wawi 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- wawi/__init__.py +8 -4
- wawi/abq.py +1128 -0
- wawi/fe.py +134 -0
- wawi/general.py +473 -0
- wawi/identification.py +66 -0
- wawi/io.py +696 -0
- wawi/modal.py +608 -0
- wawi/plot.py +569 -0
- wawi/prob.py +9 -0
- wawi/random.py +38 -0
- wawi/signal.py +45 -0
- wawi/structural.py +278 -0
- wawi/time_domain.py +126 -0
- wawi/tools.py +7 -0
- wawi/wave.py +491 -0
- wawi/wind.py +1108 -0
- wawi/wind_code.py +14 -0
- {wawi-0.0.1.dist-info → wawi-0.0.3.dist-info}/METADATA +7 -6
- wawi-0.0.3.dist-info/RECORD +22 -0
- wawi-0.0.1.dist-info/RECORD +0 -6
- {wawi-0.0.1.dist-info → wawi-0.0.3.dist-info}/LICENSE +0 -0
- {wawi-0.0.1.dist-info → wawi-0.0.3.dist-info}/WHEEL +0 -0
- {wawi-0.0.1.dist-info → wawi-0.0.3.dist-info}/top_level.txt +0 -0
wawi/wind.py
ADDED
@@ -0,0 +1,1108 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from scipy.interpolate import interp1d
|
3
|
+
from .modal import statespace, iteig, restructure_as_ref, iteig_naive
|
4
|
+
from .tools import print_progress as pp
|
5
|
+
from scipy.special import jv as besselj, yv as bessely
|
6
|
+
from .general import rodrot, blkdiag
|
7
|
+
from .plot import plot_ads
|
8
|
+
|
9
|
+
conv_text='''
|
10
|
+
-----------------------------------------------------
|
11
|
+
| |
|
12
|
+
| ~ ~ ~~~ ~ ~~ ~ /^^^^^^^^^^^^\ 88ooo... . . . |
|
13
|
+
| ~ ~ ~ ~~ ~ ~ ~\____________/ 88ooo¨¨¨¨ ¨¨ |
|
14
|
+
| CONVERGED! |
|
15
|
+
-----------------------------------------------------
|
16
|
+
'''
|
17
|
+
|
18
|
+
beaufort_dict = {
|
19
|
+
'calm': [0, 0.5],
|
20
|
+
'light air': [0.5, 1.5],
|
21
|
+
'light breeze': [1.6, 3.3],
|
22
|
+
'gentle breeze': [3.4, 5.5],
|
23
|
+
'moderate breeze': [5.6, 7.9],
|
24
|
+
'fresh breeze': [8, 10.7],
|
25
|
+
'strong breeze': [10.8, 13.8],
|
26
|
+
'moderate gale': [13.9, 17.1],
|
27
|
+
'gale': [17.2, 20.7],
|
28
|
+
'strong gale': [20.8, 24.4],
|
29
|
+
'storm': [24.5, 28.4],
|
30
|
+
'violent storm': [28.5, 32.6],
|
31
|
+
'hurricane': [32.7, np.inf]
|
32
|
+
}
|
33
|
+
|
34
|
+
def get_beaufort(U0):
|
35
|
+
return [key for key in beaufort_dict if inrange(U0, beaufort_dict[key])][0]
|
36
|
+
|
37
|
+
def inrange(num, rng):
|
38
|
+
return num<=np.max(rng) and num>=np.min(rng)
|
39
|
+
|
40
|
+
class LoadCoefficients:
|
41
|
+
keys = ['Cd', 'Cm', 'Cl', 'dCd', 'dCm', 'dCl']
|
42
|
+
|
43
|
+
def __repr__(self):
|
44
|
+
return 'LoadCoefficients (Cd, Cl, Cm, dCd, dCl, dCm)'
|
45
|
+
|
46
|
+
def __str__(self):
|
47
|
+
return f'Cd:{self.Cd}, dCd:{self.dCd}, Cl:{self.Cl}, dCl:{self.dCl}, Cm:{self.Cm}, dCm:{self.dCm}'
|
48
|
+
|
49
|
+
def __init__(self, Cd=None, dCd=None, Cl=None, dCl=None, Cm=None, dCm=None, fill_empty=True):
|
50
|
+
self.Cd = Cd
|
51
|
+
self.dCd = dCd
|
52
|
+
self.Cl = Cl
|
53
|
+
self.dCl = dCl
|
54
|
+
self.Cm = Cm
|
55
|
+
self.dCm = dCm
|
56
|
+
|
57
|
+
if fill_empty:
|
58
|
+
self.fill_empty_with_zeros()
|
59
|
+
|
60
|
+
def fill_empty_with_zeros(self):
|
61
|
+
for key in self.keys:
|
62
|
+
if getattr(self, key) is None:
|
63
|
+
setattr(self, key, 0)
|
64
|
+
|
65
|
+
def to_dict(self):
|
66
|
+
return {key: getattr(self, key) for key in self.keys}
|
67
|
+
|
68
|
+
class ADs:
|
69
|
+
ad_keys = ['P1', 'P2', 'P3', 'P4', 'P5', 'P6',
|
70
|
+
'H1', 'H2', 'H3', 'H4', 'H5', 'H6',
|
71
|
+
'A1', 'A2', 'A3', 'A4', 'A5', 'A6']
|
72
|
+
|
73
|
+
P1, P2, P3, P4, P5, P6 = None, None, None, None, None, None
|
74
|
+
H1, H2, H3, H4, H5, H6 = None, None, None, None, None, None
|
75
|
+
A1, A2, A3, A4, A5, A6 = None, None, None, None, None, None
|
76
|
+
|
77
|
+
def __init__(self, ad_type='not specified',
|
78
|
+
P1=None, P2=None, P3=None, P4=None, P5=None, P6=None,
|
79
|
+
H1=None, H2=None, H3=None, H4=None, H5=None, H6=None,
|
80
|
+
A1=None, A2=None, A3=None, A4=None, A5=None, A6=None):
|
81
|
+
|
82
|
+
self.type = ad_type
|
83
|
+
|
84
|
+
self.P1 = P1
|
85
|
+
self.P2 = P2
|
86
|
+
self.P3 = P3
|
87
|
+
self.P4 = P4
|
88
|
+
self.P5 = P5
|
89
|
+
self.P6 = P6
|
90
|
+
|
91
|
+
self.H1 = H1
|
92
|
+
self.H2 = H2
|
93
|
+
self.H3 = H3
|
94
|
+
self.H4 = H4
|
95
|
+
self.H5 = H5
|
96
|
+
self.H6 = H6
|
97
|
+
|
98
|
+
self.A1 = A1
|
99
|
+
self.A2 = A2
|
100
|
+
self.A3 = A3
|
101
|
+
self.A4 = A4
|
102
|
+
self.A5 = A5
|
103
|
+
self.A6 = A6
|
104
|
+
|
105
|
+
def plot(self, v=np.arange(0,5,0.01), **kwargs):
|
106
|
+
return plot_ads(self.to_dict(), v, **kwargs)
|
107
|
+
|
108
|
+
|
109
|
+
def to_dict(self):
|
110
|
+
return {key: getattr(self, key) for key in self.ad_keys}
|
111
|
+
|
112
|
+
def evaluate_all(self, v):
|
113
|
+
AD_evaluated = dict()
|
114
|
+
for key in self.ad_keys:
|
115
|
+
AD_evaluated[key] = getattr(self, key)(v)
|
116
|
+
|
117
|
+
return AD_evaluated
|
118
|
+
|
119
|
+
|
120
|
+
def evaluate(self, key, v):
|
121
|
+
AD_evaluated = getattr(self, key)(v)
|
122
|
+
|
123
|
+
return AD_evaluated
|
124
|
+
|
125
|
+
def flatplate_ads():
|
126
|
+
|
127
|
+
ad_dict = dict()
|
128
|
+
|
129
|
+
def F(v):
|
130
|
+
J1 = besselj(1, 0.5/v)
|
131
|
+
Y1 = bessely(1, 0.5/v)
