wawi 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- wawi/__init__.py +8 -4
- wawi/abq.py +1128 -0
- wawi/fe.py +134 -0
- wawi/general.py +473 -0
- wawi/identification.py +66 -0
- wawi/io.py +696 -0
- wawi/modal.py +608 -0
- wawi/plot.py +569 -0
- wawi/prob.py +9 -0
- wawi/random.py +38 -0
- wawi/signal.py +45 -0
- wawi/structural.py +278 -0
- wawi/time_domain.py +126 -0
- wawi/tools.py +7 -0
- wawi/wave.py +491 -0
- wawi/wind.py +1108 -0
- wawi/wind_code.py +14 -0
- {wawi-0.0.1.dist-info → wawi-0.0.3.dist-info}/METADATA +7 -6
- wawi-0.0.3.dist-info/RECORD +22 -0
- wawi-0.0.1.dist-info/RECORD +0 -6
- {wawi-0.0.1.dist-info → wawi-0.0.3.dist-info}/LICENSE +0 -0
- {wawi-0.0.1.dist-info → wawi-0.0.3.dist-info}/WHEEL +0 -0
- {wawi-0.0.1.dist-info → wawi-0.0.3.dist-info}/top_level.txt +0 -0
wawi/wave.py
ADDED
@@ -0,0 +1,491 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from math import atan2
|
3
|
+
from scipy.interpolate import interp1d
|
4
|
+
from scipy.special import jv
|
5
|
+
from .general import wrap_to_pi, uniquetol, zero_pad_upsample, get_omega_upsampled
|
6
|
+
from .tools import print_progress as pp
|
7
|
+
from inspect import isfunction
|
8
|
+
from scipy.special import jv, gamma
|
9
|
+
from scipy.optimize import fsolve
|
10
|
+
from wawi.general import eval_fun_or_scalar
|
11
|
+
|
12
|
+
def linear_drag_damping(drag_coefficient, std_udot, area=1.0, rho=1020.0, as_matrix=True):
|
13
|
+
damping = 0.5*rho*area*drag_coefficient*np.sqrt(8/np.pi)*std_udot
|
14
|
+
|
15
|
+
if as_matrix == True and (len(damping)==3 or len(damping)==6):
|
16
|
+
damping = np.diag(damping)
|
17
|
+
|
18
|
+
return damping
|
19
|
+
|
20
|
+
def stochastic_linearize(C_quad, std_udot):
|
21
|
+
# Input C_quad is assumed matrix form, std_udot is assumed matrix
|
22
|
+
|
23
|
+
if np.ndim(std_udot)==1:
|
24
|
+
std_udot = np.diag(std_udot)
|
25
|
+
|
26
|
+
return C_quad*np.sqrt(8/np.pi)*std_udot
|
27
|
+
|
28
|
+
def harmonic_linearize(C_quad, udot):
|
29
|
+
if np.ndim(udot)==2:
|
30
|
+
udot = np.diag(np.diag(udot))
|
31
|
+
else:
|
32
|
+
udot = np.diag(udot)
|
33
|
+
|
34
|
+
C_quad = np.diag(np.diag(C_quad))
|
35
|
+
return 8/(3*np.pi)*C_quad*np.abs(udot)
|
36
|
+
|
37
|
+
|
38
|
+
def get_coh_fourier(omega, dx, dy, D, theta0, theta_shift=0.0, depth=np.inf,
|
39
|
+
k_max=10, input_is_kappa=False):
|
40
|
+
'''
|
41
|
+
theta_shift is used to translate D, such
|
42
|
+
that non-centered are allowed. Docs to come.
|
43
|
+
'''
|
44
|
+
|
45
|
+
L = np.sqrt(dx**2+dy**2)
|
46
|
+
phi = np.arctan2(dy, dx)
|
47
|
+
beta = theta0 - phi
|
48
|
+
|
49
|
+
if input_is_kappa:
|
50
|
+
kappa = omega*1
|
51
|
+
else:
|
52
|
+
kappa = dispersion_relation(omega, h=depth)[:, np.newaxis]
|
53
|
+
|
54
|
+
# Establish from Fourier coefficients
|
55
|
+
k = np.arange(-k_max, k_max+1)[np.newaxis, :]
|
56
|
+
theta = np.linspace(-np.pi, np.pi, k_max*2+1) #ensures odd number of fft coeff.
