waveorder 2.2.0__py3-none-any.whl → 2.2.0rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- waveorder/_version.py +1 -1
- waveorder/models/inplane_oriented_thick_pol3d.py +12 -12
- waveorder/models/isotropic_fluorescent_thick_3d.py +34 -70
- waveorder/models/isotropic_thin_3d.py +32 -94
- waveorder/models/phase_thick_3d.py +43 -94
- waveorder/optics.py +22 -232
- waveorder/util.py +2 -54
- waveorder/{visuals/jupyter_visuals.py → visual.py} +6 -2
- waveorder/waveorder_reconstructor.py +7 -8
- waveorder-2.2.0rc0.dist-info/METADATA +147 -0
- waveorder-2.2.0rc0.dist-info/RECORD +20 -0
- {waveorder-2.2.0.dist-info → waveorder-2.2.0rc0.dist-info}/WHEEL +1 -1
- waveorder/models/inplane_oriented_thick_pol3d_vector.py +0 -351
- waveorder/sampling.py +0 -94
- waveorder/visuals/matplotlib_visuals.py +0 -335
- waveorder/visuals/napari_visuals.py +0 -77
- waveorder/visuals/utils.py +0 -31
- waveorder-2.2.0.dist-info/METADATA +0 -186
- waveorder-2.2.0.dist-info/RECORD +0 -25
- {waveorder-2.2.0.dist-info → waveorder-2.2.0rc0.dist-info}/LICENSE +0 -0
- {waveorder-2.2.0.dist-info → waveorder-2.2.0rc0.dist-info}/top_level.txt +0 -0
waveorder/optics.py
CHANGED
|
@@ -133,7 +133,7 @@ def generate_pupil(frr, NA, lamb_in):
|
|
|
133
133
|
numerical aperture of the pupil function (normalized by the refractive index of the immersion media)
|
|
134
134
|
|
|
135
135
|
lamb_in : float
|
|
136
|
-
wavelength of the light
|
|
136
|
+
wavelength of the light (inside the immersion media)
|
|
137
137
|
in units of length (inverse of frr's units)
|
|
138
138
|
|
|
139
139
|
Returns
|
|
@@ -225,103 +225,6 @@ def gen_sector_Pupil(fxx, fyy, NA, lamb_in, sector_angle, rotation_angle):
|
|
|
225
225
|
return Pupil_sector
|
|
226
226
|
|
|
227
227
|
|
|
228
|
-
def rotation_matrix(nu_z, nu_y, nu_x, wavelength):
|
|
229
|
-
nu_perp_squared = nu_x**2 + nu_y**2
|
|
230
|
-
nu_zz = wavelength * nu_z - 1
|
|
231
|
-
|
|
232
|
-
R_xx = (wavelength * nu_x**2 * nu_z + nu_y**2) / nu_perp_squared
|
|
233
|
-
R_yy = (wavelength * nu_y**2 * nu_z + nu_x**2) / nu_perp_squared
|
|
234
|
-
R_xy = nu_x * nu_y * nu_zz / nu_perp_squared
|
|
235
|
-
|
|
236
|
-
row0 = torch.stack((-wavelength * nu_y, -wavelength * nu_x), dim=0)
|
|
237
|
-
row1 = torch.stack((R_yy, R_xy), dim=0)
|
|
238
|
-
row2 = torch.stack((R_xy, R_xx), dim=0)
|
|
239
|
-
|
|
240
|
-
out = torch.stack((row0, row1, row2), dim=0)
|
|
241
|
-
|
|
242
|
-
# KLUDGE: fix the DC term manually, avoiding nan
|
|
243
|
-
out[..., 0, 0] = torch.tensor([[0, 0], [1, 0], [0, 1]])[..., None]
|
|
244
|
-
|
|
245
|
-
return torch.nan_to_num(out, nan=0.0)
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
def generate_vector_source_defocus_pupil(
|
|
249
|
-
x_frequencies,
|
|
250
|
-
y_frequencies,
|
|
251
|
-
z_position_list,
|
|
252
|
-
defocus_pupil,
|
|
253
|
-
input_jones,
|
|
254
|
-
ill_pupil,
|
|
255
|
-
wavelength,
|
|
256
|
-
):
|
|
257
|
-
ill_pupil_3d = torch.einsum(
|
|
258
|
-
"zyx,yx->zyx", torch.fft.fft(defocus_pupil, dim=0), ill_pupil
|
|
259
|
-
).abs() # make this real
|
|
260
|
-
|
|
261
|
-
freq_shape = z_position_list.shape + x_frequencies.shape
|
|
262
|
-
|
|
263
|
-
y_broadcast = torch.broadcast_to(y_frequencies[None, :, :], freq_shape)
|
|
264
|
-
x_broadcast = torch.broadcast_to(x_frequencies[None, :, :], freq_shape)
|
|
265
|
-
z_broadcast = np.sqrt(wavelength ** (-2) - x_broadcast**2 - y_broadcast**2)
|
|
266
|
-
|
|
267
|
-
# Calculate rotation matrix
|
|
268
|
-
rotations = rotation_matrix(
|
|
269
|
-
z_broadcast, y_broadcast, x_broadcast, wavelength
|
|
270
|
-
).type(torch.complex64)
|
|
271
|
-
|
|
272
|
-
# TEMPORARY SIMPLIFY ROTATIONS "TURN OFF ROTATIONS"
|
|
273
|
-
# 3x2 IDENTITY MATRIX
|
|
274
|
-
rotations = torch.zeros_like(rotations)
|
|
275
|
-
rotations[1, 0, ...] = 1
|
|
276
|
-
rotations[2, 1, ...] = 1
|
|
277
|
-
|
|
278
|
-
# Main calculation in the frequency domain
|
|