|
132
|
+
J0 = besselj(0, 0.5/v)
|
133
|
+
Y0 = bessely(0, 0.5/v)
|
134
|
+
|
135
|
+
a = J1 + Y0
|
136
|
+
b = Y1 - J0
|
137
|
+
c = a**2 + b**2
|
138
|
+
|
139
|
+
return (J1*a + Y1*b)/c
|
140
|
+
|
141
|
+
def G(v):
|
142
|
+
J1 = besselj(1, 0.5/v)
|
143
|
+
Y1 = bessely(1, 0.5/v)
|
144
|
+
J0 = besselj(0, 0.5/v)
|
145
|
+
Y0 = bessely(0, 0.5/v)
|
146
|
+
|
147
|
+
a = J1 + Y0
|
148
|
+
b = Y1 - J0
|
149
|
+
c = a**2 + b**2
|
150
|
+
return -(J1*J0 + Y1*Y0)/c
|
151
|
+
|
152
|
+
ad_dict['H1'] = lambda v: -2*np.pi*F(v)*v
|
153
|
+
ad_dict['H2'] = lambda v: np.pi/2*(1+F(v)+4*G(v)*v)*v
|
154
|
+
ad_dict['H3'] = lambda v: 2*np.pi*(F(v)*v-G(v)/4)*v
|
155
|
+
ad_dict['H4'] = lambda v: np.pi/2*(1+4*G(v)*v)
|
156
|
+
ad_dict['H5'] = lambda v: 0*v
|
157
|
+
ad_dict['H6'] = lambda v: 0*v
|
158
|
+
|
159
|
+
ad_dict['A1'] = lambda v: -np.pi/2*F(v)*v
|
160
|
+
ad_dict['A2'] = lambda v: -np.pi/8*(1-F(v)-4*G(v)*v)*v
|
161
|
+
ad_dict['A3'] = lambda v: np.pi/2*(F(v)*v-G(v)/4)*v
|
162
|
+
ad_dict['A4'] = lambda v: np.pi/2*G(v)*v
|
163
|
+
ad_dict['A5'] = lambda v: 0*v
|
164
|
+
ad_dict['A6'] = lambda v: 0*v
|
165
|
+
|
166
|
+
ad_dict['P1'] = lambda v: 0*v
|
167
|
+
ad_dict['P2'] = lambda v: 0*v
|
168
|
+
ad_dict['P3'] = lambda v: 0*v
|
169
|
+
ad_dict['P4'] = lambda v: 0*v
|
170
|
+
ad_dict['P4'] = lambda v: 0*v
|
171
|
+
ad_dict['P5'] = lambda v: 0*v
|
172
|
+
ad_dict['P6'] = lambda v: 0*v
|
173
|
+
|
174
|
+
return ad_dict
|
175
|
+
|
176
|
+
|
177
|
+
def quasisteady_ads(D, B, load_coefficients):
|
178
|
+
# Assuming load coeffs are normalized wrt. both D (Cd) and B (Cl and Cm) and ADs are
|
179
|
+
# normalized using B only.
|
180
|
+
|
181
|
+
if type(load_coefficients)==dict:
|
182
|
+
Cd = load_coefficients['Cd']
|
183
|
+
dCd = load_coefficients['dCd']
|
184
|
+
Cl = load_coefficients['Cl']
|
185
|
+
dCl = load_coefficients['dCl']
|
186
|
+
Cm = load_coefficients['Cm']
|
187
|
+
dCm = load_coefficients['dCm']
|
188
|
+
else:
|
189
|
+
Cd, dCd = load_coefficients.Cd, load_coefficients.dCd
|
190
|
+
Cl, dCl = load_coefficients.Cl, load_coefficients.dCl
|
191
|
+
Cm, dCm = load_coefficients.Cm, load_coefficients.dCm
|
192
|
+
|
193
|
+
ad_dict = dict()
|
194
|
+
ad_dict['P1'], ad_dict['P2'], ad_dict['P3'] = lambda v: -2*Cd*D/B*v, lambda v: 0*v, lambda v: dCd*D/B*v**2
|
195
|
+
ad_dict['P4'], ad_dict['P5'], ad_dict['P6'] = lambda v: 0*v, lambda v: (Cl-dCd*D/B)*v, lambda v: 0*v
|
196
|
+
|
197
|
+
ad_dict['H1'], ad_dict['H2'], ad_dict['H3'] = lambda v: -(dCl+Cd*D/B)*v, lambda v: 0*v, lambda v: dCl*v**2
|
198
|
+
ad_dict['H4'], ad_dict['H5'], ad_dict['H6'] = lambda v: 0*v, lambda v: -2*Cl*v, lambda v: 0*v
|
199
|
+
|
200
|
+
ad_dict['A1'], ad_dict['A2'], ad_dict['A3'] = lambda v: -dCm*v, lambda v: 0*v, lambda v: dCm*v**2
|
201
|
+
ad_dict['A4'], ad_dict['A5'], ad_dict['A6'] = lambda v: 0*v, lambda v: -2*Cm*v, lambda v: 0*v
|
202
|
+
|
203
|
+
return ad_dict
|
204
|
+
|
205
|
+
|
206
|
+
def compute_aero_matrices(U, AD, B, elements, T_wind, phi,
|
207
|
+
omega_reduced=None, print_progress=False, rho=1.225):
|
208
|
+
|
209
|
+
if omega_reduced is None:
|
210
|
+
omega_reduced = np.linspace(0.015, 2.0, 75)
|
211
|
+
|
212
|
+
n_modes = phi.shape[1]
|
213
|
+
|
214
|
+
Kae = np.zeros([n_modes, n_modes, len(omega_reduced)])
|
215
|
+
Cae = np.zeros([n_modes, n_modes, len(omega_reduced)])
|
216
|
+
|
217
|
+
for element_ix, element in enumerate(elements):
|
218
|
+
|
219
|
+
if callable(U):
|
220
|
+
U_el_glob = U(element.get_cog())
|
221
|
+
else:
|
222
|
+
U_el_glob = U*1
|
223
|
+
|
224
|
+
U_el = normal_wind(T_wind, element.T0, U=U_el_glob)
|
225
|
+
|
226
|
+
v = U_el/(B*omega_reduced)
|
227
|
+
|
228
|
+
for k, v_k in enumerate(v):
|
229
|
+
k_aero, c_aero = element_aero_mats(B, omega_reduced[k],
|
230
|
+
AD.evaluate_all(v_k),
|
231
|
+
element.L, T=element.T0,
|
232
|
+
phi=phi[element.global_dofs, :], rho=rho)
|
233
|
+
|
234
|
+
Kae[:, :, k] = Kae[:, :, k] + k_aero
|
235
|
+
Cae[:, :, k] = Cae[:, :, k] + c_aero
|
236
|
+
|
237
|
+
if print_progress:
|
238
|
+
pp(element_ix+1, len(elements), sym='=', postfix=' ESTABLISHING WIND EXCITATION')
|
239
|
+
print('')
|
240
|
+
|
241
|
+
Cae = interp1d(omega_reduced, Cae, kind='quadratic', fill_value='extrapolate', bounds_error=False)
|
242
|
+
Kae = interp1d(omega_reduced, Kae, kind='quadratic', fill_value='extrapolate', bounds_error=False)
|
243
|
+
|
244
|
+
|
245
|
+
return Kae, Cae
|
246
|
+
|
247
|
+
|
248
|
+
def compute_aero_matrices_sets(U, AD, B, elements, T_wind, phi_dict,
|
249
|
+
omega_reduced=None, omega=None, print_progress=False, sets=None):
|
250
|
+
|
251
|
+
if sets is None:
|
252
|
+
sets = elements.keys()
|
253
|
+
|
254
|
+
if omega is None:
|
255
|
+
return_as_function = True
|
256
|
+
else:
|
257
|
+
first_is_zero = omega[0]==0.0
|
258
|
+
if first_is_zero:
|
259
|
+
omega = omega[1:]
|
260
|
+
|
261
|
+
if omega_reduced is None:
|
262
|
+
omega_reduced = np.logspace(np.log10(0.01), np.log10(2), 100) #standard values should be reasonable in most typical cases - change later!