|
57
|
+
|
58
|
+
c = np.fft.ifft(D(theta + theta0-theta_shift))
|
59
|
+
c = np.hstack([c[-k_max:], c[:k_max+1]])[np.newaxis, :]
|
60
|
+
|
61
|
+
coh = 2*np.pi*np.sum(
|
62
|
+
np.tile(c*1j**k*np.exp(-1j*k*beta), [len(kappa), 1])
|
63
|
+
* jv(k, kappa*L), axis=1)
|
64
|
+
|
65
|
+
return coh
|
66
|
+
|
67
|
+
def get_coh_cos2s(omega, dx, dy, s, theta0, k_max=10, depth=np.inf,
|
68
|
+
input_is_kappa=False):
|
69
|
+
if input_is_kappa:
|
70
|
+
kappa = omega*1
|
71
|
+
else:
|
72
|
+
kappa = dispersion_relation(omega, h=depth)[:, np.newaxis]
|
73
|
+
|
74
|
+
L = np.sqrt(dx**2 + dy**2)
|
75
|
+
phi = np.arctan2(dy, dx)
|
76
|
+
beta = theta0 - phi
|
77
|
+
|
78
|
+
k = np.arange(-k_max, k_max+1)[np.newaxis, :]
|
79
|
+
c = 1/(2*np.pi) * gamma(s+1)**2/(gamma(s-k+1)*gamma(s+k+1))
|
80
|
+
coh = 2*np.pi * np.sum(np.tile(c*1j**k*np.exp(-1j*k*beta),
|
81
|
+
[len(kappa), 1]) * jv(k, kappa*L), axis=1)
|
82
|
+
|
83
|
+
return coh
|
84
|
+
|
85
|
+
def get_coh(omega, dx, dy, D1, D2=None, depth=np.inf, n_theta=40,
|
86
|
+
theta_shift=0.0, input_is_kappa=False, twodimensional=False,
|
87
|
+
include_D=True):
|
88
|
+
|
89
|
+
if D2 is None: #assumes the same as D1
|
90
|
+
D2 = D1
|
91
|
+
|
92
|
+
if input_is_kappa:
|
93
|
+
kappa = omega*1
|
94
|
+
else:
|
95
|
+
kappa = dispersion_relation(omega, h=depth)
|
96
|
+
|
97
|
+
theta = np.linspace(-np.pi, np.pi, n_theta)
|
98
|
+
|
99
|
+
if include_D:
|
100
|
+
D_eval = np.sqrt(D1(theta)*D2(theta))
|
101
|
+
else:
|
102
|
+
D_eval = 1.0
|
103
|
+
|
104
|
+
coh2d = D_eval*np.exp(-1j*kappa[:, np.newaxis] @ ((np.cos(theta+theta_shift)*dx + np.sin(theta+theta_shift)*dy))[np.newaxis, :])
|
105
|
+
|
106
|
+
if twodimensional:
|
107
|
+
return coh2d, theta
|
108
|
+
else:
|
109
|
+
coh = np.trapz(coh2d, x=theta, axis=1)
|
110
|
+
|
111
|
+
return coh
|
112
|
+
|
113
|
+
|
114
|
+
def xsim(x, y, S, D, omega, fs=None, theta=None, n_theta=40, grid_mode=True, print_progress=True,
|
115
|
+
time_history=False, phase=None, return_phases=False, theta_shift=0.0):
|
116
|
+
|
117
|
+
if fs is None:
|
118
|
+
fs = np.max(omega)/2/np.pi
|
119
|
+
|
120
|
+
if theta is None:
|
121
|
+
theta = np.linspace(-np.pi, np.pi, n_theta)
|
122
|
+
|
123
|
+
|
124
|
+
if not isfunction(S):
|
125
|
+
Sfun = lambda x, y: S
|
126
|
+
else:
|
127
|
+
Sfun = S
|
128
|
+
|
129
|
+
if not isfunction(D):
|
130
|
+
Dfun = lambda x, y: D
|
131
|
+
else:
|
132
|
+
Dfun = D
|
133
|
+
|
134
|
+
if grid_mode:
|
135
|
+
xx,yy = np.meshgrid(x,y)
|
136
|
+
xvec = x*1
|
137
|
+
yvec = y*1
|
138
|
+
x = xx.flatten()
|
139
|
+
y = yy.flatten()
|
140
|
+
|
141
|
+
