships.py +31 -0
- wbfdm/factories/options.py +66 -0
- wbfdm/figures/__init__.py +1 -0
- wbfdm/figures/financials/__init__.py +1 -0
- wbfdm/figures/financials/financial_analysis_charts.py +469 -0
- wbfdm/figures/financials/financials_charts.py +711 -0
- wbfdm/filters/__init__.py +31 -0
- wbfdm/filters/classifications.py +100 -0
- wbfdm/filters/exchanges.py +22 -0
- wbfdm/filters/financials.py +95 -0
- wbfdm/filters/financials_analysis.py +119 -0
- wbfdm/filters/instrument_prices.py +112 -0
- wbfdm/filters/instruments.py +198 -0
- wbfdm/filters/utils.py +44 -0
- wbfdm/import_export/__init__.py +0 -0
- wbfdm/import_export/backends/__init__.py +0 -0
- wbfdm/import_export/backends/cbinsights/__init__.py +2 -0
- wbfdm/import_export/backends/cbinsights/deals.py +44 -0
- wbfdm/import_export/backends/cbinsights/equities.py +41 -0
- wbfdm/import_export/backends/cbinsights/mixin.py +15 -0
- wbfdm/import_export/backends/cbinsights/utils/__init__.py +0 -0
- wbfdm/import_export/backends/cbinsights/utils/classifications.py +4150 -0
- wbfdm/import_export/backends/cbinsights/utils/client.py +217 -0
- wbfdm/import_export/backends/refinitiv/__init__.py +5 -0
- wbfdm/import_export/backends/refinitiv/daily_fundamental.py +36 -0
- wbfdm/import_export/backends/refinitiv/fiscal_period.py +63 -0
- wbfdm/import_export/backends/refinitiv/forecast.py +178 -0
- wbfdm/import_export/backends/refinitiv/fundamental.py +103 -0
- wbfdm/import_export/backends/refinitiv/geographic_segment.py +32 -0
- wbfdm/import_export/backends/refinitiv/instrument.py +55 -0
- wbfdm/import_export/backends/refinitiv/instrument_price.py +77 -0
- wbfdm/import_export/backends/refinitiv/mixin.py +29 -0
- wbfdm/import_export/backends/refinitiv/utils/__init__.py +1 -0
- wbfdm/import_export/backends/refinitiv/utils/controller.py +182 -0
- wbfdm/import_export/handlers/__init__.py +0 -0
- wbfdm/import_export/handlers/instrument.py +253 -0
- wbfdm/import_export/handlers/instrument_list.py +101 -0
- wbfdm/import_export/handlers/instrument_price.py +71 -0
- wbfdm/import_export/handlers/option.py +54 -0
- wbfdm/import_export/handlers/private_equities.py +49 -0
- wbfdm/import_export/parsers/__init__.py +0 -0
- wbfdm/import_export/parsers/cbinsights/__init__.py +0 -0
- wbfdm/import_export/parsers/cbinsights/deals.py +39 -0
- wbfdm/import_export/parsers/cbinsights/equities.py +56 -0
- wbfdm/import_export/parsers/cbinsights/fundamentals.py +45 -0
- wbfdm/import_export/parsers/refinitiv/__init__.py +0 -0
- wbfdm/import_export/parsers/refinitiv/daily_fundamental.py +7 -0
- wbfdm/import_export/parsers/refinitiv/forecast.py +7 -0
- wbfdm/import_export/parsers/refinitiv/fundamental.py +9 -0
- wbfdm/import_export/parsers/refinitiv/geographic_segment.py +7 -0
- wbfdm/import_export/parsers/refinitiv/instrument.py +75 -0
- wbfdm/import_export/parsers/refinitiv/instrument_price.py +26 -0
- wbfdm/import_export/parsers/refinitiv/utils.py +96 -0
- wbfdm/import_export/resources/__init__.py +0 -0
- wbfdm/import_export/resources/classification.py +23 -0
- wbfdm/import_export/resources/instrument_prices.py +33 -0
- wbfdm/import_export/resources/instruments.py +176 -0
- wbfdm/jinja2.py +7 -0
- wbfdm/management/__init__.py +30 -0
- wbfdm/menu.py +11 -0
- wbfdm/migrations/0001_initial.py +71 -0
- wbfdm/migrations/0002_rename_statements_instrumentlookup_financials_and_more.py +144 -0
- wbfdm/migrations/0003_instrument_estimate_backend_and_more.py +34 -0
- wbfdm/migrations/0004_rename_financials_instrumentlookup_statements_and_more.py +86 -0
- wbfdm/migrations/0005_instrument_corporate_action_backend.py +29 -0
- wbfdm/migrations/0006_instrument_officer_backend.py +29 -0
- wbfdm/migrations/0007_instrument_country_instrument_currency_and_more.py +117 -0
- wbfdm/migrations/0008_controversy.py +75 -0
- wbfdm/migrations/0009_alter_controversy_flag_alter_controversy_initiated_and_more.py +85 -0
- wbfdm/migrations/0010_classification_classificationgroup_deal_exchange_and_more.py +1299 -0
- wbfdm/migrations/0011_delete_instrumentlookup_instrument_corporate_actions_and_more.py +169 -0
