wavedl 1.6.0__py3-none-any.whl → 1.6.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. wavedl/__init__.py +1 -1
  2. wavedl/hpo.py +451 -451
  3. wavedl/{hpc.py → launcher.py} +135 -61
  4. wavedl/models/__init__.py +28 -0
  5. wavedl/models/{_timm_utils.py → _pretrained_utils.py} +128 -0
  6. wavedl/models/base.py +48 -0
  7. wavedl/models/caformer.py +1 -1
  8. wavedl/models/cnn.py +2 -27
  9. wavedl/models/convnext.py +5 -18
  10. wavedl/models/convnext_v2.py +6 -22
  11. wavedl/models/densenet.py +5 -18
  12. wavedl/models/efficientnetv2.py +315 -315
  13. wavedl/models/efficientvit.py +398 -0
  14. wavedl/models/fastvit.py +6 -39
  15. wavedl/models/mamba.py +44 -24
  16. wavedl/models/maxvit.py +51 -48
  17. wavedl/models/mobilenetv3.py +295 -295
  18. wavedl/models/regnet.py +406 -406
  19. wavedl/models/resnet.py +14 -56
  20. wavedl/models/resnet3d.py +258 -258
  21. wavedl/models/swin.py +443 -443
  22. wavedl/models/tcn.py +393 -409
  23. wavedl/models/unet.py +1 -5
  24. wavedl/models/unireplknet.py +491 -0
  25. wavedl/models/vit.py +3 -3
  26. wavedl/train.py +1427 -1430
  27. wavedl/utils/config.py +367 -367
  28. wavedl/utils/cross_validation.py +530 -530
  29. wavedl/utils/losses.py +216 -216
  30. wavedl/utils/optimizers.py +216 -216
  31. wavedl/utils/schedulers.py +251 -251
  32. {wavedl-1.6.0.dist-info → wavedl-1.6.2.dist-info}/METADATA +150 -113
  33. wavedl-1.6.2.dist-info/RECORD +46 -0
  34. {wavedl-1.6.0.dist-info → wavedl-1.6.2.dist-info}/entry_points.txt +2 -2
  35. wavedl-1.6.0.dist-info/RECORD +0 -44
  36. {wavedl-1.6.0.dist-info → wavedl-1.6.2.dist-info}/LICENSE +0 -0
  37. {wavedl-1.6.0.dist-info → wavedl-1.6.2.dist-info}/WHEEL +0 -0
  38. {wavedl-1.6.0.dist-info → wavedl-1.6.2.dist-info}/top_level.txt +0 -0
@@ -1,295 +1,295 @@
1
- """
2
- MobileNetV3: Efficient Networks for Edge Deployment
3
- ====================================================
4
-
5
- Lightweight architecture optimized for mobile and embedded devices.
6
- MobileNetV3 combines neural architecture search (NAS) with hardware-aware
7
- optimization to achieve excellent accuracy with minimal computational cost.
8
-
9
- **Key Features**:
10
- - Inverted residuals with depthwise separable convolutions
11
- - Squeeze-and-Excitation (SE) attention for channel weighting
12
- - h-swish activation: efficient approximation of swish
13
- - Designed for real-time inference on CPUs and edge devices
14
-
15
- **Variants**:
16
- - mobilenet_v3_small: Ultra-lightweight (~0.9M backbone params) - Edge/embedded
17
- - mobilenet_v3_large: Balanced (~3.0M backbone params) - Mobile deployment
18
-
19
- **Use Cases**:
20
- - Real-time structural health monitoring on embedded systems
21
- - Field inspection with portable devices
22
- - When model size and inference speed are critical
23
-
24
- **Note**: MobileNetV3 is 2D-only. For 1D data, use TCN. For 3D data, use ResNet3D.
25
-
26
- References:
27
- Howard, A., et al. (2019). Searching for MobileNetV3.
28
- ICCV 2019. https://arxiv.org/abs/1905.02244
29
-
30
- Author: Ductho Le (ductho.le@outlook.com)
31
- """
32
-
33
- from typing import Any
34
-
35
- import torch
36
- import torch.nn as nn
37
-
38
-
39
- try:
40
- from torchvision.models import (
41
- MobileNet_V3_Large_Weights,
42
- MobileNet_V3_Small_Weights,
43
- mobilenet_v3_large,
44
- mobilenet_v3_small,
45
- )
46
-
47
- MOBILENETV3_AVAILABLE = True
48
- except ImportError:
49
- MOBILENETV3_AVAILABLE = False
50
-
51
- from wavedl.models.base import BaseModel
52
- from wavedl.models.registry import register_model
53
-
54
-
55
- class MobileNetV3Base(BaseModel):
56
- """
57
- Base MobileNetV3 class for regression tasks.