domega = omega[1] - omega[0]
|
142
|
+
|
143
|
+
if len(theta)>1:
|
144
|
+
dtheta = theta[1] - theta[0]
|
145
|
+
else:
|
146
|
+
dtheta = 1.0
|
147
|
+
|
148
|
+
omegai = get_omega_upsampled(omega, fs*2*np.pi)
|
149
|
+
kappa = omega**2 / 9.81 #assume deep-water waves - can be generalized later (different depths at different positions possible also)
|
150
|
+
|
151
|
+
# Create kappa grid
|
152
|
+
# Attempt to fix function theta_shift (non centered dirdist definitions with theta0 as function)
|
153
|
+
# kappax = lambda x,y: kappa[:, np.newaxis] @ np.cos(theta+eval_fun_or_scalar(theta_shift,x,y))[np.newaxis, :]
|
154
|
+
# kappay = lambda x,y: kappa[:, np.newaxis] @ np.sin(theta+eval_fun_or_scalar(theta_shift,x,y))[np.newaxis, :]
|
155
|
+
|
156
|
+
kappax = kappa[:, np.newaxis] @ np.cos(theta+theta_shift)[np.newaxis, :]
|
157
|
+
kappay = kappa[:, np.newaxis] @ np.sin(theta+theta_shift)[np.newaxis, :]
|
158
|
+
|
159
|
+
n_freqs = len(omega)
|
160
|
+
n_freqs_i = len(omegai)
|
161
|
+
n_angles = len(theta)
|
162
|
+
|
163
|
+
if phase is None:
|
164
|
+
phase = np.exp(1j*np.random.rand(n_freqs, n_angles)*2*np.pi)
|
165
|
+
|
166
|
+
if time_history:
|
167
|
+
eta = np.zeros([n_freqs_i, len(x)])
|
168
|
+
selection = np.arange(n_freqs_i)
|
169
|
+
n_t = n_freqs_i*1
|
170
|
+
else:
|
171
|
+
eta = np.zeros([1, len(x)])
|
172
|
+
selection = np.array(0)
|
173
|
+
n_t = 1
|
174
|
+
|
175
|
+
for ix in range(len(x)):
|
176
|
+
Sthis = Sfun(x[ix], y[ix])(omega)[:, np.newaxis]
|
177
|
+
Dthis = Dfun(x[ix], y[ix])(theta)[np.newaxis, :]
|
178
|
+
|
179
|
+
B0 = np.sqrt(2 * Sthis * Dthis * domega * dtheta)
|
180
|
+
Bkr = B0*np.exp(-1j*(kappax*x[ix] + kappay*y[ix])) * phase
|
181
|
+
if Bkr.shape[1]>1:
|
182
|
+
Bkr_sum = np.trapz(Bkr, axis=1)
|
183
|
+
else:
|
184
|
+
Bkr_sum = Bkr[:,0]
|
185
|
+
|
186
|
+
Bkr_sum = zero_pad_upsample(Bkr_sum, omega, fs*2*np.pi)
|
187
|
+
|
188
|
+
eta[:, ix] = np.fft.fftshift(len(omegai) * np.real(np.fft.ifft(Bkr_sum)))[selection]
|
189
|
+
|
190
|
+
if print_progress:
|
191
|
+
pp(ix+1, len(x), postfix=f' | x={x[ix]:.1f}m, y={y[ix]:.1f}m ')
|
192
|
+
|
193
|
+
t = np.linspace(0, 2*np.pi/domega, n_freqs_i)[selection].T
|
194
|
+
|
195
|
+
if grid_mode:
|
196
|
+
if time_history:
|
197
|
+
eta = np.swapaxes(eta, 0, 1) # after swap: gridcombos x time
|
198
|
+
eta = np.reshape(eta, [len(yvec), len(xvec), -1])
|
199
|
+
else:
|
200
|
+
eta = np.reshape(eta, [len(yvec), len(xvec)])
|
201
|
+
|
202
|
+
# Return
|
203
|
+
if return_phases:
|
204
|
+
return eta, t, phase
|
205
|
+
else:
|
206
|
+
return eta, t
|
207
|
+
|
208
|
+
|
209
|
+