- wbfdm/migrations/0012_instrumentprice_created_instrumentprice_modified.py +564 -0
- wbfdm/migrations/0013_instrument_is_investable_universe_and_more.py +199 -0
- wbfdm/migrations/0014_alter_controversy_instrument.py +22 -0
- wbfdm/migrations/0015_instrument_instrument_investible_index.py +16 -0
- wbfdm/migrations/0016_instrumenttype_name_repr.py +18 -0
- wbfdm/migrations/0017_instrument_instrument_security_index.py +16 -0
- wbfdm/migrations/0018_instrument_instrument_level_index.py +20 -0
- wbfdm/migrations/0019_alter_controversy_source.py +17 -0
- wbfdm/migrations/0020_optionaggregate_option_and_more.py +249 -0
- wbfdm/migrations/0021_delete_instrumentdailystatistics.py +15 -0
- wbfdm/migrations/0022_instrument_cusip_option_open_interest_20d_and_more.py +91 -0
- wbfdm/migrations/0023_instrument_unique_ric_instrument_unique_rmc_and_more.py +53 -0
- wbfdm/migrations/0024_option_open_interest_10d_option_volume_10d_and_more.py +36 -0
- wbfdm/migrations/0025_instrument_is_primary_and_more.py +29 -0
- wbfdm/migrations/0026_instrument_is_cash_equivalent.py +30 -0
- wbfdm/migrations/0027_remove_instrument_unique_ric_and_more.py +100 -0
- wbfdm/migrations/__init__.py +0 -0
- wbfdm/models/__init__.py +4 -0
- wbfdm/models/esg/__init__.py +1 -0
- wbfdm/models/esg/controversies.py +81 -0
- wbfdm/models/exchanges/__init__.py +1 -0
- wbfdm/models/exchanges/exchanges.py +223 -0
- wbfdm/models/fields.py +117 -0
- wbfdm/models/fk_fields.py +403 -0
- wbfdm/models/indicators.py +0 -0
- wbfdm/models/instruments/__init__.py +19 -0
- wbfdm/models/instruments/classifications.py +265 -0
- wbfdm/models/instruments/instrument_lists.py +120 -0
- wbfdm/models/instruments/instrument_prices.py +540 -0
- wbfdm/models/instruments/instrument_relationships.py +251 -0
- wbfdm/models/instruments/instrument_requests.py +196 -0
- wbfdm/models/instruments/instruments.py +991 -0
- wbfdm/models/instruments/llm/__init__.py +1 -0
- wbfdm/models/instruments/llm/create_instrument_news_relationships.py +78 -0
- wbfdm/models/instruments/mixin/__init__.py +0 -0
- wbfdm/models/instruments/mixin/financials_computed.py +804 -0
- wbfdm/models/instruments/mixin/financials_serializer_fields.py +1407 -0
- wbfdm/models/instruments/mixin/instruments.py +294 -0
- wbfdm/models/instruments/options.py +225 -0
- wbfdm/models/instruments/private_equities.py +59 -0
- wbfdm/models/instruments/querysets.py +73 -0
- wbfdm/models/instruments/utils.py +41 -0
- wbfdm/preferences.py +21 -0
- wbfdm/serializers/__init__.py +4 -0
- wbfdm/serializers/esg.py +36 -0
- wbfdm/serializers/exchanges.py +39 -0
- wbfdm/serializers/instruments/__init__.py +37 -0
- wbfdm/serializers/instruments/classifications.py +139 -0
- wbfdm/serializers/instruments/instrument_lists.py +61 -0
- wbfdm/serializers/instruments/instrument_prices.py +73 -0
- wbfdm/serializers/instruments/instrument_relationships.py +170 -0
- wbfdm/serializers/instruments/instrument_requests.py +61 -0
- wbfdm/serializers/instruments/instruments.py +274 -0
- wbfdm/serializers/instruments/mixins.py +104 -0
- wbfdm/serializers/officers.py +20 -0
- wbfdm/signals.py +7 -0
- wbfdm/sync/__init__.py +0 -0
- wbfdm/sync/abstract.py +31 -0
- wbfdm/sync/runner.py +22 -0
- wbfdm/tasks.py +69 -0
- wbfdm/tests/__init__.py +0 -0
- wbfdm/tests/analysis/__init__.py +0 -0
- wbfdm/tests/analysis/financial_analysis/__init__.py +0 -0
- wbfdm/tests/analysis/financial_analysis/test_statement_with_estimates.py +392 -0
- wbfdm/tests/analysis/financial_analysis/test_utils.py +322 -0
- wbfdm/tests/analysis/test_esg.py +159 -0
- wbfdm/tests/conftest.py +92 -0
- wbfdm/tests/dataloaders/__init__.py +0 -0
- wbfdm/tests/dataloaders/test_cache.py +73 -0
- wbfdm/tests/models/__init__.py +0 -0
- wbfdm/tests/models/test_classifications.py +99 -0
- wbfdm/tests/models/test_exchanges.py +7 -0
- wbfdm/tests/models/test_instrument_list.py +117 -0
- wbfdm/tests/models/test_instrument_prices.py +306 -0
- wbfdm/tests/models/test_instruments.py +202 -0
- wbfdm/tests/models/test_merge.py +99 -0