58
-
59
- Wraps torchvision MobileNetV3 with:
60
- - Optional pretrained weights (ImageNet-1K)
61
- - Automatic input channel adaptation (grayscale → 3ch)
62
- - Lightweight regression head (maintains efficiency)
63
-
64
- MobileNetV3 is ideal for:
65
- - Edge deployment (Raspberry Pi, Jetson, mobile)
66
- - Real-time inference requirements
67
- - Memory-constrained environments
68
- - Quick prototyping and experimentation
69
-
70
- Note: This is 2D-only. Input shape must be (H, W).
71
- """
72
-
73
- def __init__(
74
- self,
75
- in_shape: tuple[int, int],
76
- out_size: int,
77
- model_fn,
78
- weights_class,
79
- pretrained: bool = True,
80
- dropout_rate: float = 0.2,
81
- freeze_backbone: bool = False,
82
- regression_hidden: int = 256,
83
- **kwargs,
84
- ):
85
- """
86
- Initialize MobileNetV3 for regression.
87
-
88
- Args:
89
- in_shape: (H, W) input image dimensions
90
- out_size: Number of regression output targets
91
- model_fn: torchvision model constructor
92
- weights_class: Pretrained weights enum class
93
- pretrained: Use ImageNet pretrained weights (default: True)
94
- dropout_rate: Dropout rate in regression head (default: 0.2)
95
- freeze_backbone: Freeze backbone for fine-tuning (default: False)
96
- regression_hidden: Hidden units in regression head (default: 256)
97
- """
98
- super().__init__(in_shape, out_size)
99
-
100
- if not MOBILENETV3_AVAILABLE:
101
- raise ImportError(
102
- "torchvision is required for MobileNetV3. "
103
- "Install with: pip install torchvision"
104
- )
105
-
106
- if len(in_shape) != 2:
107
- raise ValueError(
108
- f"MobileNetV3 requires 2D input (H, W), got {len(in_shape)}D. "
109
- "For 1D data, use TCN. For 3D data, use ResNet3D."
110
- )
111
-
112
- self.pretrained = pretrained
113
- self.dropout_rate = dropout_rate
114
- self.freeze_backbone = freeze_backbone
115
- self.regression_hidden = regression_hidden
116
-
117
- # Load pretrained backbone
118
- weights = weights_class.IMAGENET1K_V1 if pretrained else None
119
- self.backbone = model_fn(weights=weights)
120
-
121
- # MobileNetV3 classifier structure:
122
- # classifier[0]: Linear (features → 1280 for Large, 1024 for Small)
123
- # classifier[1]: Hardswish
124
- # classifier[2]: Dropout
125
- # classifier[3]: Linear (1280/1024 → num_classes)
126
-
127
- # Get the input features to the final classifier
128
- in_features = self.backbone.classifier[0].in_features
129
-
130
- # Replace classifier with lightweight regression head
131
- # Keep it efficient to maintain MobileNet's speed advantage
132
- self.backbone.classifier = nn.Sequential(
133
- nn.Linear(in_features, regression_hidden),
134
- nn.Hardswish(inplace=True), # Match MobileNetV3's activation
135
- nn.Dropout(dropout_rate),
136
- nn.Linear(regression_hidden, out_size),
137
- )
138
-
139
- # Adapt first conv for single-channel input (3× memory savings vs expand)
140
- self._adapt_input_channels()
141
-
142
- # Optionally freeze backbone for fine-tuning (after adaptation so new conv is frozen too)
143
- if freeze_backbone:
144
- self._freeze_backbone()
145
-
146
- def _adapt_input_channels(self):
147
- """Modify first conv to accept single-channel input.
148
-
149
- Instead of expanding 1→3 channels in forward (which triples memory),
150
- we replace the first conv layer with a 1-channel version and initialize
151
- weights as the mean of the pretrained RGB filters.