279
|
-
source_pupil = torch.einsum(
|
|
280
|
-
"ijzyx,j,zyx->izyx", rotations, input_jones, ill_pupil_3d
|
|
281
|
-
)
|
|
282
|
-
|
|
283
|
-
# Convert back to defocus pupil
|
|
284
|
-
source_defocus_pupil = torch.fft.ifft(source_pupil, dim=-3)
|
|
285
|
-
|
|
286
|
-
return source_defocus_pupil
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
def generate_vector_detection_defocus_pupil(
|
|
290
|
-
x_frequencies,
|
|
291
|
-
y_frequencies,
|
|
292
|
-
z_position_list,
|
|
293
|
-
det_defocus_pupil,
|
|
294
|
-
det_pupil,
|
|
295
|
-
wavelength,
|
|
296
|
-
):
|
|
297
|
-
# TODO: refactor redundancy with illumination pupil
|
|
298
|
-
det_pupil_3d = torch.einsum(
|
|
299
|
-
"zyx,yx->zyx", torch.fft.ifft(det_defocus_pupil, dim=0), det_pupil
|
|
300
|
-
)
|
|
301
|
-
|
|
302
|
-
# Calculate zyx_frequency grid (inelegant)
|
|
303
|
-
z_frequencies = torch.fft.ifft(z_position_list)
|
|
304
|
-
freq_shape = z_frequencies.shape + x_frequencies.shape
|
|
305
|
-
z_broadcast = torch.broadcast_to(z_frequencies[:, None, None], freq_shape)
|
|
306
|
-
y_broadcast = torch.broadcast_to(y_frequencies[None, :, :], freq_shape)
|
|
307
|
-
x_broadcast = torch.broadcast_to(x_frequencies[None, :, :], freq_shape)
|
|
308
|
-
|
|
309
|
-
# Calculate rotation matrix
|
|
310
|
-
rotations = rotation_matrix(
|
|
311
|
-
z_broadcast, y_broadcast, x_broadcast, wavelength
|
|
312
|
-
).type(torch.complex64)
|
|
313
|
-
|
|
314
|
-
# Main calculation in the frequency domain
|
|
315
|
-
vector_detection_pupil = torch.einsum(
|
|
316
|
-
"jizyx,zyx->ijzyx", rotations, det_pupil_3d
|
|
317
|
-
)
|
|
318
|
-
|
|
319
|
-
# Convert back to defocus pupil
|
|
320
|
-
detection_defocus_pupil = torch.fft.fft(vector_detection_pupil, dim=-3)
|
|
321
|
-
|
|
322
|
-
return detection_defocus_pupil
|
|
323
|
-
|
|
324
|
-
|
|
325
228
|
def Source_subsample(Source_cont, NAx_coord, NAy_coord, subsampled_NA=0.1):
|
|
326
229
|
"""
|
|
327
230
|
|
|
@@ -397,7 +300,7 @@ def generate_propagation_kernel(
|
|
|
397
300
|
wavelength : float
|
|
398
301
|
wavelength of the light in the immersion media
|
|
399
302
|
|
|
400
|
-
z_position_list : torch.tensor
|
|
303
|
+
z_position_list : torch.tensor or list
|
|
401
304
|
1D array of defocused z positions with the size of (Z)
|
|
402
305
|
|
|
403
306
|
Returns
|
|
@@ -407,16 +310,15 @@ def generate_propagation_kernel(
|
|
|
407
310
|
|
|
408
311
|
"""
|
|
409
312
|
|
|
410
|
-
oblique_factor = (
|
|
411
|
-
1
|
|
412
|
-
) / wavelength
|
|
413
|
-
oblique_factor = torch.nan_to_num(oblique_factor, nan=0.0)
|
|
313
|
+
oblique_factor = (
|
|
314
|
+
(1 - wavelength**2 * radial_frequencies**2) * pupil_support
|
|
315
|
+
) ** (1 / 2) / wavelength
|
|
414
316
|
|
|
415
317
|
propagation_kernel = pupil_support[None, :, :] * torch.exp(
|
|
416
318
|
1j
|
|
417
319
|
* 2
|
|
418
320
|
* np.pi
|
|
419
|
-
* z_position_list[:, None, None]
|
|
321
|
+
* torch.tensor(z_position_list)[:, None, None]
|
|
420
322
|
* oblique_factor[None, :, :]
|
|
421
323
|
)
|
|
422
324
|
|
|
@@ -424,11 +326,7 @@ def generate_propagation_kernel(
|
|
|
424
326
|
|
|
425
327
|
|
|
426
328
|
def generate_greens_function_z(
|
|
427
|
-
radial_frequencies,
|
|
428
|
-
pupil_support,
|
|
429
|
-
wavelength_illumination,
|
|
430
|
-
z_position_list,
|
|
431
|
-
axially_even=True,
|
|
329
|
+
radial_frequencies, pupil_support, wavelength_illumination, z_position_list
|
|
432
330
|
):
|
|
433
331
|
"""
|
|
434
332
|
|
|
@@ -445,14 +343,9 @@ def generate_greens_function_z(
|
|
|
445
343
|
wavelength_illumination : float
|
|
446
344
|
wavelength of the light in the immersion media
|
|
447
345
|
|
|
448
|
-
z_position_list
|
|
346
|
+
z_position_list : torch.tensor or list
|
|
449
347
|
1D array of defocused z position with the size of (Z,)
|
|
450
348
|
|
|
451
|
-
axially_even : bool
|
|
452
|
-
For backwards compatibility with legacy phase reconstruction.