def swh_from_gamma_alpha_Tp(gamma, alpha, Tp, g=9.81):
|
210
|
+
wp = 2*np.pi/Tp
|
211
|
+
|
212
|
+
Hs = (1.555 + 0.2596*gamma - 0.02231*gamma**2 + 0.01142*gamma**3)*g*np.sqrt(alpha)/wp**2
|
213
|
+
return Hs
|
214
|
+
|
215
|
+
def sigma_from_sigma_range(sigma, wp):
|
216
|
+
return lambda w: (sigma[0]+(sigma[1]-sigma[0])*(w>wp))
|
217
|
+
|
218
|
+
def peak_enhancement(gamma, Tp, sigma, normalize=True):
|
219
|
+
wp = 2*np.pi/Tp
|
220
|
+
sigma = sigma_from_sigma_range(sigma, wp)
|
221
|
+
if normalize:
|
222
|
+
A_gamma = (1 - 0.287*np.log(gamma))
|
223
|
+
return lambda w: gamma**np.exp(-(w-wp)**2/(2*sigma(w)**2*wp**2)) * A_gamma
|
224
|
+
else:
|
225
|
+
return lambda w: gamma**np.exp(-(w-wp)**2/(2*sigma(w)**2*wp**2))
|
226
|
+
|
227
|
+
|
228
|
+
def pm2(Hs, Tp, unit='Hz'):
|
229
|
+
fp = 1/Tp
|
230
|
+
A = 5*Hs**2*fp**4/(16)
|
231
|
+
B = 5*fp**4/4
|
232
|
+
|
233
|
+
if unit == 'Hz':
|
234
|
+
return lambda f: A/f**5*np.exp(-B/f**4)
|
235
|
+
elif unit == 'rad/s':
|
236
|
+
return lambda w: A/(w/2/np.pi)**5*np.exp(-B/(w/2/np.pi)**4)/2/np.pi
|
237
|
+
|
238
|
+
|
239
|
+
def jonswap(Hs, Tp, gamma, g=9.81, sigma=[0.07, 0.09]):
|
240
|
+
return lambda w: pm2(Hs, Tp, unit='rad/s')(w)*peak_enhancement(gamma, Tp, sigma, normalize=True)(w)
|
241
|
+
|
242
|
+
def jonswap_numerical(Hs, Tp, gamma, omega, g=9.81, sigma=[0.07, 0.09]):
|
243
|
+
|
244
|
+
if omega[0] == 0:
|
245
|
+
omega[0] = 1
|
246
|
+
first_is_zero = True
|
247
|
+
else:
|
248
|
+
first_is_zero = False
|
249
|
+
|
250
|
+
S = jonswap(Hs, Tp, gamma, g=g, sigma=sigma)(omega)
|
251
|
+
|
252
|
+
if first_is_zero:
|
253
|
+
S[0] = 0.0
|
254
|
+
omega[0] = 0.0
|
255
|
+
|
256
|
+
return S
|
257
|
+
|
258
|
+
|
259
|
+
def jonswap_dnv(Hs, Tp, gamma, sigma=[0.07, 0.09]):
|
260
|
+
A = 1-0.287*np.log(gamma)
|
261
|
+
wp = 2*np.pi/Tp
|
262
|
+
|
263
|
+
sigma = sigma_from_sigma_range(sigma, wp)
|
264
|
+
S = lambda omega: A*5.0/16.0*Hs**2*wp**4/(omega**5)*np.exp(-5/4*(omega/wp)**(-4))*gamma**(np.exp(-0.5*((omega-wp)/sigma(omega)/wp)**2))
|
265
|
+
|
266
|
+
return S
|
267
|
+
|
268
|
+
|
269
|
+
def dirdist_decimal_inv(s, theta0=0, theta=None):
|
270
|
+
if s>170:
|
271
|
+
raise ValueError("Spreading exponent s cannot exceed 170. Please adjust!")
|
272
|
+
C = gamma(s+1)/(2*np.sqrt(np.pi)*gamma(s+0.5))
|
273
|
+
D = lambda theta: C*(np.abs(np.cos((theta+theta0)/2)))**(2*s)
|
274
|
+
|
275
|
+
if theta!=None:
|
276
|
+
D = D(theta)
|
277
|
+
|
278
|
+
return D
|
279
|
+
|
280
|
+
def dirdist_decimal(s, theta0=0, theta=None):
|
281
|
+
if s>170:
|
282
|
+
raise ValueError("Spreading exponent s cannot exceed 170. Please adjust!")