- wbfdm/tests/models/test_options.py +69 -0
- wbfdm/tests/test_tasks.py +6 -0
- wbfdm/tests/tests.py +10 -0
- wbfdm/urls.py +222 -0
- wbfdm/utils.py +54 -0
- wbfdm/viewsets/__init__.py +10 -0
- wbfdm/viewsets/configs/__init__.py +5 -0
- wbfdm/viewsets/configs/buttons/__init__.py +8 -0
- wbfdm/viewsets/configs/buttons/classifications.py +23 -0
- wbfdm/viewsets/configs/buttons/exchanges.py +9 -0
- wbfdm/viewsets/configs/buttons/instrument_prices.py +49 -0
- wbfdm/viewsets/configs/buttons/instruments.py +283 -0
- wbfdm/viewsets/configs/display/__init__.py +22 -0
- wbfdm/viewsets/configs/display/classifications.py +138 -0
- wbfdm/viewsets/configs/display/esg.py +75 -0
- wbfdm/viewsets/configs/display/exchanges.py +42 -0
- wbfdm/viewsets/configs/display/instrument_lists.py +137 -0
- wbfdm/viewsets/configs/display/instrument_prices.py +199 -0
- wbfdm/viewsets/configs/display/instrument_requests.py +116 -0
- wbfdm/viewsets/configs/display/instruments.py +618 -0
- wbfdm/viewsets/configs/display/instruments_relationships.py +65 -0
- wbfdm/viewsets/configs/display/monthly_performances.py +72 -0
- wbfdm/viewsets/configs/display/officers.py +16 -0
- wbfdm/viewsets/configs/display/prices.py +21 -0
- wbfdm/viewsets/configs/display/statement_with_estimates.py +101 -0
- wbfdm/viewsets/configs/display/statements.py +48 -0
- wbfdm/viewsets/configs/endpoints/__init__.py +41 -0
- wbfdm/viewsets/configs/endpoints/classifications.py +87 -0
- wbfdm/viewsets/configs/endpoints/esg.py +20 -0
- wbfdm/viewsets/configs/endpoints/exchanges.py +6 -0
- wbfdm/viewsets/configs/endpoints/financials_analysis.py +65 -0
- wbfdm/viewsets/configs/endpoints/instrument_lists.py +38 -0
- wbfdm/viewsets/configs/endpoints/instrument_prices.py +51 -0
- wbfdm/viewsets/configs/endpoints/instrument_requests.py +20 -0
- wbfdm/viewsets/configs/endpoints/instruments.py +13 -0
- wbfdm/viewsets/configs/endpoints/instruments_relationships.py +31 -0
- wbfdm/viewsets/configs/endpoints/statements.py +6 -0
- wbfdm/viewsets/configs/menus/__init__.py +9 -0
- wbfdm/viewsets/configs/menus/classifications.py +19 -0
- wbfdm/viewsets/configs/menus/exchanges.py +10 -0
- wbfdm/viewsets/configs/menus/instrument_lists.py +10 -0
- wbfdm/viewsets/configs/menus/instruments.py +20 -0
- wbfdm/viewsets/configs/menus/instruments_relationships.py +33 -0
- wbfdm/viewsets/configs/titles/__init__.py +42 -0
- wbfdm/viewsets/configs/titles/classifications.py +79 -0
- wbfdm/viewsets/configs/titles/esg.py +11 -0
- wbfdm/viewsets/configs/titles/exchanges.py +12 -0
- wbfdm/viewsets/configs/titles/financial_ratio_analysis.py +6 -0
- wbfdm/viewsets/configs/titles/financials_analysis.py +50 -0
- wbfdm/viewsets/configs/titles/instrument_prices.py +50 -0
- wbfdm/viewsets/configs/titles/instrument_requests.py +16 -0
- wbfdm/viewsets/configs/titles/instruments.py +31 -0
- wbfdm/viewsets/configs/titles/instruments_relationships.py +21 -0
- wbfdm/viewsets/configs/titles/market_data.py +13 -0
- wbfdm/viewsets/configs/titles/prices.py +15 -0
- wbfdm/viewsets/configs/titles/statement_with_estimates.py +10 -0
- wbfdm/viewsets/esg.py +72 -0
- wbfdm/viewsets/exchanges.py +63 -0
- wbfdm/viewsets/financial_analysis/__init__.py +3 -0
- wbfdm/viewsets/financial_analysis/financial_metric_analysis.py +85 -0
- wbfdm/viewsets/financial_analysis/financial_ratio_analysis.py +85 -0
- wbfdm/viewsets/financial_analysis/statement_with_estimates.py +145 -0
- wbfdm/viewsets/instruments/__init__.py +80 -0
- wbfdm/viewsets/instruments/classifications.py +279 -0
- wbfdm/viewsets/instruments/financials_analysis.py +614 -0
- wbfdm/viewsets/instruments/instrument_lists.py +77 -0
- wbfdm/viewsets/instruments/instrument_prices.py +542 -0
- wbfdm/viewsets/instruments/instrument_requests.py +51 -0
- wbfdm/viewsets/instruments/instruments.py +106 -0
- wbfdm/viewsets/instruments/instruments_relationships.py +235 -0
- wbfdm/viewsets/instruments/utils.py +27 -0
- wbfdm/viewsets/market_data.py +172 -0
- wbfdm/viewsets/mixins.py +9 -0
- wbfdm/viewsets/officers.py +27 -0