|
|
453
|
-
Ideally the legacy phase reconstruction should be unified with
|
|
454
|
-
the new reconstructions, and this parameter should be removed.
|
|
455
|
-
|
|
456
349
|
Returns
|
|
457
350
|
-------
|
|
458
351
|
greens_function_z : torch.tensor
|
|
@@ -465,96 +358,46 @@ def generate_greens_function_z(
|
|
|
465
358
|
* pupil_support
|
|
466
359
|
) ** (1 / 2) / wavelength_illumination
|
|
467
360
|
|
|
468
|
-
if axially_even:
|
|
469
|
-
z_positions = torch.abs(z_position_list[:, None, None])
|
|
470
|
-
else:
|
|
471
|
-
z_positions = z_position_list[:, None, None]
|
|
472
|
-
|
|
473
361
|
greens_function_z = (
|
|
474
362
|
-1j
|
|
475
363
|
/ 4
|
|
476
364
|
/ np.pi
|
|
477
365
|
* pupil_support[None, :, :]
|
|
478
|
-
* torch.exp(
|
|
366
|
+
* torch.exp(
|
|
367
|
+
1j
|
|
368
|
+
* 2
|
|
369
|
+
* np.pi
|
|
370
|
+
* torch.tensor(z_position_list)[:, None, None]
|
|
371
|
+
* oblique_factor[None, :, :]
|
|
372
|
+
)
|
|
479
373
|
/ (oblique_factor[None, :, :] + 1e-15)
|
|
480
374
|
)
|
|
481
375
|
|
|
482
376
|
return greens_function_z
|
|
483
377
|
|
|
484
378
|
|
|
485
|
-
def generate_defocus_greens_tensor(
|
|
486
|
-
fxx, fyy, G_fun_z, Pupil_support, lambda_in
|
|
487
|
-
):
|
|
488
|
-
"""
|
|
489
|
-
|
|
490
|
-
generate forward dyadic Green's function in u_x, u_y, z space
|
|
491
|
-
|
|
492
|
-
Parameters
|
|
493
|
-
----------
|
|
494
|
-
fxx : tensor.Tensor
|
|
495
|
-
x component of 2D spatial frequency array with the size of (Ny, Nx)
|
|
496
|
-
|
|
497
|
-
fyy : tensor.Tensor
|
|
498
|
-
y component of 2D spatial frequency array with the size of (Ny, Nx)
|
|
499
|
-
|
|
500
|
-
G_fun_z : tensor.Tensor
|
|
501
|
-
forward Green's function in u_x, u_y, z space with size of (Nz, Ny, Nx)
|
|
502
|
-
|
|
503
|
-
Pupil_support : tensor.Tensor
|
|
504
|
-
the array that defines the support of the pupil function with the size of (Ny, Nx)
|
|
505
|
-
|
|
506
|
-
lambda_in : float
|
|
507
|
-
wavelength of the light in the immersion media
|
|
508
|
-
|
|
509
|
-
Returns
|
|
510
|
-
-------
|
|
511
|
-
G_tensor_z : tensor.Tensor
|
|
512
|
-
forward dyadic Green's function in u_x, u_y, z space with the size of (3, 3, Nz, Ny, Nx)
|
|
513
|
-
"""
|
|
514
|
-
|
|
515
|
-
fr = (fxx**2 + fyy**2) ** (1 / 2)
|
|
516
|
-
oblique_factor = ((1 - lambda_in**2 * fr**2) * Pupil_support) ** (
|
|
517
|
-
1 / 2
|
|
518
|
-
) / lambda_in
|
|
519
|
-
|
|
520
|
-
diff_filter = torch.zeros((3,) + G_fun_z.shape, dtype=torch.complex64)
|
|
521
|
-
diff_filter[0] = (1j * 2 * np.pi * oblique_factor)[None, ...]
|
|
522
|
-
diff_filter[1] = (1j * 2 * np.pi * fyy * Pupil_support)[None, ...]
|
|
523
|
-
diff_filter[2] = (1j * 2 * np.pi * fxx * Pupil_support)[None, ...]
