waveorder 2.2.1b0__py3-none-any.whl → 3.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- waveorder/_version.py +16 -3
- waveorder/acq/__init__.py +0 -0
- waveorder/acq/acq_functions.py +166 -0
- waveorder/assets/HSV_legend.png +0 -0
- waveorder/assets/JCh_legend.png +0 -0
- waveorder/assets/waveorder_plugin_logo.png +0 -0
- waveorder/calib/Calibration.py +1512 -0
- waveorder/calib/Optimization.py +470 -0
- waveorder/calib/__init__.py +0 -0
- waveorder/calib/calibration_workers.py +464 -0
- waveorder/cli/apply_inverse_models.py +328 -0
- waveorder/cli/apply_inverse_transfer_function.py +379 -0
- waveorder/cli/compute_transfer_function.py +432 -0
- waveorder/cli/gui_widget.py +58 -0
- waveorder/cli/main.py +39 -0
- waveorder/cli/monitor.py +163 -0
- waveorder/cli/option_eat_all.py +47 -0
- waveorder/cli/parsing.py +122 -0
- waveorder/cli/printing.py +16 -0
- waveorder/cli/reconstruct.py +67 -0
- waveorder/cli/settings.py +187 -0
- waveorder/cli/utils.py +175 -0
- waveorder/filter.py +1 -2
- waveorder/focus.py +136 -25
- waveorder/io/__init__.py +0 -0
- waveorder/io/_reader.py +61 -0
- waveorder/io/core_functions.py +272 -0
- waveorder/io/metadata_reader.py +195 -0
- waveorder/io/utils.py +175 -0
- waveorder/io/visualization.py +160 -0
- waveorder/models/inplane_oriented_thick_pol3d_vector.py +3 -3
- waveorder/models/isotropic_fluorescent_thick_3d.py +92 -0
- waveorder/models/isotropic_fluorescent_thin_3d.py +331 -0
- waveorder/models/isotropic_thin_3d.py +73 -72
- waveorder/models/phase_thick_3d.py +103 -4
- waveorder/napari.yaml +36 -0
- waveorder/plugin/__init__.py +9 -0
- waveorder/plugin/gui.py +1094 -0
- waveorder/plugin/gui.ui +1440 -0
- waveorder/plugin/job_manager.py +42 -0
- waveorder/plugin/main_widget.py +1605 -0
- waveorder/plugin/tab_recon.py +3294 -0
- waveorder/scripts/__init__.py +0 -0
- waveorder/scripts/launch_napari.py +13 -0
- waveorder/scripts/repeat-cal-acq-rec.py +147 -0
- waveorder/scripts/repeat-calibration.py +31 -0
- waveorder/scripts/samples.py +85 -0
- waveorder/scripts/simulate_zarr_acq.py +204 -0
- waveorder/util.py +1 -1
- waveorder/visuals/napari_visuals.py +1 -1
- waveorder-3.0.0.dist-info/METADATA +350 -0
- waveorder-3.0.0.dist-info/RECORD +69 -0
- {waveorder-2.2.1b0.dist-info → waveorder-3.0.0.dist-info}/WHEEL +1 -1
- waveorder-3.0.0.dist-info/entry_points.txt +5 -0
- {waveorder-2.2.1b0.dist-info → waveorder-3.0.0.dist-info/licenses}/LICENSE +13 -1
- waveorder-2.2.1b0.dist-info/METADATA +0 -187
- waveorder-2.2.1b0.dist-info/RECORD +0 -27
- {waveorder-2.2.1b0.dist-info → waveorder-3.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,470 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from scipy import optimize
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class BrentOptimizer:
|
|
8
|
+