- wbfdm/viewsets/prices.py +62 -0
- wbfdm/viewsets/statements/__init__.py +1 -0
- wbfdm/viewsets/statements/statements.py +100 -0
- wbfdm/viewsets/technical_analysis/__init__.py +1 -0
- wbfdm/viewsets/technical_analysis/monthly_performances.py +93 -0
- wbfdm-2.2.1.dist-info/METADATA +15 -0
- wbfdm-2.2.1.dist-info/RECORD +337 -0
- wbfdm-2.2.1.dist-info/WHEEL +5 -0
|
@@ -0,0 +1,469 @@
|
|
|
1
|
+
import enum
|
|
2
|
+
from datetime import date
|
|
3
|
+
from types import DynamicClassAttribute
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import pandas as pd
|
|
7
|
+
from django.db import models
|
|
8
|
+
from wbcore.contrib.currency.models import CurrencyFXRates
|
|
9
|
+
from wbfdm.models import Instrument
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class PeriodChoices(models.TextChoices):
|
|
13
|
+
TTM = "TTM", "TTM"
|
|
14
|
+
NTM = "FTM", "FTM"
|
|
15
|
+
FY1 = "FY1", "FY+1"
|
|
16
|
+
FY2 = "FY2", "FY+2"
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class VariableChoicesChartLabel(enum.Enum):
|
|
20
|
+
PE = "Price-to-Earnings PE"
|
|
21
|
+
PEG = "Price-to-Earnings-to-Growth PEG"
|
|
22
|
+
PS = "Price-to-Sales PS"
|
|
23
|
+
PFCF = "Price-to-FreeCashflow P/FCF"
|
|
24
|
+
EVEBITDA = "EV-to-EBITDA"
|
|
25
|
+
EV = "Enterprise Value"
|
|
26
|
+
EPSG = "EPS growth"
|
|
27
|
+
REVG = "Revenue growth"
|
|
28
|
+
FCFG = "FCF growth"
|
|
29
|
+
MKTCAP = "Market Cap"
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class VariableFormatChoices(enum.Enum):
|
|
33
|
+
PE = ".1f}x"
|
|
34
|
+
PEG = ".2f}"
|
|
35
|
+
PS = ".1f}x"
|
|
36
|
+
PFCF = ".1f}x"
|
|
37
|
+
EVEBITDA = ".1f}x"
|
|
38
|
+
EV = ".0f}"
|
|
39
|
+
EPSG = ".1%}"
|
|
40
|
+
REVG = ".1%}"
|
|
41
|
+
FCFG = ".1%}"
|
|
42
|
+
MKTCAP = ",.0f}bn"
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class VariableChoices(models.TextChoices):
|
|
46
|
+
PE = "PE", "P/E"
|
|
47
|
+
PEG = "PEG", "PEG"
|
|
48
|
+
PS = "PS", "P/S"
|
|
49
|
+
PFCF = "PFCF", "P/FCF"
|
|
50
|
+
EVEBITDA = "EVEBITDA", "EV/EBITDA"
|
|
51
|
+
EV = "EV", "Enterprise Value"
|
|
52
|
+
EPSG = "EPSG", "EPS Growth"
|
|
53
|
+
REVG = "REVG", "Revenue Growth"
|
|
54
|
+
FCFG = "FCFG", "FCF Growth"
|
|
55
|
+
MKTCAP = "MKTCAP", "Market Cap"
|
|
56
|
+
|
|
57
|
+
@DynamicClassAttribute
|
|
58
|
+
def format(self):
|
|
59
|
+
"""The format of the Enum member."""
|
|
60
|
+
return VariableFormatChoices[self._value_].value
|
|
61
|
+
|
|
62
|
+
@DynamicClassAttribute
|
|
63
|
+
def chart_label(self):
|
|
64
|
+
"""The chart_label of the Enum member."""
|
|
65
|
+
return VariableChoicesChartLabel[self._value_].value
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def _interpolate(decreasing: pd.Series, increasing: pd.Series, factor) -> float:
|
|
69
|
+
return (decreasing * (1 - factor)) + (increasing * factor)
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def _adapt_growth(first, second) -> np.ndarray:
|
|
73
|
+
"""
|
|
74
|
+
In finance some variables, e.g., earnings, may pass from negative to positive and a standard percentage change
|
|
75
|
+
formula is inappropriate. This formula modifies the calculation for such cases.
|
|
76
|
+
|
|
77
|
+
Parameters
|
|
78
|
+
----------
|
|
79
|
+
first = past data point/series
|
|
80
|
+
second = more recent data point/series
|
|
81
|
+
|
|
82
|
+
Returns
|
|
83
|
+
-------
|
|
84
|
+
A float number representing growth (percentage change)
|
|
85
|
+
|
|
86
|
+
"""
|
|
87
|
+
return np.where(first > 0, second / first - 1, (second + abs(first)) / abs(first))
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
class FinancialAnalysisGenerator:
|
|
91
|
+
def __init__(self, instruments: list, from_date: date, to_date: date, with_related: bool = False):
|
|
92
|
+
"""
|
|
93
|
+
Initialize a generator for a specific instrument
|
|
94
|
+
|
|
95
|
+
Parameters
|
|
96
|
+
----------
|
|
97
|
+
instrument = instrument of choice
|
|
98
|
+
from_date
|
|
99
|
+
to_date
|
|
100
|
+
with_related = extend the instrument to a list that includes all related instruments