|
|
524
|
-
|
|
525
|
-
G_tensor_z = torch.zeros((3, 3) + G_fun_z.shape, dtype=torch.complex64)
|
|
526
|
-
|
|
527
|
-
for i in range(3):
|
|
528
|
-
for j in range(3):
|
|
529
|
-
G_tensor_z[i, j] = (
|
|
530
|
-
G_fun_z
|
|
531
|
-
* diff_filter[i]
|
|
532
|
-
* diff_filter[j]
|
|
533
|
-
/ (2 * np.pi / lambda_in) ** 2
|
|
534
|
-
)
|
|
535
|
-
if i == j:
|
|
536
|
-
G_tensor_z[i, i] += G_fun_z
|
|
537
|
-
|
|
538
|
-
return G_tensor_z
|
|
539
|
-
|
|
540
|
-
|
|
541
379
|
def gen_dyadic_Greens_tensor_z(fxx, fyy, G_fun_z, Pupil_support, lambda_in):
|
|
542
380
|
"""
|
|
543
|
-
keeping for backwards compatibility
|
|
544
381
|
|
|
545
382
|
generate forward dyadic Green's function in u_x, u_y, z space
|
|
383
|
+
|
|
546
384
|
Parameters
|
|
547
385
|
----------
|
|
548
386
|
fxx : numpy.ndarray
|
|
549
387
|
x component of 2D spatial frequency array with the size of (Ny, Nx)
|
|
388
|
+
|
|
550
389
|
fyy : numpy.ndarray
|
|
551
390
|
y component of 2D spatial frequency array with the size of (Ny, Nx)
|
|
391
|
+
|
|
552
392
|
G_fun_z : numpy.ndarray
|
|
553
393
|
forward Green's function in u_x, u_y, z space with size of (Ny, Nx, Nz)
|
|
394
|
+
|
|
554
395
|
Pupil_support : numpy.ndarray
|
|
555
396
|
the array that defines the support of the pupil function with the size of (Ny, Nx)
|
|
397
|
+
|
|
556
398
|
lambda_in : float
|
|
557
399
|
wavelength of the light in the immersion media
|
|
400
|
+
|
|
558
401
|
Returns
|
|
559
402
|
-------
|
|
560
403
|
G_tensor_z : numpy.ndarray
|
|
@@ -584,6 +427,7 @@ def gen_dyadic_Greens_tensor_z(fxx, fyy, G_fun_z, Pupil_support, lambda_in):
|
|
|
584
427
|
)
|
|
585
428
|
if i == j:
|
|
586
429
|
G_tensor_z[i, i] += G_fun_z
|
|
430
|
+
|
|
587
431
|
return G_tensor_z
|
|
588
432
|
|
|
589
433
|
|
|
@@ -717,60 +561,6 @@ def gen_dyadic_Greens_tensor(G_real, ps, psz, lambda_in, space="real"):
|
|
|
717
561
|
)
|
|
718
562
|
|
|
719
563
|
|
|
720
|
-
def generate_greens_tensor_spectrum(
|
|
721
|
-
zyx_shape,
|
|
722
|
-
zyx_pixel_size,
|
|
723
|
-
wavelength,
|
|
724
|
-
):
|
|
725
|
-
"""
|
|
726
|
-
Parameters
|
|
727
|
-
----------
|
|
728
|
-
zyx_shape : tuple
|
|
729
|
-
zyx_pixel_size : tuple
|
|
730
|
-
wavelength : float
|
|
731
|
-
wavelength in medium
|
|
732
|
-
|
|
733
|
-
Returns
|
|
734
|
-
-------
|
|
735
|
-
torch.tensor
|
|
736
|
-
Green's tensor spectrum
|
|
737
|
-
"""
|
|
738
|
-
Z, Y, X = zyx_shape
|
|
739
|
-
dZ, dY, dX = zyx_pixel_size
|
|
740
|
-
|
|
741
|
-
z_step = torch.fft.ifftshift(
|
|
742
|
-
(torch.arange(Z) - Z // 2) * dZ
|
|
743
|
-
)
|
|
744
|
-
y_step = torch.fft.ifftshift((torch.arange(Y) - Y // 2) * dY)
|
|
745
|
-
x_step = torch.fft.ifftshift((torch.arange(X) - X // 2) * dX)
|
|
746
|
-
|
|
747
|
-
zz = torch.broadcast_to(z_step[:, None, None], (Z, Y, X))
|
|
748
|
-
yy = torch.broadcast_to(y_step[None, :, None], (Z, Y, X))
|
|
749
|
-
xx = torch.broadcast_to(x_step[None, None, :], (Z, Y, X))
|
|
750
|
-
|
|
751
|
-
rr = torch.sqrt(xx**2 + yy**2 + zz**2)
|
|
752
|
-
rhat = torch.stack([zz, yy, xx], dim=0) / rr
|
|
753
|
-
|
|
754
|
-
scalar_g = torch.exp(1j * 2 * torch.pi * rr / wavelength) / (
|
|
755
|
-
4 * torch.pi * rr
|
|
756
|
-
)
|
|
757
|
-
|
|
758
|
-
eye = torch.zeros((3, 3, Z, Y, X))
|
|
759
|
-
eye[0, 0] = 1
|
|
760
|
-
eye[1, 1] = 1
|
|
761
|
-
eye[2, 2] = 1
|
|
762
|
-
|
|
763
|
-
Q = eye - torch.einsum("izyx,jzyx->ijzyx", rhat, rhat)
|
|
764
|
-
g_3d = Q * scalar_g
|
|
765
|
-
g_3d = torch.nan_to_num(g_3d)
|
|
766
|
-
|
|
767
|
-
G_3D = torch.fft.fftn(g_3d, dim=(-3, -2, -1))
|
|
768
|
-
G_3D = torch.imag(G_3D) * 1j
|
|
769
|
-
G_3D /= torch.amax(torch.abs(G_3D))
|
|
770
|
-
|
|
771
|
-
return G_3D
|
|
772
|
-
|
|
773
|
-
|
|
774
564
|
def compute_weak_object_transfer_function_2d(
|
|
775
565
|
illumination_pupil, detection_pupil
|
|
776
566
|
):
|
waveorder/util.py
CHANGED
|
@@ -331,15 +331,12 @@ def gen_coordinate(img_dim, ps):
|
|