152
- """
153
- old_conv = self.backbone.features[0][0]
154
- new_conv = nn.Conv2d(
155
- 1, # Single channel input
156
- old_conv.out_channels,
157
- kernel_size=old_conv.kernel_size,
158
- stride=old_conv.stride,
159
- padding=old_conv.padding,
160
- dilation=old_conv.dilation,
161
- groups=old_conv.groups,
162
- padding_mode=old_conv.padding_mode,
163
- bias=old_conv.bias is not None,
164
- )
165
- if self.pretrained:
166
- with torch.no_grad():
167
- new_conv.weight.copy_(old_conv.weight.mean(dim=1, keepdim=True))
168
- self.backbone.features[0][0] = new_conv
169
-
170
- def _freeze_backbone(self):
171
- """Freeze all backbone parameters except the classifier."""
172
- for name, param in self.backbone.named_parameters():
173
- if "classifier" not in name:
174
- param.requires_grad = False
175
-
176
- def forward(self, x: torch.Tensor) -> torch.Tensor:
177
- """
178
- Forward pass.
179
-
180
- Args:
181
- x: Input tensor of shape (B, 1, H, W)
182
-
183
- Returns:
184
- Output tensor of shape (B, out_size)
185
- """
186
- return self.backbone(x)
187
-
188
- @classmethod
189
- def get_default_config(cls) -> dict[str, Any]:
190
- """Return default configuration for MobileNetV3."""
191
- return {
192
- "pretrained": True,
193
- "dropout_rate": 0.2,
194
- "freeze_backbone": False,
195
- "regression_hidden": 256,
196
- }
197
-
198
-
199
- # =============================================================================
200
- # REGISTERED MODEL VARIANTS
201
- # =============================================================================
202
-
203
-
204
- @register_model("mobilenet_v3_small")
205
- class MobileNetV3Small(MobileNetV3Base):
206
- """
207
- MobileNetV3-Small: Ultra-lightweight for edge deployment.
208
-
209
- ~0.9M backbone parameters. Designed for the most constrained environments.
210
- Achieves ~67% ImageNet accuracy with minimal compute.
211
-
212
- Recommended for:
213
- - Embedded systems (Raspberry Pi, Arduino with accelerators)
214
- - Battery-powered devices
215
- - Ultra-low latency requirements (<10ms)
216
- - Quick training experiments
217
-
218
- Performance (approximate):
219
- - CPU inference: ~6ms (single core)
220
- - Parameters: ~0.9M backbone
221
- - MAdds: 56M
222
-
223
- Args:
224
- in_shape: (H, W) image dimensions
225
- out_size: Number of regression targets
226
- pretrained: Use ImageNet pretrained weights (default: True)
227
- dropout_rate: Dropout rate in head (default: 0.2)
228
- freeze_backbone: Freeze backbone for fine-tuning (default: False)
229
- regression_hidden: Hidden units in regression head (default: 256)
230
-
231
- Example:
232
- >>> model = MobileNetV3Small(in_shape=(224, 224), out_size=3)
233
- >>> x = torch.randn(1, 1, 224, 224)
234
- >>> out = model(x) # (1, 3)
235
- """
236
-
237
- def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
238
- super().__init__(
239
- in_shape=in_shape,
240
- out_size=out_size,
241
- model_fn=mobilenet_v3_small,
242
- weights_class=MobileNet_V3_Small_Weights,
243
- **kwargs,
244
- )
245
-
246
- def __repr__(self) -> str:
247
- pt = "pretrained" if self.pretrained else "scratch"
248
- return f"MobileNetV3_Small({pt}, in={self.in_shape}, out={self.out_size})"
249
-
250
-
251
- @register_model("mobilenet_v3_large")
252
- class MobileNetV3Large(MobileNetV3Base):
253
- """
254
- MobileNetV3-Large: Balanced efficiency and accuracy.
255
-
256
- ~3.0M backbone parameters. Best trade-off for mobile/portable deployment.
257
- Achieves ~75% ImageNet accuracy with efficient inference.
