wavedl 1.6.0__py3-none-any.whl → 1.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wavedl/__init__.py +1 -1
- wavedl/hpo.py +451 -451
- wavedl/{hpc.py → launcher.py} +135 -61
- wavedl/models/__init__.py +28 -0
- wavedl/models/{_timm_utils.py → _pretrained_utils.py} +128 -0
- wavedl/models/base.py +48 -0
- wavedl/models/caformer.py +1 -1
- wavedl/models/cnn.py +2 -27
- wavedl/models/convnext.py +5 -18
- wavedl/models/convnext_v2.py +6 -22
- wavedl/models/densenet.py +5 -18
- wavedl/models/efficientnetv2.py +315 -315
- wavedl/models/efficientvit.py +398 -0
- wavedl/models/fastvit.py +6 -39
- wavedl/models/mamba.py +44 -24
- wavedl/models/maxvit.py +51 -48
- wavedl/models/mobilenetv3.py +295 -295
- wavedl/models/regnet.py +406 -406
- wavedl/models/resnet.py +14 -56
- wavedl/models/resnet3d.py +258 -258
- wavedl/models/swin.py +443 -443
- wavedl/models/tcn.py +393 -409
- wavedl/models/unet.py +1 -5
- wavedl/models/unireplknet.py +491 -0
- wavedl/models/vit.py +3 -3
- wavedl/train.py +1427 -1430
- wavedl/utils/config.py +367 -367
- wavedl/utils/cross_validation.py +530 -530
- wavedl/utils/losses.py +216 -216
- wavedl/utils/optimizers.py +216 -216
- wavedl/utils/schedulers.py +251 -251
- {wavedl-1.6.0.dist-info → wavedl-1.6.2.dist-info}/METADATA +150 -113
- wavedl-1.6.2.dist-info/RECORD +46 -0
- {wavedl-1.6.0.dist-info → wavedl-1.6.2.dist-info}/entry_points.txt +2 -2
- wavedl-1.6.0.dist-info/RECORD +0 -44
- {wavedl-1.6.0.dist-info → wavedl-1.6.2.dist-info}/LICENSE +0 -0
- {wavedl-1.6.0.dist-info → wavedl-1.6.2.dist-info}/WHEEL +0 -0
- {wavedl-1.6.0.dist-info → wavedl-1.6.2.dist-info}/top_level.txt +0 -0
wavedl/utils/losses.py
CHANGED
|
@@ -1,216 +1,216 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Loss Functions for Regression Tasks
|
|
3
|
-
====================================
|
|
4
|
-
|
|
5
|
-
Provides a comprehensive set of loss functions for regression problems,
|
|
6
|
-
with a factory function for easy selection via CLI arguments.
|
|
7
|
-
|
|
8
|
-
Supported Losses:
|
|
9
|
-
- mse: Mean Squared Error (default)
|
|
10
|
-
- mae: Mean Absolute Error (L1)
|
|
11
|
-
- huber: Huber Loss (smooth blend of MSE and MAE)
|
|
12
|
-
- smooth_l1: Smooth L1 Loss (PyTorch native Huber variant)
|
|
13
|
-
- log_cosh: Log-Cosh Loss (smooth approximation to MAE)
|
|
14
|
-
- weighted_mse: Per-target weighted MSE
|
|
15
|
-
|
|
16
|
-
Author: Ductho Le (ductho.le@outlook.com)
|
|
17
|
-
Version: 1.0.0
|
|
18
|
-
"""
|
|
19
|
-
|
|
20
|
-
import torch
|
|
21
|
-
import torch.nn as nn
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
# ==============================================================================
|
|
25
|
-
# CUSTOM LOSS FUNCTIONS
|
|
26
|
-
# ==============================================================================
|
|
27
|
-
class LogCoshLoss(nn.Module):
|
|
28
|
-
"""
|
|
29
|
-
Log-Cosh Loss: A smooth approximation to Mean Absolute Error.
|
|
30
|
-
|
|
31
|
-
The loss is defined as: loss = log(cosh(pred - target))
|
|
32
|
-
|
|
33
|
-
Properties:
|
|
34
|
-
- Smooth everywhere (differentiable)
|
|
35
|
-
- Behaves like L2 for small errors, L1 for large errors
|
|
36
|
-
- More robust to outliers than MSE
|
|
37
|
-
|
|
38
|
-
Example:
|
|
39
|
-
>>> criterion = LogCoshLoss()
|
|
40
|
-
>>> loss = criterion(predictions, targets)
|
|
41
|
-
"""
|
|
42
|
-
|
|
43
|
-
def __init__(self, reduction: str = "mean"):
|
|
44
|
-
"""
|
|
45
|
-
Args:
|
|
46
|
-
reduction: Specifies the reduction: 'none' | 'mean' | 'sum'
|
|
47
|
-
"""
|
|
48
|
-
super().__init__()
|
|
49
|
-
if reduction not in ("none", "mean", "sum"):
|
|
50
|
-
raise ValueError(f"Invalid reduction mode: {reduction}")
|
|
51
|
-
self.reduction = reduction
|
|
52
|
-
|
|
53
|
-
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
54
|
-
"""
|
|
55
|
-
Compute Log-Cosh loss.