|
331
331
|
return (xx, yy, fxx, fyy)
|
|
332
332
|
|
|
333
333
|
|
|
334
|
-
def
|
|
334
|
+
def generate_radial_frequencies(img_dim, ps):
|
|
335
335
|
fy = torch.fft.fftfreq(img_dim[0], ps)
|
|
336
336
|
fx = torch.fft.fftfreq(img_dim[1], ps)
|
|
337
|
-
fyy, fxx = torch.meshgrid(fy, fx, indexing="ij")
|
|
338
|
-
return fyy, fxx
|
|
339
337
|
|
|
338
|
+
fyy, fxx = torch.meshgrid(fy, fx, indexing="ij")
|
|
340
339
|
|
|
341
|
-
def generate_radial_frequencies(img_dim, ps):
|
|
342
|
-
fyy, fxx = generate_frequencies(img_dim, ps)
|
|
343
340
|
return torch.sqrt(fyy**2 + fxx**2)
|
|
344
341
|
|
|
345
342
|
|
|
@@ -2242,52 +2239,3 @@ def orientation_3D_continuity_map(
|
|
|
2242
2239
|
retardance_pr_avg /= np.max(retardance_pr_avg)
|
|
2243
2240
|
|
|
2244
2241
|
return retardance_pr_avg
|
|
2245
|
-
|
|
2246
|
-
|
|
2247
|
-
def pauli():
|
|
2248
|
-
# yx order
|
|
2249
|
-
# trace-orthogonal normalization
|
|
2250
|
-
# torch.einsum("kij,lji->kl", pauli(), pauli()) == torch.eye(4)
|
|
2251
|
-
|
|
2252
|
-
# intensity, x-y, +45-(-45), LCP-RCP
|
|
2253
|
-
# yx
|
|
2254
|
-
# yx
|
|
2255
|
-
a = 2**-0.5
|
|
2256
|
-
sigma = torch.tensor(
|
|
2257
|
-
[
|
|
2258
|
-
[[a, 0], [0, a]],
|
|
2259
|
-
[[-a, 0], [0, a]],
|
|
2260
|
-
[[0, a], [a, 0]],
|
|
2261
|
-
[[0, 1j * a], [-1j * a, 0]],
|
|
2262
|
-
]
|
|
2263
|
-
)
|
|
2264
|
-
return sigma
|
|
2265
|
-
|
|
2266
|
-
|
|
2267
|
-
def gellmann():
|
|
2268
|
-
# zyx order
|
|
2269
|
-
# trace-orthogonal normalization
|
|
2270
|
-
# torch.einsum("kij,lji->kl", gellmann(), gellmann()) == torch.eye(9)
|
|
2271
|
-
#
|
|
2272
|
-
# lexicographical order of the Gell-Mann matrices
|
|
2273
|
-
# 00, 1-1, 10, 11, 2-2, 2-1, 20, 21, 22
|
|
2274
|
-
#
|
|
2275
|
-
# zyx
|
|
2276
|
-
# zyx
|
|
2277
|
-
a = 3**-0.5
|
|
2278
|
-
c = 2**-0.5
|
|
2279
|
-
d = -(6**-0.5)
|
|
2280
|
-
e = 2 * (6**-0.5)
|
|
2281
|
-
return torch.tensor(
|
|
2282
|
-
[
|
|
2283
|
-
[[a, 0, 0], [0, a, 0], [0, 0, a]],
|
|
2284
|
-
[[0, 0, -c], [0, 0, 0], [c, 0, 0]],
|
|
2285
|
-
[[0, 0, 0], [0, 0, -c], [0, c, 0]],
|
|
2286
|
-
[[0, -c, 0], [c, 0, 0], [0, 0, 0]],
|
|
2287
|
-
[[0, 0, 0], [0, 0, c], [0, c, 0]], #
|
|
2288
|
-
[[0, c, 0], [c, 0, 0], [0, 0, 0]],
|
|
2289
|
-
[[e, 0, 0], [0, d, 0], [0, 0, d]],
|
|
2290
|
-
[[0, 0, c], [0, 0, 0], [c, 0, 0]],
|
|
2291
|
-
[[0, 0, 0], [0, -c, 0], [0, 0, c]], #
|
|
2292
|
-
], dtype=torch.complex64
|
|
2293
|
-
)
|
|
@@ -8,7 +8,11 @@ from ipywidgets import (
|
|
|
8
8
|
Image,
|
|
9
9
|
Layout,
|
|
10
10
|
interact,
|
|
11
|
+
interactive,
|
|
12
|
+
fixed,
|
|
13
|
+
interact_manual,
|
|
11
14
|
HBox,
|
|
15
|
+
VBox,
|
|
12
16
|
)
|
|
13
17
|
from matplotlib.colors import hsv_to_rgb
|
|
14
18
|
from matplotlib.colors import Normalize
|
|
@@ -172,7 +176,7 @@ def image_stack_viewer_fast(
|
|
|
172
176
|
else:
|
|
173
177
|
raise ValueError('origin can only be either "upper" or "lower"')
|
|
174
178
|
|
|
175
|
-
im_wgt = Image(
|
|
179
|
+
im_wgt = Image(
|
|
176
180
|
value=im_dict[0],
|
|
177
181
|
layout=Layout(height=str(size[0]) + "px", width=str(size[1]) + "px"),
|
|
178
182
|
)
|
|
@@ -1924,4 +1928,4 @@ def orientation_3D_hist(
|
|
|
1924
1928
|
if colorbar:
|
|
1925
1929
|
fig.colorbar(img, ax=ax[row_idx, col_idx])
|
|
1926
1930
|
|
|
1927
|
-
return fig, ax
|
|
1931
|
+
return fig, ax
|
|
@@ -3,7 +3,6 @@ import matplotlib.pyplot as plt
|
|
|
3
3
|
import itertools
|
|
4
4
|
import time
|
|
5
5
|
import os
|
|
6
|
-
import warnings
|
|
7
6
|
from numpy.fft import fft, ifft, fft2, ifft2, fftn, ifftn, fftshift, ifftshift
|
|
8
7
|
from IPython import display
|
|
9
8
|
from scipy.ndimage import uniform_filter
|
|
@@ -161,8 +160,8 @@ def instrument_matrix_calibration(I_cali_norm, I_meas):
|
|
|
161
160
|
|
|
162
161
|
|
|
163
162
|
class waveorder_microscopy:
|
|
163
|
+
|
|
164
164
|
"""
|
|
165
|
-
DEPRECATED: Please see `waveorder.models` for maintained alternatives.