|
263
|
+
|
264
|
+
first_key = [str(key) for key in sets][0]
|
265
|
+
n_modes = np.shape(phi_dict[first_key])[1]
|
266
|
+
|
267
|
+
Kae = np.zeros([n_modes, n_modes, len(omega_reduced)])
|
268
|
+
Cae = np.zeros([n_modes, n_modes, len(omega_reduced)])
|
269
|
+
|
270
|
+
for set_name in sets:
|
271
|
+
B_set = B[set_name]
|
272
|
+
AD_set = AD[set_name]
|
273
|
+
phi = phi_dict[set_name]
|
274
|
+
elements_set = elements[set_name]
|
275
|
+
|
276
|
+
for element_ix, element in enumerate(elements_set):
|
277
|
+
T_el = element.T0
|
278
|
+
U_el = normal_wind(T_wind, T_el, U=U)
|
279
|
+
v = U_el/(B_set*omega_reduced)
|
280
|
+
|
281
|
+
dof_range = np.hstack([element.nodes[0].global_dofs, element.nodes[1].global_dofs])
|
282
|
+
|
283
|
+
for k, v_k in enumerate(v):
|
284
|
+
k_aero, c_aero = element_aero_mats(B_set, omega_reduced[k], AD_set.evaluate_all(v_k), element.L, T=T_el, phi=phi[dof_range, :])
|
285
|
+
Kae[:, :, k] += k_aero
|
286
|
+
Cae[:, :, k] += c_aero
|
287
|
+
|
288
|
+
if print_progress:
|
289
|
+
pp(element_ix+1, len(elements_set), sym='>', postfix=f' finished with set "{set_name}".')
|
290
|
+
|
291
|
+
if print_progress:
|
292
|
+
print('')
|
293
|
+
|
294
|
+
Cae = interp1d(omega_reduced, Cae, kind='quadratic',fill_value='extrapolate')
|
295
|
+
Kae = interp1d(omega_reduced, Kae, kind='quadratic', fill_value='extrapolate')
|
296
|
+
|
297
|
+
if return_as_function:
|
298
|
+
return Kae, Cae
|
299
|
+
else:
|
300
|
+
Cae = Cae(omega)
|
301
|
+
Kae = Kae(omega)
|
302
|
+
|
303
|
+
if first_is_zero:
|
304
|
+
Cae = np.insert(Cae, 0, Cae[:,:,0]*0, axis=2)
|
305
|
+
Kae = np.insert(Kae, 0, Kae[:,:,0]*0, axis=2)
|
306
|
+
|
307
|
+
return Kae, Cae
|
308
|
+
|
309
|
+
def mvregress_ads(beta):
|
310
|
+
ad_dict = dict()
|
311
|
+
ad_keys = ['P1', 'P2', 'P3', 'P4', 'P5', 'P6',
|
312
|
+
'H1', 'H2', 'H3', 'H4', 'H5', 'H6',
|
313
|
+
'A1', 'A2', 'A3', 'A4', 'A5', 'A6']
|
314
|
+
|
315
|
+
for key in ad_keys:
|
316
|
+
ad_dict[key] = lambda v, key=key: 0
|
317
|
+
|
318
|
+
#TODO: FINALIZE, NOT FINISHED
|
319
|
+
|
320
|
+
return ad_dict
|
321
|
+
|
322
|
+
|
323
|
+
def f_rf_fun_legacy(a, d, v):
|
324
|
+
N = len(a)
|
325
|
+
f = 0j
|
326
|
+
for l in range(0, 3):
|
327
|
+
f = f + a[l] * (1j/v)**l
|
328
|
+
|
329
|
+
for l in range(0, N-3):
|
330
|
+
f = f + a[l+2]*(1j/v) / ((1j/v + d[l]))
|
331
|
+
|
332
|
+
f = f*v**2
|
333
|
+
return f
|
334
|
+
|
335
|
+
|
336
|
+
def f_rf_fun(a, d, v):
|
337
|
+
N = len(a)
|
338
|
+
f = np.array(a[0])*0j
|
339
|
+
|
340
|
+
for l in range(0, 3):
|
341
|
+
f = f + a[l] * (1j/v)**l
|
342
|
+
|
343
|
+
for l in range(0, N-3):
|
344
|
+
f = f + a[l+2]*(1j/v) / ((1j/v + d[l]))
|
345
|
+
|
346
|
+
f = f*v**2
|
347
|
+
|
348
|
+
return f
|
349
|
+
|
350
|
+
|
351
|
+
def rf_ads(a, d):
|
352
|
+
# B assumed to be implicitly included in RF factors
|
353
|
+
ad_dict = dict()
|
354
|
+
ad_keys = ['P1', 'P2', 'P3', 'P4', 'P5', 'P6',
|
355
|
+
'H1', 'H2', 'H3', 'H4', 'H5', 'H6',
|
356
|
+
'A1', 'A2', 'A3', 'A4', 'A5', 'A6']
|
357
|
+
|
358
|
+
imag_component_ad = ['P1', 'P2', 'P5', 'H1', 'H2', 'H5', 'A1', 'A2', 'A5']
|
359
|
+
|
360
|
+
position_dict = {'P1': [0,0], 'P2': [0,2], 'P3': [0,2], 'P4': [0,0], 'P5': [0,1], 'P6': [0,1],
|
361
|
+
'H1': [1,1], 'H2': [1,2], 'H3': [1,2], 'H4': [1,1], 'H5': [1,0], 'H6': [1,0],
|
362
|
+
'A1': [2,1], 'A2': [2,2], 'A3': [2,2], 'A4': [2,1], 'A5': [2,0], 'A6': [2,0]}
|
363
|
+
|
364
|
+
for key in ad_keys:
|
365
|
+
row = position_dict[key][0]
|
366
|
+
col = position_dict[key][1]
|
367
|
+
a_key = [ai[row, col] for ai in a]
|
368
|
+
|
369
|
+
if key in imag_component_ad:
|
370
|
+
ad_dict[key] = lambda v, a=a_key: np.imag(f_rf_fun_legacy(a, d, v))
|
371
|
+
else:
|
372
|
+
ad_dict[key] = lambda v, a=a_key: np.real(f_rf_fun_legacy(a, d, v))
|
373
|
+
|
374
|
+
return ad_dict
|
375
|
+
|
376
|
+
|
377
|
+
def distribute_to_dict(prefix, array, count_start=1):
|
378
|
+
array_dict = dict()
|
379
|
+
for ix,array_i in enumerate(array):
|
380
|
+
key = prefix + str(ix+count_start)
|
381
|
+
array_dict[key] = array_i
|
382
|
+
|
383
|
+
return array_dict
|
384
|
+
|
385
|
+
|
386
|
+
def distribute_multi_to_dict(prefixes, arrays):
|
387
|
+
array_dict = dict()
|
388
|
+
|
389
|
+
for prefix_ix, prefix in enumerate(prefixes):
|
390
|
+
for ix, array_i in enumerate(arrays[prefix_ix]):
|
391
|
+
key = prefix + str(ix+1)
|
392
|
+
array_dict[key] = array_i
|
393
|
+
|
394
|
+
return array_dict
|
395
|
+
|
396
|
+
|
397
|
+
def unwrap_rf_parameters(parameters):
|
398
|
+
keys = list(parameters.keys())
|
399
|
+
a_ixs = np.where([word.startswith('a') for word in keys])[0]
|
400
|
+
d_ixs = np.where([word.startswith('d') for word in keys])[0]
|
401
|
+
a_nums = np.array([int(string.split('a')[1]) for string in np.array(keys)[a_ixs]])
|
402
|
+
d_nums = np.array([int(string.split('d')[1]) for string in np.array(keys)[d_ixs]])
|
403
|
+
|
404
|
+
a = [np.zeros([3,3])]*(max(a_nums))
|
405
|
+
d = [0]*(max(d_nums))
|
406
|
+
|
407
|
+
for a_num in a_nums:
|
408
|
+
a[a_num-1] = np.array(parameters['a%i' %a_num])
|
409
|
+
|
410
|
+
for d_num in d_nums:
|
411
|
+
d[d_num-1] = parameters['d%i' %d_num]
|
412
|
+
|
413
|
+
d = np.array(d)
|
414
|
+
return a,d