258
-
259
- Recommended for:
260
- - Mobile deployment (smartphones, tablets)
261
- - Portable inspection devices
262
- - Real-time processing with moderate accuracy needs
263
- - Default choice for edge deployment
264
-
265
- Performance (approximate):
266
- - CPU inference: ~20ms (single core)
267
- - Parameters: ~3.0M backbone
268
- - MAdds: 219M
269
-
270
- Args:
271
- in_shape: (H, W) image dimensions
272
- out_size: Number of regression targets
273
- pretrained: Use ImageNet pretrained weights (default: True)
274
- dropout_rate: Dropout rate in head (default: 0.2)
275
- freeze_backbone: Freeze backbone for fine-tuning (default: False)
276
- regression_hidden: Hidden units in regression head (default: 256)
277
-
278
- Example:
279
- >>> model = MobileNetV3Large(in_shape=(224, 224), out_size=3)
280
- >>> x = torch.randn(1, 1, 224, 224)
281
- >>> out = model(x) # (1, 3)
282
- """
283
-
284
- def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
285
- super().__init__(
286
- in_shape=in_shape,
287
- out_size=out_size,
288
- model_fn=mobilenet_v3_large,
289
- weights_class=MobileNet_V3_Large_Weights,
290
- **kwargs,
291
- )
292
-
293
- def __repr__(self) -> str:
294
- pt = "pretrained" if self.pretrained else "scratch"
295
- return f"MobileNetV3_Large({pt}, in={self.in_shape}, out={self.out_size})"
1
+ """
2
+ MobileNetV3: Efficient Networks for Edge Deployment
3
+ ====================================================
4
+
5
+ Lightweight architecture optimized for mobile and embedded devices.
6
+ MobileNetV3 combines neural architecture search (NAS) with hardware-aware
7
+ optimization to achieve excellent accuracy with minimal computational cost.
8
+
9
+ **Key Features**:
10
+ - Inverted residuals with depthwise separable convolutions
11
+ - Squeeze-and-Excitation (SE) attention for channel weighting
12
+ - h-swish activation: efficient approximation of swish
13
+ - Designed for real-time inference on CPUs and edge devices
14
+
15
+ **Variants**:
16
+ - mobilenet_v3_small: Ultra-lightweight (~0.9M backbone params) - Edge/embedded
17
+ - mobilenet_v3_large: Balanced (~3.0M backbone params) - Mobile deployment
18
+
19
+ **Use Cases**:
20
+ - Real-time structural health monitoring on embedded systems
21
+ - Field inspection with portable devices
22
+ - When model size and inference speed are critical
23
+
24
+ **Note**: MobileNetV3 is 2D-only. For 1D data, use TCN. For 3D data, use ResNet3D.
25
+
26
+ References:
27
+ Howard, A., et al. (2019). Searching for MobileNetV3.
28
+ ICCV 2019. https://arxiv.org/abs/1905.02244
29
+
30
+ Author: Ductho Le (ductho.le@outlook.com)
31
+ """
32
+
33
+ from typing import Any
34
+
35
+ import torch
36
+ import torch.nn as nn
37
+
38
+
39
+ try:
40
+ from torchvision.models import (
41
+ MobileNet_V3_Large_Weights,
42
+ MobileNet_V3_Small_Weights,
43
+ mobilenet_v3_large,
44
+ mobilenet_v3_small,
45
+ )
46
+
47
+ MOBILENETV3_AVAILABLE = True
48
+ except ImportError:
49
+ MOBILENETV3_AVAILABLE = False
50
+
51
+ from wavedl.models.base import BaseModel
52
+ from wavedl.models.registry import register_model
53
+
54
+
55
+ class MobileNetV3Base(BaseModel):
56
+ """
57
+ Base MobileNetV3 class for regression tasks.
58
+
59
+ Wraps torchvision MobileNetV3 with:
60
+ - Optional pretrained weights (ImageNet-1K)
61
+ - Automatic input channel adaptation (grayscale → 3ch)
62
+ - Lightweight regression head (maintains efficiency)
63
+
64
+ MobileNetV3 is ideal for:
65
+ - Edge deployment (Raspberry Pi, Jetson, mobile)
66
+ - Real-time inference requirements
67
+ - Memory-constrained environments
68
+ - Quick prototyping and experimentation
69
+
70
+ Note: This is 2D-only. Input shape must be (H, W).
71
+ """
72
+
73
+ def __init__(
74
+ self,
75
+ in_shape: tuple[int, int],
76
+ out_size: int,
77
+ model_fn,
78
+ weights_class,
79
+ pretrained: bool = True,
80
+ dropout_rate: float = 0.2,
81
+ freeze_backbone: bool = False,
82
+ regression_hidden: int = 256,
83
+ **kwargs,
84
+ ):
85
+ """
86
+ Initialize MobileNetV3 for regression.