|
283
|
+
|
284
|
+
C = gamma(s+1)/(2*np.sqrt(np.pi)*gamma(s+0.5))
|
285
|
+
D = lambda theta: C*(np.abs(np.cos((theta-theta0)/2)))**(2*s)
|
286
|
+
|
287
|
+
if theta!=None:
|
288
|
+
D = D(theta)
|
289
|
+
|
290
|
+
return D
|
291
|
+
|
292
|
+
def dirdist(s, theta0=0, theta=None):
|
293
|
+
if s>170:
|
294
|
+
raise ValueError("Spreading exponent s cannot exceed 170. Please adjust!")
|
295
|
+
C = gamma(s+1)/(2*np.sqrt(np.pi)*gamma(s+0.5))
|
296
|
+
D = lambda theta: C*(np.cos((theta-theta0)/2))**(2*s)
|
297
|
+
|
298
|
+
if theta!=None:
|
299
|
+
D = D(theta)
|
300
|
+
|
301
|
+
return D
|
302
|
+
|
303
|
+
def dirdist_robust(s, theta0=0, dtheta=1e-4, theta=None):
|
304
|
+
theta_num = np.unique(np.hstack([np.arange(-np.pi, np.pi+dtheta, dtheta), wrap_to_pi(theta0)]))
|
305
|
+
val = np.cos((theta_num-theta0)/2)**(2*s)
|
306
|
+
scaling = 1/np.trapz(val, theta_num)
|
307
|
+
|
308
|
+
def D(theta):
|
309
|
+
return interp1d(theta_num, val*scaling)(wrap_to_pi(theta))
|
310
|
+
|
311
|
+
if theta!=None:
|
312
|
+
D = D(theta)
|
313
|
+
|
314
|
+
return D
|
315
|
+
|
316
|
+
|
317
|
+
|
318
|
+
def waveaction_fft(pontoons, omega, n_fourier=20, max_coherence_length=np.inf, print_progress=True):
|
319
|
+
n_pontoons = len(pontoons)
|
320
|
+
n_dofs = n_pontoons*6
|
321
|
+
|
322
|
+
n_theta = n_fourier*2
|
323
|
+
|
324
|
+
theta = np.linspace(-np.pi, np.pi-2*np.pi/n_theta, n_theta)
|
325
|
+
S = np.zeros([n_dofs, n_dofs, len(omega)]).astype('complex')
|
326
|
+
|
327
|
+
for i, pontoon_i in enumerate(pontoons):
|
328
|
+
fi,__,__ = pontoon_i.evaluate_Q(omega, n_fourier*2)
|
329
|
+
xi,yi = pontoon_i.node.coordinates[:2]
|
330
|
+
|
331
|
+
for j, pontoon_j in enumerate(pontoons):
|
332
|
+
xj,yj = pontoon_j.node.coordinates[:2]
|
333
|
+
dx = xj-xi
|
334
|
+
dy = yj-yi
|
335
|
+
|
336
|
+
l = np.sqrt(dx**2+dy**2)
|
337
|
+
|
338
|
+
if l<max_coherence_length:
|
339
|
+
beta = atan2(dy,dx)
|
340
|
+
fj,__,__ = pontoon_j.evaluate_Q(omega, n_fourier*2)
|
341
|
+
|
342
|
+
depth = (pontoon_i.depth+pontoon_j.depth)/2
|
343
|
+
kappa = np.array([dispersion_relation(omega_k, h=depth) for omega_k in omega])
|
344
|
+
|
345
|
+
coh_2d = np.sqrt((pontoon_i.S(omega) * pontoon_j.S(omega))[:, np.newaxis] @ (pontoon_i.D(theta-pontoon_i.theta0) * pontoon_j.D(theta-pontoon_j.theta0))[np.newaxis, :])
|
346
|
+
|
347
|
+
for dof_i in range(6):
|
348
|
+
for dof_j in range(6):
|
349
|
+
integrand = fi[dof_i,:] * fj[dof_j,:].conj() * coh_2d.T
|
350
|
+
c = np.fft.fft(integrand)
|
351
|
+
I = np.stack([np.exp(1j*n*beta)*1j**n*2*np.pi*jv(n, kappa*l) for n in range(-n_fourier, n_fourier)], axis=1)