|
415
|
+
|
416
|
+
|
417
|
+
def normal_wind(T_g2wi, T_g2el, U=1.0):
|
418
|
+
T_wi2el = T_g2el @ T_g2wi.T
|
419
|
+
e_wind_local = (T_wi2el @ np.array([1, 0, 0])[np.newaxis,:].T).flatten()
|
420
|
+
|
421
|
+
Un = U * np.sqrt(e_wind_local[1]**2+e_wind_local[2]**2)
|
422
|
+
return Un
|
423
|
+
|
424
|
+
|
425
|
+
def el_mat_generic(Ayy,Ayz,Ayt,Azy,Azz,Azt,Aty,Atz,Att,L):
|
426
|
+
mat = np.zeros([12,12])
|
427
|
+
|
428
|
+
mat[0:6, 0:6] = np.array([
|
429
|
+
[0, 0, 0, 0, 0, 0 ],
|
430
|
+
[0, 156*Ayy, 156*Ayz, 147*Ayt, -22*L*Ayz, 22*L*Ayy ],
|
431
|
+
[0, 156*Azy, 156*Azz, 147*Azt, -22*L*Azz, 22*L*Azy ],
|
432
|
+
[0, 147*Aty, 147*Atz, 140*Att, -21*L*Atz, 21*L*Aty ],
|
433
|
+
[0, -22*L*Azy, -22*L*Azz, -21*L*Azt, 4*L**2*Azz, -4*L**2*Azy ],
|
434
|
+
[0, 22*L*Ayy, 22*L*Ayz, 21*L*Ayt, -4*L**2*Ayz, 4*L**2*Ayy ],
|
435
|
+
])
|
436
|
+
|
437
|
+
mat[0:6, 6:12] = np.array([
|
438
|
+
[0, 0, 0, 0, 0, 0 ],
|
439
|
+
[0, 54*Ayy, 54*Ayz, 63*Ayt, 13*L*Ayz, -13*L*Ayy ],
|
440
|
+
[0, 54*Azy, 54*Azz, 63*Azt, 13*L*Azz, -13*L*Azy ],
|
441
|
+
[0, 63*Aty, 63*Atz, 70*Att, 14*L*Atz, -14*L*Aty ],
|
442
|
+
[0, -13*L*Azy, -13*L*Azz, -14*L*Azt, -3*L**2*Azz, 3*L**2*Azy ],
|
443
|
+
[0, 13*L*Ayy, 13*L*Ayz, 14*L*Ayt, 3*L**2*Ayz, -3*L**2*Ayy ],
|
444
|
+
])
|
445
|
+
|
446
|
+
mat[6:12, 0:6] = np.array([
|
447
|
+
[0, 0, 0, 0, 0, 0 ],
|
448
|
+
[0, 54*Ayy, 54*Ayz, 63*Ayt, -13*L*Ayz, 13*L*Ayy ],
|
449
|
+
[0, 54*Azy, 54*Azz, 63*Azt, -13*L*Azz, 13*L*Azy ],
|
450
|
+
[0, 63*Aty, 63*Atz, 70*Att, -14*L*Atz, 14*L*Aty ],
|
451
|
+
[0, 13*L*Azy, 13*L*Azz, 14*L*Azt, -3*L**2*Azz, 3*L**2*Azy ],
|
452
|
+
[0, -13*L*Ayy, -13*L*Ayz, -14*L*Ayt, 3*L**2*Ayz, -3*L**2*Ayy ],
|
453
|
+
])
|
454
|
+
|
455
|
+
mat[6:12,6:12] = np.array([
|
456
|
+
[0, 0, 0, 0, 0, 0 ],
|
457
|
+
[0, 156*Ayy, 156*Ayz, 147*Ayt, 22*L*Ayz, -22*L*Ayy ],
|
458
|
+
[0, 156*Azy, 156*Azz, 147*Azt, 22*L*Azz, -22*L*Azy ],
|
459
|
+
[0, 147*Aty, 147*Atz, 140*Att, 21*L*Atz, -21*L*Aty ],
|
460
|
+
[0, 22*L*Azy, 22*L*Azz, 21*L*Azt, 4*L**2*Azz, -4*L**2*Azy ],
|
461
|
+
[0, -22*L*Ayy, -22*L*Ayz, -21*L*Ayt, -4*L**2*Ayz, 4*L**2*Ayy ],
|
462
|
+
])
|
463
|
+
|
464
|
+
return mat
|
465
|
+
|
466
|
+
def element_aero_mats(B, omega, ad_dict, L, T=None, phi=None, rho=1.225):
|
467
|
+
# Called for selected reduced velocity, specified by omega value (implicitly mean wind).
|
468
|
+
# Corresponding values of P,H and A are used for given mean wind velocity.
|
469
|
+
|
470
|
+
# Stiffness
|
471
|
+
Ayy = 1/2*rho*B**2*omega**2*ad_dict['P4']
|
472
|
+
Ayz = 1/2*rho*B**2*omega**2*ad_dict['P6']
|
473
|
+
Ayt = -1/2*rho*B**2*omega**2*B*ad_dict['P3']
|
474
|
+
|
475
|
+
Azy = 1/2*rho*B**2*omega**2*ad_dict['H6']
|
476
|
+
Azz = 1/2*rho*B**2*omega**2*ad_dict['H4']
|
477
|
+
Azt = -1/2*rho*B**2*omega**2*B*ad_dict['H3']
|
478
|
+
|
479
|
+
Aty = -1/2*rho*B**2*omega**2*B*ad_dict['A6']
|
480
|
+
Atz = -1/2*rho*B**2*omega**2*B*ad_dict['A4']
|
481
|
+
Att = 1/2*rho*B**2*omega**2*B**2*ad_dict['A3']
|
482
|
+
|
483
|
+
k_aero = L/420 * el_mat_generic(Ayy,Ayz,Ayt,Azy,Azz,Azt,Aty,Atz,Att,L)
|
484
|
+
|
485
|
+
|
486
|
+
# Damping
|
487
|
+
Ayy = 1/2*rho*B**2*omega*ad_dict['P1']
|
488
|
+
Ayz = 1/2*rho*B**2*omega*ad_dict['P5']
|
489
|
+
Ayt = -1/2*rho*B**2*omega*B*ad_dict['P2']
|
490
|
+
|
491
|
+
Azy = 1/2*rho*B**2*omega*ad_dict['H5']
|
492
|
+
Azz = 1/2*rho*B**2*omega*ad_dict['H1']
|
493
|
+
Azt = -1/2*rho*B**2*omega*B*ad_dict['H2']
|
494
|
+
|
495
|
+
Aty = -1/2*rho*B**2*omega*B*ad_dict['A5']
|
496
|
+
Atz = -1/2*rho*B**2*omega*B*ad_dict['A1']
|
497
|
+
Att = 1/2*rho*B**2*omega*B**2*ad_dict['A2']
|
498
|
+
|
499
|
+
c_aero = L/420 * el_mat_generic(Ayy,Ayz,Ayt,Azy,Azz,Azt,Aty,Atz,Att,L)
|
500
|
+
|
501
|
+
if (T is None and phi is None)!=True:
|
502
|
+
if T is not None: #if no transformation matrix is given, a local matrix is output
|
503
|
+
if np.shape(T)[0]==6:
|
504
|
+
T = np.kron(np.eye(2), T) #two times 6dof matrix, block diagonal
|
505
|
+
if np.shape(T)[0]==3:
|
506
|
+
T = np.kron(np.eye(4), T) #four times 3dof matrix, block diagonal
|
507
|
+
elif np.shape(T)[0]!=12:
|
508
|
+
raise ValueError('Wrong size of T (should be 3x3, 6x6 or 12x12')
|
509
|
+
else:
|
510
|
+
T = np.eye(12)
|
511
|
+
|
512
|
+
if phi is not None:
|
513
|
+
T = T @ phi
|
514
|
+
|
515
|
+
k_aero = T.T @ k_aero @ T
|
516
|
+
c_aero = T.T @ c_aero @ T
|
517
|
+
|
518
|
+
return k_aero, c_aero
|
519
|
+
|
520
|
+
|
521
|
+
# Spectra
|
522
|
+
def kaimal_auto(omega, Lx, A, sigma, V):
|
523
|
+
f = omega/(2*np.pi)
|
524
|
+
fhat = f*Lx/V
|
525
|
+
S = (sigma**2*(A*fhat)/(1+(1.5*A*fhat))**(5/3))/f
|
526
|
+
|
527
|
+
return S/(2*np.pi)
|
528
|
+
|
529
|
+
def von_Karman_auto(omega, Lx, sigma, V):
|
530
|
+
|
531
|
+
A1 = [
|
532
|
+
0.0,
|
533
|
+
0.0,
|
534
|
+
755.2,
|
535
|
+
]
|
536
|
+
|
537
|
+
A2 = [
|
538
|
+
70.8,
|
539
|
+
0.0,
|
540
|
+
283.2,
|
541
|
+
]
|
542
|
+
|
543
|
+
rr = [
|
544
|
+
5/6,
|
545
|
+
11/6,
|
546
|
+
11/6,
|
547
|
+
]
|
548
|
+
|
549
|
+
f = omega/(2*np.pi)
|
550
|
+
fhat = f*Lx/V
|
551
|
+
S = (sigma**2*( (4*fhat)*(1+A1*fhat**2) )/ (1+A2*fhat**2)**(rr))/f
|
552
|
+
|
553
|
+
return S/(2*np.pi)
|
554
|
+
|
555
|
+
def generic_kaimal_matrix(omega, nodes, T_wind, A, sigma, C, Lx, U, options=None):