87
+
88
+ Args:
89
+ in_shape: (H, W) input image dimensions
90
+ out_size: Number of regression output targets
91
+ model_fn: torchvision model constructor
92
+ weights_class: Pretrained weights enum class
93
+ pretrained: Use ImageNet pretrained weights (default: True)
94
+ dropout_rate: Dropout rate in regression head (default: 0.2)
95
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
96
+ regression_hidden: Hidden units in regression head (default: 256)
97
+ """
98
+ super().__init__(in_shape, out_size)
99
+
100
+ if not MOBILENETV3_AVAILABLE:
101
+ raise ImportError(
102
+ "torchvision is required for MobileNetV3. "
103
+ "Install with: pip install torchvision"
104
+ )
105
+
106
+ if len(in_shape) != 2:
107
+ raise ValueError(
108
+ f"MobileNetV3 requires 2D input (H, W), got {len(in_shape)}D. "
109
+ "For 1D data, use TCN. For 3D data, use ResNet3D."
110
+ )
111
+
112
+ self.pretrained = pretrained
113
+ self.dropout_rate = dropout_rate
114
+ self.freeze_backbone = freeze_backbone
115
+ self.regression_hidden = regression_hidden
116
+
117
+ # Load pretrained backbone
118
+ weights = weights_class.IMAGENET1K_V1 if pretrained else None
119
+ self.backbone = model_fn(weights=weights)
120
+
121
+ # MobileNetV3 classifier structure:
122
+ # classifier[0]: Linear (features → 1280 for Large, 1024 for Small)
123
+ # classifier[1]: Hardswish
124
+ # classifier[2]: Dropout
125
+ # classifier[3]: Linear (1280/1024 → num_classes)
126
+
127
+ # Get the input features to the final classifier
128
+ in_features = self.backbone.classifier[0].in_features
129
+
130
+ # Replace classifier with lightweight regression head
131
+ # Keep it efficient to maintain MobileNet's speed advantage
132
+ self.backbone.classifier = nn.Sequential(
133
+ nn.Linear(in_features, regression_hidden),
134
+ nn.Hardswish(inplace=True), # Match MobileNetV3's activation
135
+ nn.Dropout(dropout_rate),
136
+ nn.Linear(regression_hidden, out_size),
137
+ )
138
+
139
+ # Adapt first conv for single-channel input (3× memory savings vs expand)
140
+ self._adapt_input_channels()
141
+
142
+ # Optionally freeze backbone for fine-tuning (after adaptation so new conv is frozen too)
143
+ if freeze_backbone:
144
+ self._freeze_backbone()
145
+
146
+ def _adapt_input_channels(self):
147
+ """Modify first conv to accept single-channel input.
148
+
149
+ Instead of expanding 1→3 channels in forward (which triples memory),
150
+ we replace the first conv layer with a 1-channel version and initialize
151
+ weights as the mean of the pretrained RGB filters.
152
+ """
153
+ old_conv = self.backbone.features[0][0]
154
+ new_conv = nn.Conv2d(
155
+ 1, # Single channel input
156
+ old_conv.out_channels,
157
+ kernel_size=old_conv.kernel_size,
158
+ stride=old_conv.stride,
159
+ padding=old_conv.padding,
160
+ dilation=old_conv.dilation,
161
+ groups=old_conv.groups,
162
+ padding_mode=old_conv.padding_mode,
163
+ bias=old_conv.bias is not None,
164
+ )
165
+ if self.pretrained:
166
+ with torch.no_grad():
167
+ new_conv.weight.copy_(old_conv.weight.mean(dim=1, keepdim=True))
168
+ self.backbone.features[0][0] = new_conv
169
+
170
+ def _freeze_backbone(self):
171
+ """Freeze all backbone parameters except the classifier."""
172
+ for name, param in self.backbone.named_parameters():
173
+ if "classifier" not in name:
174
+ param.requires_grad = False
175
+
176
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
177
+ """
178
+ Forward pass.
179
+
180
+ Args:
181
+ x: Input tensor of shape (B, 1, H, W)
182
+
183
+ Returns:
184
+ Output tensor of shape (B, out_size)
185
+ """
186
+ return self.backbone(x)
187
+
188
+ @classmethod
189
+ def get_default_config(cls) -> dict[str, Any]:
190
+ """Return default configuration for MobileNetV3."""