|
|
56
|
-
|
|
57
|
-
Args:
|
|
58
|
-
pred: Predicted values of shape (N, *)
|
|
59
|
-
target: Target values of shape (N, *)
|
|
60
|
-
|
|
61
|
-
Returns:
|
|
62
|
-
Loss value (scalar if reduction is 'mean' or 'sum')
|
|
63
|
-
"""
|
|
64
|
-
diff = pred - target
|
|
65
|
-
# log(cosh(x)) = x + softplus(-2x) - log(2)
|
|
66
|
-
# This formulation is numerically stable
|
|
67
|
-
loss = diff + torch.nn.functional.softplus(-2.0 * diff) - 0.693147 # log(2)
|
|
68
|
-
|
|
69
|
-
if self.reduction == "none":
|
|
70
|
-
return loss
|
|
71
|
-
elif self.reduction == "sum":
|
|
72
|
-
return loss.sum()
|
|
73
|
-
else: # mean
|
|
74
|
-
return loss.mean()
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
class WeightedMSELoss(nn.Module):
|
|
78
|
-
"""
|
|
79
|
-
Weighted Mean Squared Error Loss.
|
|
80
|
-
|
|
81
|
-
Applies different weights to each target dimension, allowing
|
|
82
|
-
prioritization of specific outputs (e.g., prioritize thickness
|
|
83
|
-
over velocity in NDE applications).
|
|
84
|
-
|
|
85
|
-
Example:
|
|
86
|
-
>>> # 3 targets, prioritize first target
|
|
87
|
-
>>> criterion = WeightedMSELoss(weights=[2.0, 1.0, 1.0])
|
|
88
|
-
>>> loss = criterion(predictions, targets)
|
|
89
|
-
"""
|
|
90
|
-
|
|
91
|
-
def __init__(
|
|
92
|
-
self, weights: list[float] | torch.Tensor | None = None, reduction: str = "mean"
|
|
93
|
-
):
|
|
94
|
-
"""
|
|
95
|
-
Args:
|
|
96
|
-
weights: Per-target weights. If None, equal weights (standard MSE).
|
|
97
|
-
Length must match number of output targets.
|
|
98
|
-
reduction: Specifies the reduction: 'none' | 'mean' | 'sum'
|
|
99
|
-
"""
|
|
100
|
-
super().__init__()
|
|
101
|
-
if reduction not in ("none", "mean", "sum"):
|
|
102
|
-
raise ValueError(f"Invalid reduction mode: {reduction}")
|
|
103
|
-
self.reduction = reduction
|
|
104
|
-
|
|
105
|
-
if weights is not None:
|
|
106
|
-
if isinstance(weights, list):
|
|
107
|
-
weights = torch.tensor(weights, dtype=torch.float32)
|
|
108
|
-
self.register_buffer("weights", weights)
|
|
109
|
-
else:
|
|
110
|
-
self.weights = None
|
|
111
|
-
|
|
112
|
-
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
113
|
-
"""
|
|
114
|
-
Compute weighted MSE loss.
|
|
115
|
-
|
|
116
|
-
Args:
|
|
117
|
-
pred: Predicted values of shape (N, T) where T is number of targets
|
|
118
|
-
target: Target values of shape (N, T)
|
|
119
|
-
|
|
120
|
-
Returns:
|
|
121
|
-
Loss value (scalar if reduction is 'mean' or 'sum')
|
|
122
|
-
|
|
123
|
-
Raises:
|
|
124
|
-
ValueError: If weight dimension doesn't match target dimension
|
|
125
|
-
"""
|
|
126
|
-
mse = (pred - target) ** 2
|
|
127
|
-
|
|
128
|
-
if self.weights is not None:
|
|
129
|
-
# Validate weight dimension matches target dimension
|
|
130
|
-
if self.weights.shape[0] != pred.shape[-1]:
|
|
131
|
-
raise ValueError(
|
|
132
|
-
f"Weight dimension ({self.weights.shape[0]}) must match "
|
|
133
|
-
f"output dimension ({pred.shape[-1]}). "
|
|
134
|
-
f"Check your --loss_weights argument."