|
556
|
+
# Adopted from MATLAB version. `nodes` is list with beef-nodes.
|
557
|
+
V = np.zeros(len(nodes)) # Initialize vector with mean wind in all nodes
|
558
|
+
Su = np.zeros([len(nodes), len(nodes)]) # One-point spectra for u component in all nodes
|
559
|
+
Sv = np.zeros([len(nodes), len(nodes)]) # One-point spectra for v component in all nodes
|
560
|
+
Sw = np.zeros([len(nodes), len(nodes)]) # One-point spectra for w component in all nodes
|
561
|
+
xyz = np.zeros([len(nodes), 3]) # Nodes in wind coordinate system
|
562
|
+
|
563
|
+
if options is None:
|
564
|
+
options = {
|
565
|
+
'spectra_type': 'Kaimal'
|
566
|
+
}
|
567
|
+
|
568
|
+
for node_ix, node in enumerate(nodes):
|
569
|
+
xyz[node_ix,:] = (T_wind @ node.coordinates).T #Transform node coordinates to the wind coordinate system
|
570
|
+
V[node_ix] = U(node.coordinates) # Mean wind velocity in the nodes
|
571
|
+
|
572
|
+
if 'spectra_type' in options:
|
573
|
+
if options['spectra_type'] == 'vonKarman':
|
574
|
+
Su[node_ix,:], Sv[node_ix,:], Sw[node_ix,:] = von_Karman_auto(omega, Lx, sigma, V[node_ix])
|
575
|
+
elif options['spectra_type'] == 'Kaimal':
|
576
|
+
Su[node_ix,:], Sv[node_ix,:], Sw[node_ix,:] = kaimal_auto(omega, Lx, A, sigma, V[node_ix]) # One point spectra for u component in all nodes
|
577
|
+
else: # use Kaimal (default)
|
578
|
+
Su[node_ix,:], Sv[node_ix,:], Sw[node_ix,:] = kaimal_auto(omega, Lx, A, sigma, V[node_ix])
|
579
|
+
|
580
|
+
x = xyz[:, 0]
|
581
|
+
y = xyz[:, 1]
|
582
|
+
z = xyz[:, 2]
|
583
|
+
|
584
|
+
dxdx = x[np.newaxis,:] - x[np.newaxis,:].T # Matrix with all distances between nodes in x direction
|
585
|
+
dydy = y[np.newaxis,:] - y[np.newaxis,:].T # Matrix with all distances between nodes in y direction
|
586
|
+
dzdz = z[np.newaxis,:] - z[np.newaxis,:].T # Matrix with all distances between nodes in z direction
|
587
|
+
|
588
|
+
invV = 2/(V[np.newaxis,:]+V[np.newaxis,:].T) # Inverse mean wind velocity for all combination of nodes
|
589
|
+
|
590
|
+
Suu = np.sqrt(Su)*np.sqrt(Su).T*np.exp(
|
591
|
+
-invV*omega/(2*np.pi)*np.sqrt(
|
592
|
+
(C[0,0]*dxdx)**2 + (C[1,0]*dydy)**2 + (C[2,0]*dzdz)**2)
|
593
|
+
)
|
594
|
+
|
595
|
+
Svv = np.sqrt(Sv)*np.sqrt(Sv).T*np.exp(
|
596
|
+
-invV*omega/(2*np.pi)*np.sqrt(
|
597
|
+
(C[0,1]*dxdx)**2 + (C[1,1]*dydy)**2 + (C[2,1]*dzdz)**2)
|
598
|
+
)
|
599
|
+
|
600
|
+
Sww = np.sqrt(Sw)*np.sqrt(Sw).T*np.exp(
|
601
|
+
-invV*omega/(2*np.pi)*np.sqrt(
|
602
|
+
(C[0,2]*dxdx)**2 + (C[1,2]*dydy)**2 + (C[2,2]*dzdz)**2)
|
603
|
+
)
|
604
|
+
|
605
|
+
SvSv = np.zeros([3*len(nodes), 3*len(nodes)]) # Cross sectral density matrix containing all the turbulence components
|
606
|
+
SvSv[0::3, 0::3] = Suu
|
607
|
+
SvSv[1::3, 1::3] = Svv
|
608
|
+
SvSv[2::3, 2::3] = Sww
|
609
|
+
|
610
|
+
return SvSv
|
611
|
+
|
612
|
+
|
613
|
+
def loadmatrix_fe(V, load_coefficients, rho, B, D, Admittance = None):
|
614
|
+
|
615
|
+
if Admittance is None :
|
616
|
+
Admittance = lambda omega_k: np.ones( (4,3) )
|
617
|
+
|
618
|
+
Cd = load_coefficients['Cd']
|
619
|
+
dCd = load_coefficients['dCd']
|
620
|
+
Cl = load_coefficients['Cl']
|
621
|
+
dCl = load_coefficients['dCl']
|
622
|
+
Cm = load_coefficients['Cm']
|
623
|
+
dCm = load_coefficients['dCm']
|
624
|
+
|
625
|
+
# Equation 7 from Oiseth, 2010
|
626
|
+
BqBq = lambda omega_k: 1/2*rho*V*B*Admittance(omega_k*B/V/2/np.pi)*np.array([[0, 0, 0],
|
627
|
+
[0, 2*D/B*Cd, (D/B*dCd-Cl)],
|
628
|
+
[0, 2*Cl, (dCl+D/B*Cd)],
|
629
|
+
[0, -2*B*Cm, -B*dCm]])
|
630
|
+
|
631
|
+
return BqBq
|
632
|
+
|
633
|
+
def loadmatrix_fe_static(V, load_coefficients, rho, B, D ):
|
634
|
+
|
635
|
+
Cd = load_coefficients['Cd']
|
636
|
+
Cl = load_coefficients['Cl']
|
637
|
+
Cm = load_coefficients['Cm']
|
638
|
+
|
639
|
+
BqBq = 1/2*rho*V**2*B*np.array([[ 0, 0 , 0 ],
|
640
|
+
[ D/B*Cd, 0 , 0 ],
|
641
|
+
[ 0, 0 , Cl ],
|
642
|
+
[ 0, B*Cm , 0 ]])
|
643
|
+
return BqBq
|
644
|
+
|
645
|
+
def loadvector(T_el, Bq, T_wind, L, static = False):
|
646
|
+
|
647
|
+
G = np.zeros([12,4])
|
648
|
+
G[0,0] = L/2
|
649
|
+
G[1,1] = L/2
|
650
|
+
G[2,2] = L/2
|
651
|
+
G[3,3] = L/2
|
652
|
+
G[6,0] = L/2
|
653
|
+
G[7,1] = L/2
|
654
|
+
G[8,2] = L/2
|
655
|
+
G[9,3] = L/2
|
656
|
+
G[4,2] = -L**2/12
|
657
|
+
G[5,1] = L**2/12
|
658
|
+
G[10,2] = L**2/12
|
659
|
+
G[11,1] = -L**2/12
|
660
|
+
|
661
|
+
# Transform from wind coordinates to local element coordinates
|
662
|
+
|
663
|
+
if static is False:
|
664
|
+
T = T_el @ T_wind.T
|
665
|
+
else:
|
666
|
+
T = T_el @ T_wind.T @ np.ones( [3,1] )
|
667
|
+
|
668
|
+
T_full = blkdiag(T_el, 4) # Block diagonal - repeated 4 times to transform both trans and rot DOFs at each node (2+2)
|
669
|
+
|
670
|
+
# T_full.T transforms L-->G
|
671
|
+
R = T_full.T @ G @ Bq @ T
|
672
|
+
R1 = R[0:6] # Element node 1
|
673
|
+
R2 = R[6:12] # Element node 2
|
674
|
+
|
675
|
+
|
676
|
+
return R1, R2
|
677
|
+
|
678
|
+
|
679
|
+
def windaction(omega, S, load_coefficients, elements, T_wind,
|
680
|
+
phi, B, D, U, omega_reduced=None, rho=1.225, print_progress=True,
|
681
|
+
section_lookup=None, nodes=None, Admittance = None):
|
682
|
+
|
683
|
+
if nodes is None:
|
684
|
+
nodes = list(set([a for b in [el.nodes for el in elements] for a in b]))