|
|
166
165
|
|
|
167
166
|
waveorder_microscopy contains reconstruction algorithms for label-free
|
|
168
167
|
microscopy with various types of dataset:
|
|
@@ -368,10 +367,6 @@ class waveorder_microscopy:
|
|
|
368
367
|
initialize the system parameters for phase and orders microscopy
|
|
369
368
|
|
|
370
369
|
"""
|
|
371
|
-
warnings.warn(
|
|
372
|
-
"Please see `waveorder.models` for maintained alternatives.",
|
|
373
|
-
category=DeprecationWarning,
|
|
374
|
-
)
|
|
375
370
|
|
|
376
371
|
t0 = time.time()
|
|
377
372
|
|
|
@@ -737,7 +732,9 @@ class waveorder_microscopy:
|
|
|
737
732
|
wave_vec_norm_x = self.lambda_illu * self.fxx
|
|
738
733
|
wave_vec_norm_y = self.lambda_illu * self.fyy
|
|
739
734
|
wave_vec_norm_z = (
|
|
740
|
-
np.maximum(
|
|
735
|
+
np.maximum(
|
|
736
|
+
0, 1 - wave_vec_norm_x**2 - wave_vec_norm_y**2
|
|
737
|
+
)
|
|
741
738
|
) ** (0.5)
|
|
742
739
|
|
|
743
740
|
incident_theta = np.arctan2(
|
|
@@ -4020,7 +4017,9 @@ class fluorescence_microscopy:
|
|
|
4020
4017
|
S1_stack = cp.array(S1_stack)
|
|
4021
4018
|
S2_stack = cp.array(S2_stack)
|
|
4022
4019
|
|
|
4023
|
-
anisotropy = cp.asnumpy(
|
|
4020
|
+
anisotropy = cp.asnumpy(
|
|
4021
|
+
0.5 * cp.sqrt(S1_stack**2 + S2_stack**2)
|
|
4022
|
+
)
|
|
4024
4023
|
orientation = cp.asnumpy(
|
|
4025
4024
|
(0.5 * cp.arctan2(S2_stack, S1_stack)) % np.pi
|
|
4026
4025
|
)
|
|
@@ -0,0 +1,147 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: waveorder
|
|
3
|
+
Version: 2.2.0rc0
|
|
4
|
+
Summary: Wave-optical simulations and deconvolution of optical properties
|
|
5
|
+
Author-email: CZ Biohub SF <compmicro@czbiohub.org>
|
|
6
|
+
Maintainer-email: Talon Chandler <talon.chandler@czbiohub.org>, Shalin Mehta <shalin.mehta@czbiohub.org>
|
|
7
|
+
License: BSD 3-Clause License
|
|
8
|
+
|
|
9
|
+
Copyright (c) 2019, Chan Zuckerberg Biohub
|
|
10
|
+
|
|
11
|
+
Redistribution and use in source and binary forms, with or without
|
|
12
|
+
modification, are permitted provided that the following conditions are met:
|
|
13
|
+
|
|
14
|
+
1. Redistributions of source code must retain the above copyright notice, this
|
|
15
|
+
list of conditions and the following disclaimer.
|
|
16
|
+
|
|
17
|
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
|
18
|
+
this list of conditions and the following disclaimer in the documentation
|
|
19
|
+
and/or other materials provided with the distribution.
|
|
20
|
+
|
|
21
|
+
3. Neither the name of the copyright holder nor the names of its
|
|
22
|
+
contributors may be used to endorse or promote products derived from
|
|
23
|
+
this software without specific prior written permission.