|
|
135
|
-
)
|
|
136
|
-
# Use local variable to avoid mutating registered buffer
|
|
137
|
-
# (mutating self.weights breaks state_dict semantics)
|
|
138
|
-
weights = self.weights.to(mse.device)
|
|
139
|
-
# Apply per-target weights with correct broadcasting: (N, T) * (T,) -> (N, T)
|
|
140
|
-
mse = mse * weights
|
|
141
|
-
|
|
142
|
-
if self.reduction == "none":
|
|
143
|
-
return mse
|
|
144
|
-
elif self.reduction == "sum":
|
|
145
|
-
return mse.sum()
|
|
146
|
-
else: # mean
|
|
147
|
-
return mse.mean()
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
# ==============================================================================
|
|
151
|
-
# LOSS REGISTRY
|
|
152
|
-
# ==============================================================================
|
|
153
|
-
_LOSS_REGISTRY = {
|
|
154
|
-
"mse": nn.MSELoss,
|
|
155
|
-
"mae": nn.L1Loss,
|
|
156
|
-
"l1": nn.L1Loss, # Alias for mae
|
|
157
|
-
"huber": nn.HuberLoss,
|
|
158
|
-
"smooth_l1": nn.SmoothL1Loss,
|
|
159
|
-
"log_cosh": LogCoshLoss,
|
|
160
|
-
"logcosh": LogCoshLoss, # Alias
|
|
161
|
-
"weighted_mse": WeightedMSELoss,
|
|
162
|
-
}
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
def list_losses() -> list[str]:
|
|
166
|
-
"""
|
|
167
|
-
Return list of available loss function names.
|
|
168
|
-
|
|
169
|
-
Returns:
|
|
170
|
-
List of registered loss function names (excluding aliases)
|
|
171
|
-
"""
|
|
172
|
-
# Return unique loss names (exclude aliases)
|
|
173
|
-
primary_names = ["mse", "mae", "huber", "smooth_l1", "log_cosh", "weighted_mse"]
|
|
174
|
-
return primary_names
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
def get_loss(
|
|
178
|
-
name: str, weights: list[float] | None = None, delta: float = 1.0, **kwargs
|
|
179
|
-
) -> nn.Module:
|
|
180
|
-
"""
|
|
181
|
-
Factory function to create loss function by name.
|
|
182
|
-
|
|
183
|
-
Args:
|
|
184
|
-
name: Loss function name (see list_losses())
|
|
185
|
-
weights: Per-target weights for weighted_mse
|
|
186
|
-
delta: Delta parameter for Huber loss (default: 1.0)
|
|
187
|
-
**kwargs: Additional arguments passed to loss constructor
|
|
188
|
-
|
|
189
|
-
Returns:
|
|
190
|
-
Instantiated loss function (nn.Module)
|
|
191
|
-
|
|
192
|
-
Raises:
|
|
193
|
-
ValueError: If loss name is not recognized
|
|
194
|
-
|
|
195
|
-
Example:
|
|
196
|
-
>>> criterion = get_loss("mse")
|
|
197
|
-
>>> criterion = get_loss("huber", delta=0.5)
|
|
198
|
-
>>> criterion = get_loss("weighted_mse", weights=[2.0, 1.0, 1.0])
|
|
199
|
-
"""
|
|
200
|
-
name_lower = name.lower().replace("-", "_")
|
|
201
|
-
|
|
202
|
-
if name_lower not in _LOSS_REGISTRY:
|
|
203
|
-
available = ", ".join(list_losses())
|
|
204
|
-
raise ValueError(
|
|
205
|
-
f"Unknown loss function: '{name}'. Available options: {available}"
|
|
206
|
-
)
|
|
207
|
-
|
|
208
|
-
loss_cls = _LOSS_REGISTRY[name_lower]
|
|
209
|
-
|
|
210
|
-
# Special handling for specific loss types
|
|
211
|
-
if name_lower == "huber":
|
|
212
|
-
return loss_cls(delta=delta, **kwargs)
|
|
213
|
-
elif name_lower == "weighted_mse":
|
|
214
|
-
return loss_cls(weights=weights, **kwargs)
|
|
215
|
-
else:
|
|
216
|
-
return loss_cls(**kwargs)
|
|
1
|
+
"""
|
|
2
|
+
Loss Functions for Regression Tasks
|
|
3
|
+
====================================
|
|
4
|
+
|
|
5
|
+
Provides a comprehensive set of loss functions for regression problems,
|
|
6
|
+
with a factory function for easy selection via CLI arguments.