|
685
|
+
|
686
|
+
n_dofs = 6
|
687
|
+
|
688
|
+
# Ensure that first omega value is not 0 when using logspace omega axis
|
689
|
+
if omega_reduced is None:
|
690
|
+
if np.min(omega) == 0:
|
691
|
+
omega_sorted = np.sort(omega)
|
692
|
+
omega_start = omega_sorted[1]
|
693
|
+
else:
|
694
|
+
omega_start = np.min(omega)
|
695
|
+
|
696
|
+
omega_reduced = np.logspace(np.log10(omega_start), np.log10(np.max(omega)), num=50) # A log frequency axis that is used to obtain the cross-spectral density matrix
|
697
|
+
|
698
|
+
genSqSq_reduced = np.zeros([phi.shape[1], phi.shape[1], len(omega_reduced)]) # Initialize the cross-spectral density matrix
|
699
|
+
|
700
|
+
# Establish RG matrix (common for all freqs)
|
701
|
+
|
702
|
+
|
703
|
+
if section_lookup is None:
|
704
|
+
lc_fun = lambda el: load_coefficients
|
705
|
+
B_fun = lambda el: B
|
706
|
+
D_fun = lambda el: D
|
707
|
+
Admittance_fun = lambda el: Admittance
|
708
|
+
else:
|
709
|
+
def get_sec(el):
|
710
|
+
for key in section_lookup:
|
711
|
+
if el in section_lookup[key]:
|
712
|
+
return key
|
713
|
+
|
714
|
+
lc_fun = lambda el: load_coefficients[get_sec(el)]
|
715
|
+
B_fun = lambda el: B[get_sec(el)]
|
716
|
+
D_fun = lambda el: D[get_sec(el)]
|
717
|
+
|
718
|
+
if Admittance is None: # omit the frequency loop if ADmittance is not included - faster !
|
719
|
+
RG = np.zeros([len(nodes)*n_dofs, 3])
|
720
|
+
for el in elements:
|
721
|
+
node1_dofs = el.nodes[0].global_dofs
|
722
|
+
node2_dofs = el.nodes[1].global_dofs
|
723
|
+
|
724
|
+
mean_wind = U(el.get_cog())
|
725
|
+
Vn = normal_wind(T_wind, el.T0)*mean_wind # Find the normal wind
|
726
|
+
BqBq = loadmatrix_fe(Vn, lc_fun(el), rho, B_fun(el), D_fun(el))
|
727
|
+
R1, R2 = loadvector(el.T0, BqBq, T_wind, el.L) # Obtain the load vector for each element
|
728
|
+
|
729
|
+
RG[node1_dofs, :] = RG[node1_dofs, :] + R1 # Add the contribution from the element (end 1) to the system
|
730
|
+
RG[node2_dofs, :] = RG[node2_dofs, :] + R2 # Add the contribution from the element (end 2) to the system
|
731
|
+
|
732
|
+
# Make block matrix
|
733
|
+
RG_block = np.zeros([6*len(nodes), 3*len(nodes)])
|
734
|
+
|
735
|
+
for node in nodes:
|
736
|
+
ix = node.index
|
737
|
+
n = np.r_[6*ix:6*ix+6]
|
738
|
+
m = np.r_[3*ix:3*ix+3]
|
739
|
+
RG_block[np.ix_(n,m)] = RG[n,:] #verified with MATLAB version for beam example
|
740
|
+
|
741
|
+
for k, omega_k in enumerate(omega_reduced):
|
742
|
+
if print_progress:
|
743
|
+
pp(k+1, len(omega_reduced), sym='=', postfix=' ESTABLISHING WIND EXCITATION')
|
744
|
+
print('')
|
745
|
+
|
746
|
+
phiT_RG_block = phi.T @ RG_block
|
747
|
+
genSqSq_reduced[:, :, k] = phiT_RG_block @ S(omega_k) @ phiT_RG_block.T # to modal coordinates
|
748
|
+
|
749
|
+
else: # admittance is given - triple loop (the old way, slower)
|
750
|
+
Admittance_fun = lambda el: Admittance[get_sec(el)]
|
751
|
+
|
752
|
+
for k, omega_k in enumerate(omega_reduced):
|
753
|
+
if print_progress:
|
754
|
+
pp(k+1, len(omega_reduced), sym='=', postfix=' ESTABLISHING WIND EXCITATION')
|
755
|
+
print('')
|
756
|
+
|
757
|
+
# Establish RG matrix
|
758
|
+
RG = np.zeros([len(nodes)*n_dofs, 3])
|
759
|
+
|
760
|
+
for el in elements:
|
761
|
+
node1_dofs = el.nodes[0].global_dofs
|
762
|
+
node2_dofs = el.nodes[1].global_dofs
|
763
|
+
|
764
|
+
mean_wind = U(el.get_cog())
|
765
|
+
Vn = normal_wind(T_wind, el.T0)*mean_wind # Find the normal wind
|
766
|
+
BqBq = loadmatrix_fe(Vn, lc_fun(el), rho, B_fun(el), D_fun(el), Admittance = Admittance_fun(el))
|
767
|
+
R1, R2 = loadvector(el.T0, BqBq(omega_k), T_wind, el.L) # Obtain the load vector for each element
|
768
|
+
|
769
|
+
RG[node1_dofs, :] = RG[node1_dofs, :] + R1 # Add the contribution from the element (end 1) to the system
|
770
|
+
RG[node2_dofs, :] = RG[node2_dofs, :] + R2 # Add the contribution from the element (end 2) to the system
|
771
|
+
|
772
|
+
|
773
|
+
# Make block matrix
|
774
|
+
RG_block = np.zeros([6*len(nodes), 3*len(nodes)])
|
775
|
+
|
776
|
+
for node in nodes:
|
777
|
+
ix = node.index
|
778
|
+
n = np.r_[6*ix:6*ix+6]
|
779
|
+
m = np.r_[3*ix:3*ix+3]
|
780
|
+
RG_block[np.ix_(n,m)] = RG[n,:] #verified with MATLAB version for beam example
|
781
|
+
|
782
|
+
phiT_RG_block = phi.T @ RG_block
|
783
|
+
genSqSq_reduced[:, :, k] = phiT_RG_block @ S(omega_k) @ phiT_RG_block.T # to modal coordinates
|
784
|
+
|
785
|
+
|
786
|
+
# Interpolate results to full frequency axis
|
787
|
+
genSqSq = interp1d(omega_reduced, genSqSq_reduced, kind='quadratic', axis=2, fill_value=0, bounds_error=False)
|
788
|
+
|
789
|
+
return genSqSq
|
790
|
+
|
791
|
+
def windaction_static(load_coefficients, elements, T_wind,
|
792
|
+
phi, B, D, U, rho=1.225, print_progress=True,
|
793
|
+
section_lookup=None, nodes=None):
|
794
|
+
|
795
|
+
if nodes is None:
|
796
|
+
nodes = list(set([a for b in [el.nodes for el in elements] for a in b]))
|
797
|
+
|
798
|
+
n_dofs = 6
|
799
|
+
|
800
|
+
if section_lookup is None:
|
801
|
+
lc_fun = lambda el: load_coefficients
|
802
|
+
B_fun = lambda el: B
|
803
|
+
D_fun = lambda el: D
|
804
|
+
else:
|
805
|
+
def get_sec(el):
|
806
|
+
for key in section_lookup:
|
807
|
+
if el in section_lookup[key]:
|
808
|
+
return key
|