|
|
101
|
+
"""
|
|
102
|
+
self.instruments = instruments
|
|
103
|
+
self.from_date = from_date
|
|
104
|
+
self.to_date = to_date
|
|
105
|
+
|
|
106
|
+
if with_related:
|
|
107
|
+
self.instruments.extend(
|
|
108
|
+
list(
|
|
109
|
+
Instrument.objects.filter(
|
|
110
|
+
models.Q(instrument_classification_related__classified_instrument__instrument__in=instruments)
|
|
111
|
+
)
|
|
112
|
+
)
|
|
113
|
+
)
|
|
114
|
+
self.instruments_repr_map = {i.id: i.name_repr for i in self.instruments}
|
|
115
|
+
self.currency_map = {i.id: i.currency.id for i in self.instruments}
|
|
116
|
+
|
|
117
|
+
def build_df(
|
|
118
|
+
self,
|
|
119
|
+
instrument_prices_field_names: list[str] = [],
|
|
120
|
+
fundamental_field_names: list[str] = [],
|
|
121
|
+
forecast_field_names: list[str] = [],
|
|
122
|
+
daily_fundamental_field_names: list[str] = [],
|
|
123
|
+
):
|
|
124
|
+
"""
|
|
125
|
+
Used to returns a df with all the variables passed in four separate lists
|
|
126
|
+
|
|
127
|
+
Parameters
|
|
128
|
+
----------
|
|
129
|
+
instrument_prices_field_names
|
|
130
|
+
fundamental_field_names
|
|
131
|
+
forecast_field_names
|
|
132
|
+
daily_fundamental_field_names
|
|
133
|
+
|
|
134
|
+
Returns
|
|
135
|
+
-------
|
|
136
|
+
A df with all the variables in columns and date/instrument index
|
|
137
|
+
"""
|
|
138
|
+
|
|
139
|
+
# df_list = []
|
|
140
|
+
# if instrument_prices_field_names:
|
|
141
|
+
# df_append = pd.DataFrame(
|
|
142
|
+
# InstrumentPrice.objects.filter(
|
|
143
|
+
# instrument__in=self.instruments, date__gte=self.from_date, date__lte=self.to_date, calculated=False
|
|
144
|
+
# ).values("date", "instrument", "net_value", "outstanding_shares")
|
|
145
|
+
# )
|
|
146
|
+
# if not df_append.empty:
|
|
147
|
+
# df_list.append(df_append.set_index(["instrument", "date"]))
|
|
148
|
+
#
|
|
149
|
+
# end_date_df = pd.DataFrame(
|
|
150
|
+
# FiscalPeriod.objects.filter(
|
|
151
|
+
# period_type=FiscalPeriod.PeriodTypeChoice.ANNUAL,
|
|
152
|
+
# period_interim=False,
|
|
153
|
+
# instrument__in=self.instruments,
|
|
154
|
+
# ).values("period_end_date", "instrument")
|
|
155
|
+
# )
|
|
156
|
+
# if not end_date_df.empty:
|
|
157
|
+
# if fundamental_field_names:
|
|
158
|
+
# df_append = pd.DataFrame(
|
|
159
|
+
# Fundamental.annual_objects.filter(
|
|
160
|
+
# instrument__in=self.instruments,
|
|
161
|
+
# period__date_range__overlap=DateRange(self.from_date, self.to_date),
|
|
162
|
+
# ).values(
|
|
163
|
+
# "instrument",
|
|
164
|
+
# "period__period_end_date",
|
|
165
|
+
# *fundamental_field_names,
|
|
166
|
+
# )
|
|
167
|
+
# ).rename(columns={"period__period_end_date": "date"})
|
|
168
|
+
# if not df_append.empty:
|
|
169
|
+
# df_list.append(df_append.set_index(["instrument", "date"]))
|
|
170
|
+
#
|
|
171
|
+
# if forecast_field_names:
|
|
172
|
+
# df_append = pd.DataFrame(
|
|
173
|
+
# Forecast.objects.filter(
|
|
174
|
+
# instrument__in=self.instruments, date__gte=self.from_date, date__lte=self.to_date
|
|
175
|
+
# ).values("instrument", "date", *forecast_field_names)
|
|
176
|
+
# )
|
|
177
|
+
# if not df_append.empty:
|
|
178
|
+
# df_list.append(df_append.set_index(["instrument", "date"]))
|
|
179
|
+
#
|
|
180
|
+
# if daily_fundamental_field_names:
|
|
181
|
+
# df_append = pd.DataFrame(
|
|
182
|
+
# DailyFundamental.objects.annotate(free_cash_flow_ttm=F("free_cash_flow"))
|
|
183
|
+
# .filter(instrument__in=self.instruments, date__gte=self.from_date, date__lte=self.to_date)
|
|
184
|
+
# .values("instrument", "date", *daily_fundamental_field_names)
|
|
185
|
+
# )
|
|
186
|
+
# if not df_append.empty:
|
|
187
|
+
# df_list.append(df_append.set_index(["instrument", "date"]))
|
|
188
|
+
#
|
|
189
|
+
# df = pd.concat(df_list, axis=1).sort_index().astype(float)
|
|
190
|
+
#
|
|
191
|
+
# if df.columns.duplicated().any():
|
|
192
|
+
# raise ValueError("You probably have a duplicated field in the field name list")
|
|
193
|
+
#
|
|
194
|
+
# if df.columns.symmetric_difference(
|
|
195