|
352
|
+
|
353
|
+
S[i*6+dof_i, j*6+dof_j, :] = np.sum(I*c)
|
354
|
+
|
355
|
+
if print_progress:
|
356
|
+
pp(i*n_pontoons+j, n_pontoons**2)
|
357
|
+
|
358
|
+
return S
|
359
|
+
|
360
|
+
|
361
|
+
def waveaction(pontoon_group, omega, max_rel_error=1e-3, print_progress=True):
|
362
|
+
n_pontoons = len(pontoon_group.pontoons)
|
363
|
+
n_freqs = len(omega)
|
364
|
+
n_dofs = n_pontoons*6
|
365
|
+
|
366
|
+
if omega[0]==0:
|
367
|
+
omega = omega[1::]
|
368
|
+
first_is_zero = True
|
369
|
+
n_freqs = n_freqs-1
|
370
|
+
else:
|
371
|
+
first_is_zero = False
|
372
|
+
|
373
|
+
kappa = [None]*n_pontoons
|
374
|
+
for pontoon_ix, pontoon in enumerate(pontoon_group.pontoons):
|
375
|
+
kappa[pontoon_ix] = dispersion_relation(omega, pontoon.depth)
|
376
|
+
|
377
|
+
Sqq = np.zeros([n_dofs, n_dofs, n_freqs]).astype('complex')
|
378
|
+
|
379
|
+
for k, omega_k in enumerate(omega):
|
380
|
+
if print_progress:
|
381
|
+
pp(k+1, n_freqs)
|
382
|
+
|
383
|
+
theta_int = pontoon_group.get_theta_int(omega_k)
|
384
|
+
dtheta = theta_int[2]-theta_int[1]
|
385
|
+
|
386
|
+
n_theta = len(theta_int)
|
387
|
+
Z = np.zeros([n_dofs, n_theta]).astype('complex')
|
388
|
+
|
389
|
+
for pontoon_index, pontoon in enumerate(pontoon_group.pontoons):
|
390
|
+
if pontoon.D.__code__.co_argcount==2: # count number of inputs
|
391
|
+
D = pontoon.D(theta_int, omega_k)
|
392
|
+
else:
|
393
|
+
D = pontoon.D(theta_int)
|
394
|
+
|
395
|
+
# Shift current theta axis
|
396
|
+
theta_pontoon = wrap_to_pi(pontoon.pontoon_type.theta + pontoon.rotation - pontoon.theta0)
|
397
|
+
theta_pontoon, sort_ix = uniquetol(theta_pontoon, 1e-10)
|
398
|
+
|
399
|
+
# Interpolate hydrodynamic transfer function
|
400
|
+
Q_int = interp1d(theta_pontoon, pontoon.get_local_Q(omega_k)[:, sort_ix], fill_value=0, kind='quadratic', bounds_error=False)(theta_int)
|
401
|
+
|
402
|
+
coh = np.exp(1j*kappa[pontoon_index][k] * (pontoon.node.x*np.cos(theta_int + pontoon.theta0) + pontoon.node.y*np.sin(theta_int + pontoon.theta0)))
|
403
|
+
Z[pontoon_index*6:pontoon_index*6+6, :] = np.sqrt(pontoon.S(omega_k)) * Q_int * np.tile(np.sqrt(D), [6, 1]) * np.tile(coh, [6, 1])
|
404
|
+
|
405
|
+
# first and last point in trapezoidal integration has 1/2 as factor, others have 1
|
406
|
+
Z[:, 0] = np.sqrt(0.5)*Z[:, 0]
|
407
|
+
Z[:, -1] = np.sqrt(0.5)*Z[:, -1]
|
408
|
+
|
409
|
+
Sqq[:, :, k] = dtheta * pontoon_group.get_tmat().T @ (Z @ Z.conj().T) @ pontoon_group.get_tmat() # verified to match for loop over angles and trapz integration.