|
|
24
|
+
|
|
25
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
26
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
27
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
28
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
29
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
30
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
31
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
32
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
33
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
34
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
35
|
+
|
|
36
|
+
Project-URL: Homepage, https://github.com/mehta-lab/waveorder
|
|
37
|
+
Project-URL: Repository, https://github.com/mehta-lab/waveorder
|
|
38
|
+
Project-URL: Issues, https://github.com/mehta-lab/waveorder/issues
|
|
39
|
+
Keywords: simulation,optics,phase,scattering,polarization,label-free,permittivity,reconstruction-algorithm,qlipp,mipolscope,permittivity-tensor-imaging
|
|
40
|
+
Classifier: Development Status :: 4 - Beta
|
|
41
|
+
Classifier: Intended Audience :: Science/Research
|
|
42
|
+
Classifier: License :: OSI Approved :: BSD License
|
|
43
|
+
Classifier: Programming Language :: Python :: 3
|
|
44
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
45
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
46
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
47
|
+
Classifier: Topic :: Scientific/Engineering
|
|
48
|
+
Classifier: Topic :: Scientific/Engineering :: Image Processing
|
|
49
|
+
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
|
50
|
+
Classifier: Operating System :: POSIX :: Linux
|
|
51
|
+
Classifier: Operating System :: Microsoft :: Windows
|
|
52
|
+
Classifier: Operating System :: MacOS
|
|
53
|
+
Requires-Python: >=3.10
|
|
54
|
+
Description-Content-Type: text/markdown
|
|
55
|
+
License-File: LICENSE
|
|
56
|
+
Requires-Dist: numpy <2,>=1.21
|
|
57
|
+
Requires-Dist: matplotlib >=3.1.1
|
|
58
|
+
Requires-Dist: scipy >=1.3.0
|
|
59
|
+
Requires-Dist: pywavelets >=1.1.1
|
|
60
|
+
Requires-Dist: ipywidgets >=7.5.1
|
|
61
|
+
Requires-Dist: torch >=2.2.1
|
|
62
|
+
Provides-Extra: dev
|
|
63
|
+
Requires-Dist: pytest ; extra == 'dev'
|
|
64
|
+
Requires-Dist: pytest-cov ; extra == 'dev'
|
|
65
|
+
|
|
66
|
+
# waveorder
|
|
67
|
+
|
|
68
|
+

|
|
69
|
+
[](https://pepy.tech/project/waveorder)
|
|
70
|
+
[](https://pypi.org/project/waveorder)
|
|
71
|
+
[](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha)
|
|
72
|
+
|
|
73
|
+
This computational imaging library enables wave-optical simulation and reconstruction of optical properties that report microscopic architectural order.
|
|
74
|
+
|
|
75
|
+
## Computational label-free imaging
|
|
76
|
+
|
|
77
|
+
This vectorial wave simulator and reconstructor enabled the development of a new label-free imaging method, __permittivity tensor imaging (PTI)__, that measures density and 3D orientation of biomolecules with diffraction-limited resolution. These measurements are reconstructed from polarization-resolved images acquired with a sequence of oblique illuminations.
|
|
78
|
+
|
|
79
|
+
The acquisition, calibration, background correction, reconstruction, and applications of PTI are described in the following [preprint](https://doi.org/10.1101/2020.12.15.422951):
|
|
80
|
+
|
|
81
|
+
```bibtex
|
|
82
|
+
L.-H. Yeh, I. E. Ivanov, B. B. Chhun, S.-M. Guo, E. Hashemi, J. R. Byrum, J. A. Pérez-Bermejo, H. Wang, Y. Yu, P. G. Kazansky, B. R. Conklin, M. H. Han, and S. B. Mehta, "uPTI: uniaxial permittivity tensor imaging of intrinsic density and anisotropy," bioRxiv 2020.12.15.422951 (2020).
|
|
83
|
+
```
|
|
84
|
+
|
|
85
|
+
In addition to PTI, `waveorder` enables simulations and reconstructions of subsets of label-free measurements with subsets of the acquired data:
|
|
86
|
+
|
|
87
|
+
1. Reconstruction of 2D or 3D phase, projected retardance, and in-plane orientation from a polarization-diverse volumetric brightfield acquisition ([QLIPP](https://elifesciences.org/articles/55502))
|
|
88
|
+
|
|
89
|
+
2. Reconstruction of 2D or 3D phase from a volumetric brightfield acquisition ([2D](https://www.osapublishing.org/ao/abstract.cfm?uri=ao-54-28-8566)/[3D (PODT)](https://www.osapublishing.org/ao/abstract.cfm?uri=ao-57-1-a205) phase)
|
|
90
|
+
|
|
91
|
+
3. Reconstruction of 2D or 3D phase from an illumination-diverse volumetric acquisition ([2D](https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-9-11394&id=315599)/[3D](https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-7-10-3940&id=349951) differential phase contrast)
|
|
92
|
+
|
|
93
|
+
PTI provides volumetric reconstructions of mean permittivity ($\propto$ material density), differential permittivity ($\propto$ material anisotropy), 3D orientation, and optic sign. The following figure summarizes PTI acquisition and reconstruction with a small optical section of the mouse brain tissue:
|
|
94
|
+
|
|
95
|
+

|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
The [examples](https://github.com/mehta-lab/waveorder/tree/main/examples) illustrate simulations and reconstruction for 2D QLIPP, 3D PODT, and 2D/3D PTI methods.
|
|
99
|
+
|
|
100
|
+
If you are interested in deploying QLIPP or PODT for label-free imaging at scale, checkout our [napari plugin](https://www.napari-hub.org/plugins/recOrder-napari), [`recOrder-napari`](https://github.com/mehta-lab/recOrder).
|
|
101
|
+
|
|
102
|
+
## Correlative imaging
|
|
103
|
+
|
|
104
|
+
In addition to label-free reconstruction algorithms, `waveorder` also implements widefield fluorescence and fluorescence polarization reconstruction algorithms for correlative label-free and fluorescence imaging.
|
|
105
|
+
|
|
106
|
+
1. Correlative measurements of biomolecular density and orientation from polarization-diverse widefield imaging ([multimodal Instant PolScope](https://opg.optica.org/boe/fulltext.cfm?uri=boe-13-5-3102&id=472350))
|
|
107
|
+
|
|
108
|
+
We provide an [example notebook](https://github.com/mehta-lab/waveorder/blob/main/examples/documentation/fluorescence_deconvolution/fluorescence_deconv.ipynb) for widefield fluorescence deconvolution.