809
|
+
|
810
|
+
lc_fun = lambda el: load_coefficients[get_sec(el)]
|
811
|
+
B_fun = lambda el: B[get_sec(el)]
|
812
|
+
D_fun = lambda el: D[get_sec(el)]
|
813
|
+
|
814
|
+
# Establish RG matrix
|
815
|
+
RG = np.zeros([len(nodes)*n_dofs])
|
816
|
+
|
817
|
+
for el in elements:
|
818
|
+
node1_dofs = el.nodes[0].global_dofs
|
819
|
+
node2_dofs = el.nodes[1].global_dofs
|
820
|
+
|
821
|
+
mean_wind = U(el.get_cog())
|
822
|
+
Vn = normal_wind(T_wind, el.T0)*mean_wind # Find the normal wind
|
823
|
+
BqBq = loadmatrix_fe_static(Vn, lc_fun(el), rho, B_fun(el), D_fun(el))
|
824
|
+
R1, R2 = loadvector(el.T0, BqBq, T_wind, el.L, static = True) # Obtain the load vector for each element
|
825
|
+
|
826
|
+
RG[node1_dofs] = RG[node1_dofs] + R1[:,0] # Add the contribution from the element (end 1) to the system
|
827
|
+
RG[node2_dofs] = RG[node2_dofs] + R2[:,0] # Add the contribution from the element (end 2) to the system
|
828
|
+
|
829
|
+
# Make block matrix
|
830
|
+
RG_block = np.zeros([6*len(nodes)])
|
831
|
+
|
832
|
+
for node in nodes:
|
833
|
+
ix = node.index
|
834
|
+
n = np.r_[6*ix:6*ix+6]
|
835
|
+
RG_block[np.ix_(n)] = RG[n] #verified with MATLAB version for beam example
|
836
|
+
|
837
|
+
|
838
|
+
genSqSq = phi.T @ RG_block
|
839
|
+
|
840
|
+
return genSqSq
|
841
|
+
|
842
|
+
def K_from_ad(ad, V, w, B, rho):
|
843
|
+
if w==0:
|
844
|
+
k = np.zeros([3,3])
|
845
|
+
else:
|
846
|
+
v = V / (B*w) # reduced velocity
|
847
|
+
|
848
|
+
k = (0.5*rho*B**2*w**2 *
|
849
|
+
np.vstack([[ad['P4'](v), ad['P6'](v), -B*ad['P3'](v)],
|
850
|
+
[ad['H6'](v), ad['H4'](v), -B*ad['H3'](v)],
|
851
|
+
[-B*ad['A6'](v), -B*ad['A4'](v), B**2*ad['A3'](v)]]))
|
852
|
+
|
853
|
+
|
854
|
+
return k
|
855
|
+
|
856
|
+
|
857
|
+
def C_from_ad(ad, V, w, B, rho):
|
858
|
+
if w==0:
|
859
|
+
c = np.zeros([3,3])
|
860
|
+
else:
|
861
|
+
v = V / (B*w) # reduced velocity
|
862
|
+
|
863
|
+
c = (0.5*rho*B**2*w *
|
864
|
+
np.vstack([[ad['P1'](v), ad['P5'](v), -B*ad['P2'](v)],
|
865
|
+
[ad['H5'](v), ad['H1'](v), -B*ad['H2'](v)],
|
866
|
+
[-B*ad['A5'](v), -B*ad['A1'](v), B**2*ad['A2'](v)]]))
|
867
|
+
|
868
|
+
return c
|
869
|
+
|
870
|
+
|
871
|
+
def phi_aero_sum(mat, phi, x):
|
872
|
+
n_modes = phi.shape[1]
|
873
|
+
n_points = len(x)
|
874
|
+
|
875
|
+
mat_int = np.zeros([n_modes, n_modes, n_points])
|
876
|
+
|
877
|
+
for p in range(n_points):
|
878
|
+
phi_point = phi[p*6+1:p*6+4, :]
|
879
|
+
mat_int[:, :, p] = phi_point.T @ mat @ phi_point
|
880
|
+
|
881
|
+
mat = np.trapz(mat_int, x=x, axis=2)
|
882
|
+
|
883
|
+
return mat
|
884
|
+
|
885
|
+
|
886
|
+
def function_sum(fun, const, fun_factor=1):
|
887
|
+
def fsum(x):
|
888
|
+
if fun is None:
|
889
|
+
return const
|
890
|
+
else:
|
891
|
+
return fun(x)*fun_factor + const
|
892
|
+
|
893
|
+
return fsum
|
894
|
+
|
895
|
+
|
896
|
+
def get_aero_cont_adfun(ad_dict_fun, V, B, rho, phi, x):
|
897
|
+
def K(w):
|
898
|
+
n_modes = phi.shape[1]
|
899
|
+
n_points = len(x)
|
900
|
+
|
901
|
+
mat_int = np.zeros([n_modes, n_modes, n_points])
|
902
|
+
|
903
|
+
for p in range(n_points):
|
904
|
+
phi_point = phi[p*6+1:p*6+4, :]
|
905
|
+
kae = K_from_ad(ad_dict_fun(x[p]), V, w, B, rho)
|
906
|
+
mat_int[:, :, p] = phi_point.T @ kae @ phi_point
|
907
|
+
|
908
|
+
return np.trapz(mat_int, x=x, axis=2)
|
909
|
+
|
910
|
+
|
911
|
+
def C(w):
|
912
|
+
n_modes = phi.shape[1]
|
913
|
+
n_points = len(x)
|
914
|
+
|
915
|
+
mat_int = np.zeros([n_modes, n_modes, n_points])
|
916
|
+
|
917
|
+
for p in range(n_points):
|
918
|
+
phi_point = phi[p*6+1:p*6+4, :]
|
919
|
+
kae = C_from_ad(ad_dict_fun(x[p]), V, w, B, rho)
|
920
|
+
mat_int[:, :, p] = phi_point.T @ kae @ phi_point
|
921
|
+
|
922
|
+
return np.trapz(mat_int, x=x, axis=2)
|
923
|
+
|
924
|
+
|
925
|
+
return K, C
|
926
|
+
|
927
|
+
|
928
|
+
def get_aero_cont_addict(ad_dict, V, B, rho, phi, x):
|
929
|
+
def K(w):
|
930
|
+
kae = K_from_ad(ad_dict, V, w, B, rho)
|
931
|
+
return phi_aero_sum(kae, phi, x)
|
932
|
+
|
933
|
+
def C(w):
|
934
|
+
cae = C_from_ad(ad_dict, V, w, B, rho)
|
935
|
+
return phi_aero_sum(cae, phi, x)
|
936
|
+
|
937
|
+
return K, C
|
938
|
+
|
939
|
+
|
940
|
+
def itflutter_cont(Ms, Cs, Ks, phi, x, ad_dict, B, V=0.0, rho=1.225, dV=1,
|
941
|
+
overshoot_factor=0.5, itmax={}, omega_ref=None,
|
942
|
+
tol={}, print_progress=True, keep_all=False, track_by_psi=True):
|
943
|
+
|
944
|
+
if callable(ad_dict):
|
945
|
+
get_aero = get_aero_cont_adfun
|
946
|
+
else:
|
947
|
+
get_aero = get_aero_cont_addict
|
948
|
+
|
949
|
+
itmax_ = {'V':50, 'f': 15}
|
950
|
+
itmax_.update(**itmax)
|
951
|
+
itmax = dict(itmax_)
|
952
|
+
|
953
|
+
tol_ = {'V': 1e-3, 'f': 1e-4}
|
954
|
+
tol_.update(**tol)
|
955
|
+
tol = tol_
|
956
|
+
|
957
|
+
res = dict()
|
958
|
+
res['V'] = []
|
959
|
+
res['lambd'] = []
|
960
|
+
res['critical_mode'] = []
|
961
|
+
res['critical_psi'] = []
|
962
|
+
|
963
|
+
converged = False
|
964
|
+
psi_prev = None
|
965
|
+
|
966
|
+
if omega_ref is None:
|
967
|
+
A = statespace(Ks, Cs, Ms)
|
968
|
+
lambd_ref, psi = np.linalg.eig(A)
|
969
|
+
omega_initial = np.sort(np.abs(np.imag(lambd_ref)))[::2]
|
970
|
+
omega_ref = omega_initial[0]
|
971
|
+
|
972
|
+
for it_vel in range(itmax['V']):