def __init__(self, calib):
|
|
9
|
+
self.calib = calib
|
|
10
|
+
|
|
11
|
+
def _check_bounds(self, lca_bound, lcb_bound):
|
|
12
|
+
current_lca = self.calib.get_lc("LCA")
|
|
13
|
+
current_lcb = self.calib.get_lc("LCB")
|
|
14
|
+
|
|
15
|
+
# check that bounds don't exceed range of LC
|
|
16
|
+
lca_lower_bound = (
|
|
17
|
+
0.01
|
|
18
|
+
if (current_lca - lca_bound) <= 0.01
|
|
19
|
+
else current_lca - lca_bound
|
|
20
|
+
)
|
|
21
|
+
lca_upper_bound = (
|
|
22
|
+
1.6
|
|
23
|
+
if (current_lca + lca_bound) >= 1.6
|
|
24
|
+
else current_lca + lca_bound
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
lcb_lower_bound = (
|
|
28
|
+
0.01
|
|
29
|
+
if current_lcb - lcb_bound <= 0.01
|
|
30
|
+
else current_lcb - lcb_bound
|
|
31
|
+
)
|
|
32
|
+
lcb_upper_bound = (
|
|
33
|
+
1.6 if current_lcb + lcb_bound >= 1.6 else current_lcb + lcb_bound
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
return (
|
|
37
|
+
lca_lower_bound,
|
|
38
|
+
lca_upper_bound,
|
|
39
|
+
lcb_lower_bound,
|
|
40
|
+
lcb_upper_bound,
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
def opt_lca(
|
|
44
|
+
self,
|
|
45
|
+
cost_function,
|
|
46
|
+
lower_bound,
|
|
47
|
+
upper_bound,
|
|
48
|
+
reference,
|
|
49
|
+
cost_function_args,
|
|
50
|
+
):
|
|
51
|
+
xopt, fval, ierr, numfunc = optimize.fminbound(
|
|
52
|
+
cost_function,
|
|
53
|
+
x1=lower_bound,
|
|
54
|
+
x2=upper_bound,
|
|
55
|
+
disp=0,
|
|
56
|
+
args=cost_function_args,
|
|
57
|
+
full_output=True,
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
lca = xopt
|
|
61
|
+
lcb = self.calib.get_lc(self.calib.mmc, self.calib.PROPERTIES["LCA"])
|
|
62
|
+
abs_intensity = fval + reference
|
|
63
|
+
difference = fval / reference * 100
|
|
64
|
+
|
|
65
|
+
logging.debug("\tOptimize lca ...")
|
|
66
|
+
logging.debug(f"\tlca = {lca:.5f}")
|
|
67
|
+
logging.debug(f"\tlcb = {lcb:.5f}")
|
|
68
|
+
logging.debug(f"\tIntensity = {abs_intensity}")
|
|
69
|
+
logging.debug(f"\tIntensity Difference = {difference:.4f}%")
|
|
70
|
+
|
|
71
|
+
return [lca, lcb, abs_intensity, difference]
|
|
72
|
+
|
|
73
|
+
def opt_lcb(
|
|
74
|
+
self,
|
|
75
|
+
cost_function,
|
|
76
|
+
lower_bound,
|
|
77
|
+
upper_bound,
|
|
78
|
+
reference,
|
|
79
|
+
cost_function_args,
|
|
80
|
+
):
|
|
81
|
+
xopt, fval, ierr, numfunc = optimize.fminbound(
|
|
82
|
+
cost_function,
|
|
83
|
+
x1=lower_bound,
|
|
84
|
+
x2=upper_bound,
|
|
85
|
+
disp=0,
|
|
86
|
+
args=cost_function_args,
|
|
87
|
+
full_output=True,
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
lca = self.calib.get_lc(self.calib.mmc, self.calib.PROPERTIES["LCA"])
|
|
91
|
+
lcb = xopt
|
|
92
|
+
abs_intensity = fval + reference
|
|
93
|
+
difference = fval / reference * 100
|
|
94
|
+
|
|
95
|
+
logging.debug("\tOptimize lcb ...")