191
+ return {
192
+ "pretrained": True,
193
+ "dropout_rate": 0.2,
194
+ "freeze_backbone": False,
195
+ "regression_hidden": 256,
196
+ }
197
+
198
+
199
+ # =============================================================================
200
+ # REGISTERED MODEL VARIANTS
201
+ # =============================================================================
202
+
203
+
204
+ @register_model("mobilenet_v3_small")
205
+ class MobileNetV3Small(MobileNetV3Base):
206
+ """
207
+ MobileNetV3-Small: Ultra-lightweight for edge deployment.
208
+
209
+ ~0.9M backbone parameters. Designed for the most constrained environments.
210
+ Achieves ~67% ImageNet accuracy with minimal compute.
211
+
212
+ Recommended for:
213
+ - Embedded systems (Raspberry Pi, Arduino with accelerators)
214
+ - Battery-powered devices
215
+ - Ultra-low latency requirements (<10ms)
216
+ - Quick training experiments
217
+
218
+ Performance (approximate):
219
+ - CPU inference: ~6ms (single core)
220
+ - Parameters: ~0.9M backbone
221
+ - MAdds: 56M
222
+
223
+ Args:
224
+ in_shape: (H, W) image dimensions
225
+ out_size: Number of regression targets
226
+ pretrained: Use ImageNet pretrained weights (default: True)
227
+ dropout_rate: Dropout rate in head (default: 0.2)
228
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
229
+ regression_hidden: Hidden units in regression head (default: 256)
230
+
231
+ Example:
232
+ >>> model = MobileNetV3Small(in_shape=(224, 224), out_size=3)
233
+ >>> x = torch.randn(1, 1, 224, 224)
234
+ >>> out = model(x) # (1, 3)
235
+ """
236
+
237
+ def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
238
+ super().__init__(
239
+ in_shape=in_shape,
240
+ out_size=out_size,
241
+ model_fn=mobilenet_v3_small,
242
+ weights_class=MobileNet_V3_Small_Weights,
243
+ **kwargs,
244
+ )
245
+
246
+ def __repr__(self) -> str:
247
+ pt = "pretrained" if self.pretrained else "scratch"
248
+ return f"MobileNetV3_Small({pt}, in={self.in_shape}, out={self.out_size})"
249
+
250
+
251
+ @register_model("mobilenet_v3_large")
252
+ class MobileNetV3Large(MobileNetV3Base):
253
+ """
254
+ MobileNetV3-Large: Balanced efficiency and accuracy.
255
+
256
+ ~3.0M backbone parameters. Best trade-off for mobile/portable deployment.
257
+ Achieves ~75% ImageNet accuracy with efficient inference.
258
+
259
+ Recommended for:
260
+ - Mobile deployment (smartphones, tablets)
261
+ - Portable inspection devices
262
+ - Real-time processing with moderate accuracy needs
263
+ - Default choice for edge deployment
264
+
265
+ Performance (approximate):
266
+ - CPU inference: ~20ms (single core)
267
+ - Parameters: ~3.0M backbone
268
+ - MAdds: 219M
269
+
270
+ Args:
271
+ in_shape: (H, W) image dimensions
272
+ out_size: Number of regression targets
273
+ pretrained: Use ImageNet pretrained weights (default: True)
274
+ dropout_rate: Dropout rate in head (default: 0.2)
275
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
276
+ regression_hidden: Hidden units in regression head (default: 256)
277
+
278
+ Example:
279
+ >>> model = MobileNetV3Large(in_shape=(224, 224), out_size=3)
280
+ >>> x = torch.randn(1, 1, 224, 224)
281
+ >>> out = model(x) # (1, 3)
282
+ """
283
+
284
+ def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
285
+ super().__init__(
286
+ in_shape=in_shape,
287
+ out_size=out_size,
288
+ model_fn=mobilenet_v3_large,
289
+ weights_class=MobileNet_V3_Large_Weights,
290
+ **kwargs,
291
+ )
292
+
293
+ def __repr__(self) -> str:
294
+ pt = "pretrained" if self.pretrained else "scratch"
295
+ return f"MobileNetV3_Large({pt}, in={self.in_shape}, out={self.out_size})"