|
+
# instrument_prices_field_names
|
|
196
|
+
# + fundamental_field_names
|
|
197
|
+
# + forecast_field_names
|
|
198
|
+
# + daily_fundamental_field_names
|
|
199
|
+
# ).empty:
|
|
200
|
+
# return df.merge(
|
|
201
|
+
# end_date_df.sort_values(by="period_end_date")
|
|
202
|
+
# .groupby("instrument")
|
|
203
|
+
# .last()
|
|
204
|
+
# .rename(columns={"period_end_date": "end_date"}),
|
|
205
|
+
# left_on="instrument",
|
|
206
|
+
# right_index=True,
|
|
207
|
+
# )
|
|
208
|
+
return pd.DataFrame()
|
|
209
|
+
|
|
210
|
+
def convert_fx(self, df: pd.DataFrame, foreign_fx_field_names: list[str]) -> pd.DataFrame:
|
|
211
|
+
"""
|
|
212
|
+
A function to FX
|
|
213
|
+
|
|
214
|
+
Parameters
|
|
215
|
+
----------
|
|
216
|
+
df = dataframe that has one or plus columns to be converted
|
|
217
|
+
foreign_fx_field_names = column names to be converted
|
|
218
|
+
|
|
219
|
+
Returns
|
|
220
|
+
-------
|
|
221
|
+
A dataframe with one or more columns converted with FX
|
|
222
|
+
"""
|
|
223
|
+
df = df.set_index(["instrument", "date"])
|
|
224
|
+
df["currency"] = df.index.get_level_values("instrument").map(self.currency_map)
|
|
225
|
+
currencies = df["currency"].unique()
|
|
226
|
+
df = df.reset_index().set_index(["date", "currency"])
|
|
227
|
+
df_fx_rate = pd.DataFrame(
|
|
228
|
+
CurrencyFXRates.objects.order_by("date", "currency__id")
|
|
229
|
+
.filter(date__range=[self.from_date, self.to_date], currency__in=currencies)
|
|
230
|
+
.values("date", "currency", "value")
|
|
231
|
+
).set_index(["date", "currency"])
|
|
232
|
+
df = df.join(df_fx_rate).rename(columns={"value": "fx"}).reset_index()
|
|
233
|
+
df = df.set_index(["instrument", "date"]).groupby("instrument").ffill()
|
|
234
|
+
df[foreign_fx_field_names] = df[foreign_fx_field_names].div(df["fx"].astype(float), axis=0)
|
|
235
|
+
|
|
236
|
+
return df.reset_index()
|
|
237
|
+
|
|
238
|
+
@staticmethod
|
|
239
|
+
def clean_data(
|
|
240
|
+
df: pd.DataFrame,
|
|
241
|
+
var_list: list[str] = [],
|
|
242
|
+
drop_negative=True,
|
|
243
|
+
q_low: float = 0.05,
|
|
244
|
+
q_high: float = 0.95,
|
|
245
|
+
z_max: int = 100,
|
|
246
|
+
smooth_range: int = 3,
|
|
247
|
+
) -> pd.DataFrame:
|
|
248
|
+
"""
|
|
249
|
+
A function to clean time-series.
|
|
250
|
+
|
|
251
|
+
1) Drops negative values (financial ratios are non-meaningful in this case)
|
|
252
|
+
2) Drops outliers above and below a certain quartile
|
|
253
|
+
3) Drops values above a certain threshold
|
|
254
|
+
|
|
255
|
+
Parameters
|
|
256
|
+
----------
|
|
257
|
+
var_list = a list of variables to clean
|
|
258
|
+
drop_negative = boolean to consider only positive numbers
|
|
259
|
+
q_low = lower cut-off quartile
|
|
260
|
+
q_high = upper cut-off quartile
|
|
261
|
+
z_max = upper absolute cutoff
|
|
262
|
+
smooth_range = rolling period for simple moving average smoothing
|
|
263
|
+
|
|
264
|
+
Returns
|
|
265
|
+
-------
|
|
266
|
+
A clean time-series
|
|
267
|
+
"""
|
|
268
|
+
df_temp = df.loc[:, (var_list, slice(None))].copy()
|
|
269
|
+
if drop_negative:
|
|
270
|
+
df_temp = df_temp.mask(df_temp < 0)
|
|
271
|
+
df_temp = df_temp.where(
|
|
272
|
+
df_temp.ge(df_temp.quantile(q_low), axis=1) & df_temp.le(df_temp.quantile(q_high), axis=1)
|
|
273
|
+
)
|
|
274
|
+
df_temp.loc[:, var_list] = df_temp[var_list].where(df_temp[var_list] < z_max)
|
|
275
|
+
df_temp.ffill(inplace=True)
|
|
276
|
+
df_temp.loc[:, var_list] = df_temp.loc[:, var_list].rolling(window=smooth_range).mean()
|
|
277
|
+
df.loc[:, (var_list, slice(None))] = df_temp
|
|
278
|
+
return df
|
|
279
|
+
|
|
280
|
+
def get_common_valuation_ratios_df(self, period: PeriodChoices, clean_data: bool = True) -> pd.DataFrame:
|
|
281
|
+
"""
|
|
282
|
+
Calculates financial valuation ratios
|
|
283
|
+
|
|
284
|
+
Parameters
|
|
285
|
+
----------
|
|
286
|
+
period = financial period, i.e., Next Twelve Months, Trailing Twelve Months, Fiscal Year +1 and +2
|
|
287
|
+
clean_data = a boolean to apply a clean_series method
|
|
288
|
+
|
|