|
|
96
|
+
logging.debug(f"\tlca = {lca:.5f}")
|
|
97
|
+
logging.debug(f"\tlcb = {lcb:.5f}")
|
|
98
|
+
logging.debug(f"\tIntensity = {abs_intensity}")
|
|
99
|
+
logging.debug(f"\tIntensity Difference = {difference:.4f}%")
|
|
100
|
+
|
|
101
|
+
return [lca, lcb, abs_intensity, difference]
|
|
102
|
+
|
|
103
|
+
def optimize(self, state, lca_bound, lcb_bound, reference, thresh, n_iter):
|
|
104
|
+
converged = False
|
|
105
|
+
iteration = 1
|
|
106
|
+
self.calib.inten = []
|
|
107
|
+
optimal = []
|
|
108
|
+
|
|
109
|
+
while not converged:
|
|
110
|
+
logging.debug(f"iteration: {iteration}")
|
|
111
|
+
|
|
112
|
+
(
|
|
113
|
+
lca_lower_bound,
|
|
114
|
+
lca_upper_bound,
|
|
115
|
+
lcb_lower_bound,
|
|
116
|
+
lcb_upper_bound,
|
|
117
|
+
) = self._check_bounds(lca_bound, lcb_bound)
|
|
118
|
+
|
|
119
|
+
if state == "ext":
|
|
120
|
+
results_lca = self.opt_lca(
|
|
121
|
+
self.calib.opt_lc,
|
|
122
|
+
lca_lower_bound,
|
|
123
|
+
lca_upper_bound,
|
|
124
|
+
reference,
|
|
125
|
+
(self.calib.PROPERTIES["LCA"], reference),
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
self.calib.set_lc(self.calib.mmc, results_lca[0], "LCA")
|
|
129
|
+
|
|
130
|
+
optimal.append(results_lca)
|
|
131
|
+
|
|
132
|
+
results_lcb = self.opt_lcb(
|
|
133
|
+
self.calib.opt_lc,
|
|
134
|
+
lcb_lower_bound,
|
|
135
|
+
lcb_upper_bound,
|
|
136
|
+
reference,
|
|
137
|
+
(self.calib.PROPERTIES["LCB"], reference),
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
self.calib.set_lc(self.calib.mmc, results_lca[1], "LCB")
|
|
141
|
+
|
|
142
|
+
optimal.append(results_lcb)
|
|
143
|
+
|
|
144
|
+
results = results_lcb
|
|
145
|
+
|
|
146
|
+
if state == "45" or state == "135":
|
|
147
|
+
results = self.opt_lcb(
|
|
148
|
+
self.calib.opt_lc,
|
|
149
|
+
lca_lower_bound,
|
|
150
|
+
lca_upper_bound,
|
|
151
|
+
reference,
|
|
152
|
+
(self.calib.PROPERTIES["LCB"], reference),
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
optimal.append(results)
|
|
156
|
+
|
|
157
|
+
if state == "60":
|
|
158
|
+
results = self.opt_lca(
|
|
159
|
+
self.calib.opt_lc_cons,
|
|
160
|
+
lca_lower_bound,
|
|
161
|
+
lca_upper_bound,
|
|
162
|
+
reference,
|
|
163
|
+
(reference, "60"),
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
swing = (self.calib.lca_ext - results[0]) * self.calib.ratio
|
|
167
|
+
lca = results[0]
|
|
168
|
+
lcb = self.calib.lcb_ext + swing
|
|
169
|
+
|
|
170
|
+
optimal.append([lca, lcb, results[2], results[3]])
|
|
171
|
+
|
|
172
|
+
if state == "90":
|
|
173
|
+
results = self.opt_lca(
|
|
174
|
+
self.calib.opt_lc,
|
|
175
|
+
lca_lower_bound,
|
|
176
|
+
lca_upper_bound,
|
|
177
|
+
reference,
|
|
178
|
+
(self.calib.PROPERTIES["LCA"], reference),
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
optimal.append(results)
|
|
182
|
+
|
|
183
|
+
if state == "120":
|
|
184
|
+
results = self.opt_lca(
|
|
185
|
+
self.calib.opt_lc_cons,
|
|
186
|
+
lca_lower_bound,
|
|
187
|
+
lca_upper_bound,
|
|
188
|
+
reference,
|
|
189
|
+
(reference, "120"),
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
swing = (self.calib.lca_ext - results[0]) * self.calib.ratio
|
|
193
|
+
lca = results[0]
|
|
194
|
+
lcb = self.calib.lcb_ext - swing
|
|
195
|
+
|
|
196
|
+
optimal.append([lca, lcb, results[2], results[3]])
|
|
197
|
+
|
|
198
|
+
# if both LCA and LCB meet threshold, stop
|
|
199
|
+
if results[3] <= thresh:
|
|
200
|
+