|
973
|
+
Kae, Cae = get_aero(ad_dict, V, B, rho, phi, x)
|
974
|
+
getK = function_sum(Kae, Ks, fun_factor=-1)
|
975
|
+
getC = function_sum(Cae, Cs, fun_factor=-1)
|
976
|
+
getM = function_sum(None, Ms, fun_factor=-1)
|
977
|
+
|
978
|
+
lambd, psi, not_converged = iteig(getK, getC, getM, tol=tol['f'],
|
979
|
+
keep_full=True, mac_min=0.0, itmax=itmax['f'])
|
980
|
+
|
981
|
+
if len(not_converged)>0:
|
982
|
+
lambd[not_converged] = -np.inf + 0j
|
983
|
+
if print_progress:
|
984
|
+
if len(not_converged)<10:
|
985
|
+
nc_modes = 'index '+ ', '.join([str(i) for i in not_converged])
|
986
|
+
else:
|
987
|
+
nc_modes = '>10'
|
988
|
+
print(f'** Non-converged modes ({nc_modes}) from iterative eigensolution disregarded! **')
|
989
|
+
|
990
|
+
if it_vel!=0 and track_by_psi:
|
991
|
+
ixs, __, __, __ = restructure_as_ref(psi_prev, psi)
|
992
|
+
|
993
|
+
psi = psi[:, ixs]
|
994
|
+
lambd = lambd[ixs]
|
995
|
+
|
996
|
+
psi_prev = psi*1
|
997
|
+
|
998
|
+
critical_mode = np.argmax(np.real(lambd))
|
999
|
+
real_lambd = np.max(np.real(lambd))
|
1000
|
+
critical_omega = np.abs(np.imag(lambd[critical_mode]))
|
1001
|
+
|
1002
|
+
if keep_all or real_lambd<=0:
|
1003
|
+
res['critical_mode'].append(critical_mode)
|
1004
|
+
res['lambd'].append(lambd)
|
1005
|
+
res['V'].append(V)
|
1006
|
+
res['critical_psi'].append(psi[:,critical_mode])
|
1007
|
+
|
1008
|
+
if dV < tol['V'] and real_lambd<=0:
|
1009
|
+
converged = True
|
1010
|
+
if print_progress:
|
1011
|
+
print(conv_text)
|
1012
|
+
print(f'Flutter estimated to occur at V = {V:.2f} m/s ({critical_omega:.2f} rad/s) ==> v = {V/(B*critical_omega):.2f})\n')
|
1013
|
+
|
1014
|
+
break
|
1015
|
+
elif real_lambd<0:
|
1016
|
+
if print_progress:
|
1017
|
+
print(f'Increasing velocity V = {V:.2f} --> {V+dV:.2f}.')
|
1018
|
+
V = V + dV
|
1019
|
+
else:
|
1020
|
+
if print_progress:
|
1021
|
+
print(f'Overshot. Reducing velocity V = {V:.2f} --> {V-dV/2:.2f}. Reducing step size dV = {dV:.2f} --> {dV/2:.2f}')
|
1022
|
+
|
1023
|
+
dV = overshoot_factor*dV # adjusting the velocity increment, and step backwards
|
1024
|
+
V = V - dV
|
1025
|
+
|
1026
|
+
if not converged and print_progress:
|
1027
|
+
print('Not able to converge within specified maximum iterations for specified tolerance criteria.')
|
1028
|
+
|
1029
|
+
res = {key: np.array(res[key]) for key in ['critical_mode', 'critical_psi', 'V', 'lambd']}
|
1030
|
+
|
1031
|
+
return res
|
1032
|
+
|
1033
|
+
|
1034
|
+
|
1035
|
+
def itflutter_cont_naive(Ms, Cs, Ks, phi, x, ad_dict, B, V=0.0, rho=1.225, dV=1,
|
1036
|
+
overshoot_factor=0.5, itmax={}, tol={}, print_progress=True):
|
1037
|
+
|
1038
|
+
|
1039
|
+
if callable(ad_dict):
|
1040
|
+
get_aero = get_aero_cont_adfun
|
1041
|
+
else:
|
1042
|
+
get_aero = get_aero_cont_addict
|
1043
|
+
|
1044
|
+
itmax_ = {'V':50, 'f': 15}
|
1045
|
+
itmax_.update(**itmax)
|
1046
|
+
itmax = itmax_
|
1047
|
+
|
1048
|
+
tol_ = {'V': 1e-3, 'f': 1e-4}
|
1049
|
+
tol_.update(**tol)
|
1050
|
+
tol = tol_
|
1051
|
+
|
1052
|
+
res = dict()
|
1053
|
+
res['V'] = []
|
1054
|
+
res['lambd'] = []
|
1055
|
+
res['critical_mode'] = []
|
1056
|
+
res['critical_psi'] = []
|
1057
|
+
|
1058
|
+
converged = False
|
1059
|
+
|
1060
|
+
for it_vel in range(itmax['V']):
|
1061
|
+
Kae, Cae = get_aero(ad_dict, V, B, rho, phi, x)
|
1062
|
+
getK = function_sum(Kae, Ks, fun_factor=-1)
|
1063
|
+
getC = function_sum(Cae, Cs, fun_factor=-1)
|
1064
|
+
getM = function_sum(None, Ms, fun_factor=-1)
|
1065
|
+
|
1066
|
+
lambd, psi = iteig_naive(getK, getC, getM, tol=tol['f'], itmax=itmax['f'])
|
1067
|
+
|
1068
|
+
complex_ix = np.imag(lambd) != 0
|
1069
|
+
|
1070
|
+
critical_mode = np.argmax(np.real(lambd[complex_ix]))
|
1071
|
+
critical_mode = np.where(complex_ix)[0][critical_mode]
|
1072
|
+
|
1073
|
+
real_lambd = np.max(np.real(lambd))
|
1074
|
+
critical_omega = np.abs(np.imag(lambd[critical_mode]))
|
1075
|
+
|
1076
|
+
if real_lambd<=0:
|
1077
|
+
res['critical_mode'].append(critical_mode)
|
1078
|
+
res['lambd'].append(lambd)
|
1079
|
+
res['V'].append(V)
|
1080
|
+
res['critical_psi'].append(psi[:,critical_mode])
|
1081
|
+
|
1082
|
+
if dV < tol['V'] and real_lambd<=0:
|
1083
|
+
|
1084
|
+
converged = True
|
1085
|
+
if print_progress:
|
1086
|
+
|
1087
|
+
print(conv_text)
|
1088
|
+
print(f'Flutter estimated to occur at V = {V:.2f} m/s ({critical_omega:.2f} rad/s) ==> v = {V/(B*critical_omega):.2f})\n')
|
1089
|
+
|
1090
|
+
break
|
1091
|
+
elif real_lambd<=0:
|
1092
|
+
if print_progress:
|
1093
|
+
print(f'Increasing velocity V = {V:.2f} --> {V+dV:.2f}.')
|
1094
|
+
V = V + dV
|
1095
|
+
else:
|
1096
|
+
if print_progress:
|
1097
|
+
print(f'Overshot. Reducing velocity V = {V:.2f} --> {V-dV/2:.2f}. Reducing step size dV = {dV:.2f} --> {dV/2:.2f}')
|
1098
|
+
|
1099
|
+
dV = overshoot_factor*dV # adjusting the velocity increment, and step backwards
|
1100
|
+
V = V - dV
|
1101
|
+
|
1102
|
+
if not converged and print_progress:
|
1103
|
+
print('Not able to converge within specified maximum iterations for specified tolerance criteria.')
|
1104
|
+
|
1105
|
+
res = {key: np.array(res[key]) for key in ['critical_mode', 'critical_psi', 'V', 'lambd']}
|
1106
|
+
|
1107
|
+
return res
|
1108
|
+
|