289
|
+
Returns
|
|
290
|
+
-------
|
|
291
|
+
A dataframe with common valuation ratios for all instruments of interest
|
|
292
|
+
|
|
293
|
+
"""
|
|
294
|
+
df = self.build_df(
|
|
295
|
+
["net_value", "outstanding_shares"],
|
|
296
|
+
["revenue", "net_debt", "ebitda", "eps", "free_cash_flow"],
|
|
297
|
+
[
|
|
298
|
+
"revenue_y1",
|
|
299
|
+
"entreprise_value_y1",
|
|
300
|
+
"net_debt_y1",
|
|
301
|
+
"ebitda_y1",
|
|
302
|
+
"eps_y1",
|
|
303
|
+
"free_cash_flow_y1",
|
|
304
|
+
"revenue_y2",
|
|
305
|
+
"entreprise_value_y2",
|
|
306
|
+
"net_debt_y2",
|
|
307
|
+
"ebitda_y2",
|
|
308
|
+
"eps_y2",
|
|
309
|
+
"free_cash_flow_y2",
|
|
310
|
+
],
|
|
311
|
+
["eps_ttm", "eps_ftw"],
|
|
312
|
+
)
|
|
313
|
+
|
|
314
|
+
if df.empty:
|
|
315
|
+
return df
|
|
316
|
+
|
|
317
|
+
if clean_data:
|
|
318
|
+
df = df.groupby(level=0).ffill().groupby(level=0).bfill()
|
|
319
|
+
|
|
320
|
+
# Calculate a decimal factor to know how many days an instrument has till its "annual report" publication
|
|
321
|
+
# so Trailing Twelve Month (TTM) and Next(or Forward) Twelve Month (NTM/FTM) interpolated variables
|
|
322
|
+
# may be calculated
|
|
323
|
+
df["factor"] = (365 - (df.end_date - df.index.get_level_values("date")).dt.days) % 365 / 365
|
|
324
|
+
df["free_cash_flow_ntm"] = _interpolate(df["free_cash_flow_y1"], df["free_cash_flow_y2"], df["factor"])
|
|
325
|
+
df["free_cash_flow_ttm"] = _interpolate(df["free_cash_flow"], df["free_cash_flow_y1"], df["factor"])
|
|
326
|
+
df["revenue_ntm"] = _interpolate(df["revenue_y1"], df["revenue_y2"], df["factor"])
|
|
327
|
+
df["revenue_ttm"] = _interpolate(df["revenue"], df["revenue_y1"], df["factor"])
|
|
328
|
+
df["mktcap"] = (df["net_value"] * df["outstanding_shares"] / 1000000000).replace(0, np.inf)
|
|
329
|
+
match period:
|
|
330
|
+
case PeriodChoices.NTM:
|
|
331
|
+
df["revenue"] = df["revenue_ntm"]
|
|
332
|
+
df["eps"] = df["eps_ftw"]
|
|
333
|
+
df["ebitda"] = _interpolate(df["ebitda_y1"], df["ebitda_y2"], df["factor"])
|
|
334
|
+
df["free_cash_flow"] = _interpolate(df["free_cash_flow_y1"], df["free_cash_flow_y2"], df["factor"])
|
|
335
|
+
df["net_debt"] = _interpolate(df["net_debt_y1"], df["net_debt_y2"], df["factor"])
|
|
336
|
+
df["ev"] = (df["net_value"] * df["outstanding_shares"]) + df["net_debt"]
|
|
337
|
+
df["epsg"] = _adapt_growth(df["eps_ttm"], df["eps_ftw"])
|
|
338
|
+
df["fcfg"] = _adapt_growth(df["free_cash_flow_ttm"], df["free_cash_flow_ntm"])
|
|
339
|
+
df["revg"] = _adapt_growth(df["revenue_ttm"], df["revenue_ntm"])
|
|
340
|
+
case PeriodChoices.TTM:
|
|
341
|
+
df["revenue"] = df["revenue_ttm"]
|
|
342
|
+
df["eps"] = df["eps_ttm"]
|
|
343
|
+
df["ebitda"] = _interpolate(df["ebitda"], df["ebitda_y1"], df["factor"])
|
|
344
|
+
df["free_cash_flow"] = _interpolate(df["free_cash_flow"], df["free_cash_flow_y1"], df["factor"])
|
|
345
|
+
df["net_debt"] = _interpolate(df["net_debt"], df["net_debt_y1"], df["factor"])
|
|
346
|
+
df["ev"] = df["net_value"] * df["outstanding_shares"] + df["net_debt"]
|
|
347
|
+
df["epsg"] = _adapt_growth(df["eps_ttm"].shift(250), df["eps_ttm"])
|
|
348
|
+
df["fcfg"] = _adapt_growth(df["free_cash_flow_ttm"].shift(250), df["free_cash_flow_ttm"])
|
|
349
|
+
df["revg"] = _adapt_growth(df["revenue"], df["revenue_ttm"])
|
|
350
|
+
case default: # noqa
|
|
351
|
+
df["ev"] = df["entreprise_value_y1"]
|
|
352
|
+
df["ebitda"] = df["ebitda_y1"]
|
|
353
|
+
df["free_cash_flow"] = df["free_cash_flow_y1"]
|
|
354
|
+
df["epsg"] = _adapt_growth(df["eps"], df["eps_y1"])
|
|
355
|
+
df["eps"] = df["eps_y1"]
|
|
356
|
+
df["fcfg"] = _adapt_growth(df["free_cash_flow"], df["free_cash_flow_y1"])
|
|
357
|
+
df["revg"] = _adapt_growth(df["revenue"], df["revenue_y1"])
|
|
358
|
+
if period == PeriodChoices.FY2:
|
|
359
|
+
df["ev"] = df["entreprise_value_y2"]
|
|
360
|
+
df["eps"] = df["eps_y2"]
|
|
361
|
+
df["ebitda"] = df["ebitda_y2"]
|
|
362
|
+
df["free_cash_flow"] = df["free_cash_flow_y2"]
|
|
363
|
+
df["epsg"] = ((1 + _adapt_growth(df["eps_y1"], df["eps_y2"])) * (1 + df["epsg"])) - 1