converged = True
|
|
201
|
+
optimal = np.asarray(optimal)
|
|
202
|
+
|
|
203
|
+
return optimal[-1, 0], optimal[-1, 1], optimal[-1, 2]
|
|
204
|
+
|
|
205
|
+
# if loop preforms more than n_iter iterations, stop
|
|
206
|
+
elif iteration >= n_iter:
|
|
207
|
+
logging.debug(
|
|
208
|
+
f"Exceeded {n_iter} Iterations: Search discontinuing"
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
converged = True
|
|
212
|
+
optimal = np.asarray(optimal)
|
|
213
|
+
opt = np.where(optimal == np.min(np.abs(optimal[:, 0])))[0]
|
|
214
|
+
|
|
215
|
+
logging.debug(
|
|
216
|
+
f"Lowest Inten: {optimal[opt, 0]}, lca = {optimal[opt, 1]}, lcb = {optimal[opt, 2]}"
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
return optimal[-1, 0], optimal[-1, 1], optimal[-1, 2]
|
|
220
|
+
|
|
221
|
+
iteration += 1
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
class MinScalarOptimizer:
|
|
225
|
+
def __init__(self, calib):
|
|
226
|
+
self.calib = calib
|
|
227
|
+
|
|
228
|
+
def _check_bounds(self, lca_bound, lcb_bound):
|
|
229
|
+
current_lca = self.calib.get_lc("LCA")
|
|
230
|
+
current_lcb = self.calib.get_lc("LCB")
|
|
231
|
+
|
|
232
|
+
if self.calib.mode == "voltage":
|
|
233
|
+
# check that bounds don't exceed range of LC
|
|
234
|
+
lca_lower_bound = (
|
|
235
|
+
0.01
|
|
236
|
+
if (current_lca - lca_bound) <= 0.01
|
|
237
|
+
else current_lca - lca_bound
|
|
238
|
+
)
|
|
239
|
+
lca_upper_bound = (
|
|
240
|
+
2.2
|
|
241
|
+
if (current_lca + lca_bound) >= 2.2
|
|
242
|
+
else current_lca + lca_bound
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
lcb_lower_bound = (
|
|
246
|
+
0.01
|
|
247
|
+
if current_lcb - lcb_bound <= 0.01
|
|
248
|
+
else current_lcb - lcb_bound
|
|
249
|
+
)
|
|
250
|
+
lcb_upper_bound = (
|
|
251
|
+
2.2
|
|
252
|
+
if current_lcb + lcb_bound >= 2.2
|
|
253
|
+
else current_lcb + lcb_bound
|
|
254
|
+
)
|
|
255
|
+
|
|
256
|
+
else:
|
|
257
|
+
# check that bounds don't exceed range of LC
|
|
258
|
+
lca_lower_bound = (
|
|
259
|
+
0.01
|
|
260
|
+
if (current_lca - lca_bound) <= 0.01
|
|
261
|
+
else current_lca - lca_bound
|
|
262
|
+
)
|
|
263
|
+
lca_upper_bound = (
|
|
264
|
+
1.6
|
|
265
|
+
if (current_lca + lca_bound) >= 1.6
|
|
266
|
+
else current_lca + lca_bound
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
lcb_lower_bound = (
|
|
270
|
+
0.01
|
|
271
|
+
if current_lcb - lcb_bound <= 0.01
|
|
272
|
+
else current_lcb - lcb_bound
|
|
273
|
+
)
|
|
274
|
+
lcb_upper_bound = (
|
|
275
|
+
1.6
|
|
276
|
+
if current_lcb + lcb_bound >= 1.6
|
|
277
|
+
else current_lcb + lcb_bound
|
|
278
|
+
)
|
|
279
|
+
|
|
280
|
+
return (
|
|
281
|
+
lca_lower_bound,
|
|
282
|
+
lca_upper_bound,
|
|
283
|
+
lcb_lower_bound,
|
|
284
|
+
lcb_upper_bound,
|
|
285
|
+
)
|
|
286
|
+
|
|
287
|
+
def opt_lca(
|
|
288
|
+
self,
|
|
289
|
+
cost_function,
|
|
290
|
+
lower_bound,
|
|
291
|
+
upper_bound,
|
|
292
|
+
reference,
|
|
293
|
+
cost_function_args,
|
|
294
|
+
):
|
|
295
|
+
res = optimize.minimize_scalar(
|
|
296
|
+
cost_function,
|
|
297
|
+
bounds=(lower_bound, upper_bound),
|
|
298
|
+
method="bounded",
|
|
299
|
+
args=cost_function_args,
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
lca = res.x
|
|
303
|
+
lcb = self.calib.get_lc("LCB")
|
|
304
|
+
abs_intensity = res.fun + reference
|
|
305
|
+
difference = res.fun / reference * 100
|
|
306
|
+
|
|
307
|
+
logging.debug("\tOptimize lca ...")