|
|
109
|
+
|
|
110
|
+
## Citation
|
|
111
|
+
|
|
112
|
+
Please cite this repository, along with the relevant preprint or paper, if you use or adapt this code. The citation information can be found by clicking "Cite this repository" button in the About section in the right sidebar.
|
|
113
|
+
|
|
114
|
+
## Installation
|
|
115
|
+
|
|
116
|
+
(Optional but recommended) install [anaconda](https://www.anaconda.com/products/distribution) and create a virtual environment:
|
|
117
|
+
|
|
118
|
+
```sh
|
|
119
|
+
conda create -y -n waveorder python=3.11
|
|
120
|
+
conda activate waveorder
|
|
121
|
+
```
|
|
122
|
+
|
|
123
|
+
Install `waveorder` from PyPI:
|
|
124
|
+
|
|
125
|
+
```sh
|
|
126
|
+
pip install waveorder
|
|
127
|
+
```
|
|
128
|
+
|
|
129
|
+
Use `waveorder` in your scripts:
|
|
130
|
+
|
|
131
|
+
```sh
|
|
132
|
+
python
|
|
133
|
+
>>> import waveorder
|
|
134
|
+
```
|
|
135
|
+
|
|
136
|
+
(Optional) Download the repository, install `jupyter`, and experiment with the example notebooks
|
|
137
|
+
|
|
138
|
+
```sh
|
|
139
|
+
git clone https://github.com/mehta-lab/waveorder.git
|
|
140
|
+
pip install jupyter
|
|
141
|
+
jupyter notebook ./waveorder/examples/
|
|
142
|
+
```
|
|
143
|
+
|
|
144
|
+
(M1 users) `pytorch` has [incomplete GPU support](https://github.com/pytorch/pytorch/issues/77764),
|
|
145
|
+
so please use `export PYTORCH_ENABLE_MPS_FALLBACK=1`
|
|
146
|
+
to allow some operators to fallback to CPU
|
|
147
|
+
if you plan to use GPU acceleration for polarization reconstruction.
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
waveorder/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
+
waveorder/_version.py,sha256=y62tGqTh86kx1L4FG_Wu91vm4c-zkqBUqEkv0mTr0sY,414
|
|
3
|
+
waveorder/background_estimator.py,sha256=gCIO6-232H0CGH4o6gnqW9KSYGOrXf5E9nD67WeF304,12399
|
|
4
|
+
waveorder/correction.py,sha256=N0Ic6mqw3U7mqow4dKTOkNx2QYOLwedGNH7HiKV-M6s,3460
|
|
5
|
+
waveorder/focus.py,sha256=4mg84Fe4V-oFplsuaU_VQU1_TEDoEfPggIAv6Is2dE4,6312
|
|
6
|
+
waveorder/optics.py,sha256=-mHYRMzDUNAz8kwF8xAR8RFuAEkWZzczKv2wnU5NuVs,37640
|
|
7
|
+
waveorder/stokes.py,sha256=Wk9ZimzICIZLh1CkB0kQSCSBLeugkDeydwXTPd-M-po,15186
|
|
8
|
+
waveorder/util.py,sha256=3k810fpb7pIEcc4fii6gP4wTerxCtFYgG82SiDzUTtQ,69898
|
|
9
|
+
waveorder/visual.py,sha256=SFzkQdMit3HyqTqrgzX4w5bRwz8QuwGumzVayi3DwDM,58171
|
|
10
|
+
waveorder/waveorder_reconstructor.py,sha256=5-jlbK8gcJqHbFhiWt-TcETV5cdLHSAXq9O3JupPXD0,151942
|
|
11
|
+
waveorder/waveorder_simulator.py,sha256=_HCmDZkACUGzgwnaI-q0PjsL1gRE55IQuaWw-wtAjCU,45856
|
|
12
|
+
waveorder/models/inplane_oriented_thick_pol3d.py,sha256=Z7rfufrDeEkUYf2MlZsXyvKsZWHIJWujK357_z1BBg0,5809
|
|
13
|
+
waveorder/models/isotropic_fluorescent_thick_3d.py,sha256=Pzi2kM1OGmwQIrI6b5h9OeIOGzHssG30Wv8zDi4n4PQ,5395
|
|
14
|
+
waveorder/models/isotropic_thin_3d.py,sha256=E__ly_xF6Tw_bHLSHHPpd3p60t01LhIPiFrqfd5u1r4,8493
|
|
15
|
+
waveorder/models/phase_thick_3d.py,sha256=itGav-JUDcs7YXxxtdtFK95CuaKR759o9ubL7ms8lBk,6590
|
|
16
|
+
waveorder-2.2.0rc0.dist-info/LICENSE,sha256=auz4oGH1A-xZtoiR2zuXIk-Hii4v9aGgFVBqn7nfpms,1509
|
|
17
|
+
waveorder-2.2.0rc0.dist-info/METADATA,sha256=KItkcQO-Bl3Gj-rutxx1V89YkVGYovr-QFo-OUPnAHI,8249
|
|
18
|
+
waveorder-2.2.0rc0.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
|
|
19
|
+
waveorder-2.2.0rc0.dist-info/top_level.txt,sha256=i3zReXiiMTnyPk93W7aEz_oEfsLnfR_Kzl7PW7kUslA,10
|
|
20
|
+
waveorder-2.2.0rc0.dist-info/RECORD,,
|