|
410
|
+
|
411
|
+
|
412
|
+
if first_is_zero==True:
|
413
|
+
Sqq = np.insert(Sqq, 0, Sqq[:,:,0]*0, axis=2)
|
414
|
+
|
415
|
+
|
416
|
+
return Sqq
|
417
|
+
|
418
|
+
|
419
|
+
def dispersion_relation_scalar(w, h=np.inf, g=9.81, U=0.0):
|
420
|
+
if h==np.inf:
|
421
|
+
f = lambda k: g*k - (w-k*U)**2
|
422
|
+
else:
|
423
|
+
f = lambda k: g*k*np.tanh(k*h) - (w-k*U)**2
|
424
|
+
|
425
|
+
k0 = w**2/g # deep-water, zero-current wave number
|
426
|
+
|
427
|
+
k = fsolve(f, x0=k0)[0]
|
428
|
+
|
429
|
+
return k
|
430
|
+
|
431
|
+
def dispersion_relation_scalar_legacy(w, h=np.inf, g=9.81):
|
432
|
+
if h != np.inf:
|
433
|
+
a = h*w**2/g
|
434
|
+
|
435
|
+
# Initial guesses are provided by small value and large value approximations of x
|
436
|
+
x = a*0
|
437
|
+
x[a<=3/4] = np.sqrt((3-np.sqrt(9-12*a[a<=3/4]))/2)
|
438
|
+
x[a>3/4] = a[a>3/4]
|
439
|
+
|
440
|
+
for i in range(0,100):
|
441
|
+
x = (a+(x**2)*(1-(np.tanh(x))**2))/(np.tanh(x)+x*(1-(np.tanh(x))**2))
|
442
|
+
# The convergence criterion is chosen such that the wave numbers produce frequencies that don't deviate more than 1e-6*sqrt(g/h) from w.
|
443
|
+
if np.max(abs(np.sqrt(x*np.tanh(x))-np.sqrt(a))) < 1e-6:
|
444
|
+
break
|
445
|
+
|
446
|
+
k = x/h
|
447
|
+
else:
|
448
|
+
return w**2/g
|
449
|
+
|
450
|
+
def dispersion_relation(w, h=np.inf, g=9.81):
|
451
|
+
zero_ix = np.where(w==0)
|
452
|
+
w = w[w!=0]
|
453
|
+
|
454
|
+
if h != np.Inf:
|
455
|
+
a = h*w**2/g
|
456
|
+
|
457
|
+
# Initial guesses are provided by small value and large value approximations of x
|
458
|
+
x = a*0
|
459
|
+
x[a<=3/4] = np.sqrt((3-np.sqrt(9-12*a[a<=3/4]))/2)
|
460
|
+
x[a>3/4] = a[a>3/4]
|
461
|
+
|
462
|
+
for i in range(0,100):
|
463
|
+
x = (a+(x**2)*(1-(np.tanh(x))**2))/(np.tanh(x)+x*(1-(np.tanh(x))**2))
|
464
|
+
# The convergence criterion is chosen such that the wave numbers produce frequencies that don't deviate more than 1e-6*sqrt(g/h) from w.
|
465
|
+
if np.max(abs(np.sqrt(x*np.tanh(x))-np.sqrt(a))) < 1e-6:
|
466
|
+
break
|
467
|
+
|
468
|
+
k = x/h
|
469
|
+
else:
|
470
|
+
k = w**2/g
|
471
|
+
|
472
|
+
k = np.insert(k, zero_ix[0], 0)
|
473
|
+
|
474
|
+
return k
|
475
|
+
|
476
|
+
|
477
|
+
def maxincrement(dl, kmax, a, b, max_relative_error):
|
478
|
+
g = 9.81
|
479
|
+
thetamax = np.pi/2
|
480
|
+
K = abs(1j*kmax*(-(1/2)*np.pi)*dl*(-(1/2)*np.pi)*(np.cos(thetamax))*(-(1/2)*np.pi)*(np.exp(-1j*kmax*dl*np.cos(thetamax)))*(-(1/2)*np.pi)-kmax*(-(1/2)*np.pi)**2*dl*(-(1/2)*np.pi)**2*(np.sin(thetamax))*(-(1/2)*np.pi)**2*(np.exp(-1j*kmax*dl*np.cos(thetamax)))*(-(1/2)*np.pi))
|
481
|
+
|
482
|
+
max_val = abs(np.exp(-1j*dl))
|
483
|
+
max_error = max_val*max_relative_error
|
484
|
+
N = np.sqrt((K*(b-a)**3)/(12*max_error))
|
485
|
+
|
486
|
+
increment=(b-a)/N
|
487
|
+
|
488
|
+
if dl==0:
|
489
|
+
increment=b-a
|
490
|
+
|
491
|
+
return increment
|