|
|
308
|
+
logging.debug(f"\tlca = {lca:.5f}")
|
|
309
|
+
logging.debug(f"\tlcb = {lcb:.5f}")
|
|
310
|
+
logging.debug(f"\tIntensity = {abs_intensity}")
|
|
311
|
+
logging.debug(f"\tIntensity Difference = {difference:.4f}%")
|
|
312
|
+
|
|
313
|
+
return [lca, lcb, abs_intensity, difference]
|
|
314
|
+
|
|
315
|
+
def opt_lcb(
|
|
316
|
+
self,
|
|
317
|
+
cost_function,
|
|
318
|
+
lower_bound,
|
|
319
|
+
upper_bound,
|
|
320
|
+
reference,
|
|
321
|
+
cost_function_args,
|
|
322
|
+
):
|
|
323
|
+
res = optimize.minimize_scalar(
|
|
324
|
+
cost_function,
|
|
325
|
+
bounds=(lower_bound, upper_bound),
|
|
326
|
+
method="bounded",
|
|
327
|
+
args=cost_function_args,
|
|
328
|
+
)
|
|
329
|
+
|
|
330
|
+
lca = self.calib.get_lc("LCA")
|
|
331
|
+
lcb = res.x
|
|
332
|
+
abs_intensity = res.fun + reference
|
|
333
|
+
difference = res.fun / reference * 100
|
|
334
|
+
|
|
335
|
+
logging.debug("\tOptimize lcb ...")
|
|
336
|
+
logging.debug(f"\tlca = {lca:.5f}")
|
|
337
|
+
logging.debug(f"\tlcb = {lcb:.5f}")
|
|
338
|
+
logging.debug(f"\tIntensity = {abs_intensity}")
|
|
339
|
+
logging.debug(f"\tIntensity Difference = {difference:.4f}%")
|
|
340
|
+
|
|
341
|
+
return [lca, lcb, abs_intensity, difference]
|
|
342
|
+
|
|
343
|
+
def optimize(
|
|
344
|
+
self, state, lca_bound, lcb_bound, reference, thresh=None, n_iter=None
|
|
345
|
+
):
|
|
346
|
+
(
|
|
347
|
+
lca_lower_bound,
|
|
348
|
+
lca_upper_bound,
|
|
349
|
+
lcb_lower_bound,
|
|
350
|
+
lcb_upper_bound,
|
|
351
|
+
) = self._check_bounds(lca_bound, lcb_bound)
|
|
352
|
+
|
|
353
|
+
if state == "ext":
|
|
354
|
+
optimal = []
|
|
355
|
+
|
|
356
|
+
results_lca = self.opt_lca(
|
|
357
|
+
self.calib.opt_lc,
|
|
358
|
+
lca_lower_bound,
|
|
359
|
+
lca_upper_bound,
|
|
360
|
+
reference,
|
|
361
|
+
("LCA", reference),
|
|
362
|
+
)
|
|
363
|
+
|
|
364
|
+
self.calib.set_lc(results_lca[0], "LCA")
|
|
365
|
+
|
|
366
|
+
optimal.append(results_lca)
|
|
367
|
+
|
|
368
|
+
results_lcb = self.opt_lcb(
|
|
369
|
+
self.calib.opt_lc,
|
|
370
|
+
lcb_lower_bound,
|
|
371
|
+
lcb_upper_bound,
|
|
372
|
+
reference,
|
|
373
|
+
("LCB", reference),
|
|
374
|
+
)
|
|
375
|
+
|
|
376
|
+
self.calib.set_lc(results_lcb[1], "LCB")
|
|
377
|
+
|
|
378
|
+
optimal.append(results_lcb)
|
|
379
|
+
|
|
380
|
+
# ============BEGIN FINE SEARCH=================
|
|
381
|
+
|
|
382
|
+
logging.debug(f"\n\tBeginning Finer Search\n")
|
|
383
|
+
lca_lower_bound = results_lcb[0] - 0.01
|
|
384
|
+
lca_upper_bound = results_lcb[0] + 0.01
|
|
385
|
+
lcb_lower_bound = results_lcb[1] - 0.01
|
|
386
|
+