|
|
364
|
+
df["fcfg"] = (
|
|
365
|
+
(_adapt_growth(df["free_cash_flow_y1"], df["free_cash_flow_y2"])) * (1 + df["free_cash_flow"])
|
|
366
|
+
) - 1
|
|
367
|
+
df["revg"] = ((_adapt_growth(df["revenue_y1"], df["revenue_y2"])) * (1 + df["revg"])) - 1
|
|
368
|
+
|
|
369
|
+
df = df.interpolate(method="linear")
|
|
370
|
+
|
|
371
|
+
# After getting the dataframe, calculate the ratios, then optionally clean the final series
|
|
372
|
+
df["pe"] = df["net_value"] / df["eps"]
|
|
373
|
+
df["peg"] = df["net_value"] / df["eps"] / (100 * df["epsg"])
|
|
374
|
+
df["ps"] = df["net_value"] / (df["revenue"] / df["outstanding_shares"])
|
|
375
|
+
df["pfcf"] = df["net_value"] / df["free_cash_flow"]
|
|
376
|
+
df["evebitda"] = df["ev"] / df["ebitda"]
|
|
377
|
+
|
|
378
|
+
if clean_data:
|
|
379
|
+
df = df.unstack("instrument")
|
|
380
|
+
df = self.clean_data(df=df, var_list=["pe", "pfcf", "evebitda"])
|
|
381
|
+
df = self.clean_data(df=df, var_list=["ps"], z_max=40)
|
|
382
|
+
df = self.clean_data(df=df, var_list=["peg"], z_max=15, smooth_range=10).replace(0, np.nan)
|
|
383
|
+
df = self.clean_data(df=df, var_list=["ev", "epsg", "revg", "fcfg"], drop_negative=False)
|
|
384
|
+
df = df.stack("instrument")
|
|
385
|
+
|
|
386
|
+
df = df.reset_index()
|
|
387
|
+
df = pd.concat([df[df.instrument == self.instruments[0].id], df[df.instrument != self.instruments[0].id]])
|
|
388
|
+
df["instrument_title"] = df["instrument"].map(self.instruments_repr_map)
|
|
389
|
+
|
|
390
|
+
df = self.convert_fx(df, ["ev", "mktcap"]).replace([np.inf, -np.inf, np.nan], None)
|
|
391
|
+
|
|
392
|
+
return df[
|
|
393
|
+
[
|
|
394
|
+
"instrument",
|
|
395
|
+
"instrument_title",
|
|
396
|
+
"date",
|
|
397
|
+
"pe",
|
|
398
|
+
"peg",
|
|
399
|
+
"ps",
|
|
400
|
+
"pfcf",
|
|
401
|
+
"evebitda",
|
|
402
|
+
"ev",
|
|
403
|
+
"mktcap",
|
|
404
|
+
"epsg",
|
|
405
|
+
"revg",
|
|
406
|
+
"fcfg",
|
|
407
|
+
]
|
|
408
|
+
]
|
|
409
|
+
|
|
410
|
+
def get_earnings_df(self, period: PeriodChoices, clean_data: bool = True) -> pd.DataFrame:
|
|
411
|
+
"""
|
|
412
|
+
Calculates earnings anylysis
|
|
413
|
+
|
|
414
|
+
Parameters
|
|
415
|
+
----------
|
|
416
|
+
period = financial period, i.e., Next Twelve Months, Trailing Twelve Months, Fiscal Year +1 and +2
|
|
417
|
+
clean_data = a boolean to apply a clean_series method
|
|
418
|
+
|
|
419
|
+
Returns
|
|
420
|
+
-------
|
|
421
|
+
A dataframe with earnings analysis for all instruments of interest
|
|
422
|
+
|
|
423
|
+
"""
|
|
424
|
+
df = self.build_df(
|
|
425
|
+
[],
|
|
426
|
+
[],
|
|
427
|
+
["eps_y1", "eps_y2"],
|
|
428
|
+
["eps_ttm", "eps_ftw"],
|
|
429
|
+
)
|
|
430
|
+
|
|
431
|
+
if df.empty:
|
|
432
|
+
return df
|
|
433
|
+
|
|
434
|
+
if clean_data:
|
|
435
|
+
df = df.groupby(level=0).ffill()
|
|
436
|
+
|
|
437
|
+
match period:
|
|
438
|
+
case PeriodChoices.FY1:
|
|
439
|
+
df["eps"] = df["eps_y1"]
|
|
440
|
+
case PeriodChoices.FY2:
|
|
441
|
+
df["eps"] = df["eps_y2"]
|
|
442
|
+
case PeriodChoices.TTM:
|
|
443
|
+
df["eps"] = df["eps_ttm"]
|
|
444
|
+
case default: # noqa
|
|
445
|
+
df["eps"] = df["eps_ftw"]
|
|
446
|
+
|
|
447
|
+
df = df.interpolate(method="linear")
|
|
448
|
+
|
|
449
|
+
if clean_data:
|
|
450
|
+
df = df.unstack("instrument")
|
|
451
|
+
df = self.clean_data(
|
|
452
|
+
df=df, var_list=["eps"], drop_negative=False, q_low=0.01, q_high=0.99, z_max=200, smooth_range=4
|
|
453
|
+
)
|
|
454
|
+
df = df.stack("instrument")
|
|
455
|
+
|
|
456
|
+
df = df.reset_index()
|
|
457
|
+
df = pd.concat([df[df.instrument == self.instruments[0].id], df[df.instrument != self.instruments[0].id]])
|
|
458
|
+
df["instrument_title"] = df["instrument"].map(self.instruments_repr_map)
|
|
459
|
+
|
|
460
|
+
df = self.convert_fx(df, ["eps"]).replace([np.inf, -np.inf, np.nan], None)
|
|
461
|
+
|
|
462
|
+
return df[
|
|
463
|
+
[
|
|
464
|
+
"instrument",
|
|
465
|
+
"instrument_title",
|
|
466
|
+
"date",
|
|
467
|
+
"eps",
|
|
468
|
+
]
|
|
469
|
+
]
|