lcb_upper_bound = results_lcb[1] + 0.01
|
|
387
|
+
|
|
388
|
+
results_lca = self.opt_lca(
|
|
389
|
+
self.calib.opt_lc,
|
|
390
|
+
lca_lower_bound,
|
|
391
|
+
lca_upper_bound,
|
|
392
|
+
reference,
|
|
393
|
+
("LCA", reference),
|
|
394
|
+
)
|
|
395
|
+
|
|
396
|
+
self.calib.set_lc(results_lca[0], "LCA")
|
|
397
|
+
|
|
398
|
+
optimal.append(results_lca)
|
|
399
|
+
|
|
400
|
+
results_lcb = self.opt_lcb(
|
|
401
|
+
self.calib.opt_lc,
|
|
402
|
+
lcb_lower_bound,
|
|
403
|
+
lcb_upper_bound,
|
|
404
|
+
reference,
|
|
405
|
+
("LCB", reference),
|
|
406
|
+
)
|
|
407
|
+
|
|
408
|
+
self.calib.set_lc(results_lcb[1], "LCB")
|
|
409
|
+
|
|
410
|
+
optimal.append(results_lcb)
|
|
411
|
+
|
|
412
|
+
# Sometimes this optimization can drift away from the minimum,
|
|
413
|
+
# this makes sure we use the lowest iteration
|
|
414
|
+
optimal = np.asarray(optimal)
|
|
415
|
+
opt = np.where(optimal == np.min(optimal[:][2]))[0]
|
|
416
|
+
|
|
417
|
+
lca = float(optimal[opt][0][0])
|
|
418
|
+
lcb = float(optimal[opt][0][1])
|
|
419
|
+
results = optimal[opt][0]
|
|
420
|
+
|
|
421
|
+
if state == "45" or state == "135":
|
|
422
|
+
results = self.opt_lcb(
|
|
423
|
+
self.calib.opt_lc,
|
|
424
|
+
lcb_lower_bound,
|
|
425
|
+
lcb_upper_bound,
|
|
426
|
+
reference,
|
|
427
|
+
("LCB", reference),
|
|
428
|
+
)
|
|
429
|
+
|
|
430
|
+
lca = results[0]
|
|
431
|
+
lcb = results[1]
|
|
432
|
+
|
|
433
|
+
if state == "60":
|
|
434
|
+
results = self.opt_lca(
|
|
435
|
+
self.calib.opt_lc_cons,
|
|
436
|
+
lca_lower_bound,
|
|
437
|
+
lca_upper_bound,
|
|
438
|
+
reference,
|
|
439
|
+
("LCA", reference, "60"),
|
|
440
|
+
)
|
|
441
|
+
|
|
442
|
+
swing = (self.calib.lca_ext - results[0]) * self.calib.ratio
|
|
443
|
+
lca = results[0]
|
|
444
|
+
lcb = self.calib.lcb_ext + swing
|
|
445
|
+
|
|
446
|
+
if state == "90":
|
|
447
|
+
results = self.opt_lca(
|
|
448
|
+
self.calib.opt_lc,
|
|
449
|
+
lca_lower_bound,
|
|
450
|
+
lca_upper_bound,
|
|
451
|
+
reference,
|
|
452
|
+
("LCA", reference),
|
|
453
|
+
)
|
|
454
|
+
lca = results[0]
|
|
455
|
+
lcb = results[1]
|
|
456
|
+
|
|
457
|
+
if state == "120":
|
|
458
|
+
results = self.opt_lca(
|
|
459
|
+
self.calib.opt_lc_cons,
|
|
460
|
+
lca_lower_bound,
|
|
461
|
+
lca_upper_bound,
|
|
462
|
+
reference,
|
|
463
|
+
("LCB", reference, "120"),
|
|
464
|
+
)
|
|
465
|
+
|
|
466
|
+
swing = (self.calib.lca_ext - results[0]) * self.calib.ratio
|
|
467
|
+
lca = results[0]
|
|
468
|
+
lcb = self.calib.lcb_ext - swing
|
|
469
|
+
|
|
470
|
+
return lca, lcb, results[2]
|
|
File without changes
|