|
|
7
|
+
|
|
8
|
+
Supported Losses:
|
|
9
|
+
- mse: Mean Squared Error (default)
|
|
10
|
+
- mae: Mean Absolute Error (L1)
|
|
11
|
+
- huber: Huber Loss (smooth blend of MSE and MAE)
|
|
12
|
+
- smooth_l1: Smooth L1 Loss (PyTorch native Huber variant)
|
|
13
|
+
- log_cosh: Log-Cosh Loss (smooth approximation to MAE)
|
|
14
|
+
- weighted_mse: Per-target weighted MSE
|
|
15
|
+
|
|
16
|
+
Author: Ductho Le (ductho.le@outlook.com)
|
|
17
|
+
Version: 1.0.0
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
import torch
|
|
21
|
+
import torch.nn as nn
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
# ==============================================================================
|
|
25
|
+
# CUSTOM LOSS FUNCTIONS
|
|
26
|
+
# ==============================================================================
|
|
27
|
+
class LogCoshLoss(nn.Module):
|
|
28
|
+
"""
|
|
29
|
+
Log-Cosh Loss: A smooth approximation to Mean Absolute Error.
|
|
30
|
+
|
|
31
|
+
The loss is defined as: loss = log(cosh(pred - target))
|
|
32
|
+
|
|
33
|
+
Properties:
|
|
34
|
+
- Smooth everywhere (differentiable)
|
|
35
|
+
- Behaves like L2 for small errors, L1 for large errors
|
|
36
|
+
- More robust to outliers than MSE
|
|
37
|
+
|
|
38
|
+
Example:
|
|
39
|
+
>>> criterion = LogCoshLoss()
|
|
40
|
+
>>> loss = criterion(predictions, targets)
|
|
41
|
+
"""
|
|
42
|
+
|
|
43
|
+
def __init__(self, reduction: str = "mean"):
|
|
44
|
+
"""
|
|
45
|
+
Args:
|
|
46
|
+
reduction: Specifies the reduction: 'none' | 'mean' | 'sum'
|
|
47
|
+
"""
|
|
48
|
+
super().__init__()
|
|
49
|
+
if reduction not in ("none", "mean", "sum"):
|
|
50
|
+
raise ValueError(f"Invalid reduction mode: {reduction}")
|
|
51
|
+
self.reduction = reduction
|
|
52
|
+
|
|
53
|
+
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
54
|
+
"""
|
|
55
|
+
Compute Log-Cosh loss.
|
|
56
|
+
|
|
57
|
+
Args:
|
|
58
|
+
pred: Predicted values of shape (N, *)
|
|
59
|
+
target: Target values of shape (N, *)
|
|
60
|
+
|
|
61
|
+
Returns:
|
|
62
|
+
Loss value (scalar if reduction is 'mean' or 'sum')
|
|
63
|
+
"""
|
|
64
|
+
diff = pred - target
|
|
65
|
+
# log(cosh(x)) = x + softplus(-2x) - log(2)
|
|
66
|
+
# This formulation is numerically stable
|
|
67
|
+
loss = diff + torch.nn.functional.softplus(-2.0 * diff) - 0.693147 # log(2)
|
|
68
|
+
|
|
69
|
+
if self.reduction == "none":
|
|
70
|
+
return loss
|
|
71
|
+
elif self.reduction == "sum":
|
|
72
|
+
return loss.sum()
|
|
73
|
+
else: # mean
|
|
74
|
+
return loss.mean()
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
class WeightedMSELoss(nn.Module):
|
|
78
|
+
"""
|
|
79
|
+
Weighted Mean Squared Error Loss.
|
|
80
|
+
|
|
81
|
+
Applies different weights to each target dimension, allowing
|
|
82
|
+
prioritization of specific outputs (e.g., prioritize thickness
|
|
83
|
+
over velocity in NDE applications).
|
|
84
|
+
|
|
85
|
+
Example:
|
|
86
|
+
>>> # 3 targets, prioritize first target
|
|
87
|
+
>>> criterion = WeightedMSELoss(weights=[2.0, 1.0, 1.0])
|
|
88
|
+
>>> loss = criterion(predictions, targets)
|
|
89
|
+
"""
|
|
90
|
+
|
|
91
|
+
def __init__(
|
|
92
|
+
self, weights: list[float] | torch.Tensor | None = None, reduction: str = "mean"
|
|
93
|
+
):
|
|
94
|
+
"""
|
|
95
|
+
Args:
|
|
96
|
+
weights: Per-target weights. If None, equal weights (standard MSE).
|
|
97
|
+
Length must match number of output targets.
|
|
98
|
+
reduction: Specifies the reduction: 'none' | 'mean' | 'sum'
|
|
99
|
+
"""
|
|
100
|
+
super().__init__()
|
|
101
|
+
if reduction not in ("none", "mean", "sum"):
|
|
102
|
+
raise ValueError(f"Invalid reduction mode: {reduction}")
|
|
103
|
+
self.reduction = reduction
|
|
104
|
+
|
|
105
|
+
if weights is not None:
|
|
106
|
+
if isinstance(weights, list):
|
|
107
|
+
weights = torch.tensor(weights, dtype=torch.float32)
|
|
108
|
+
self.register_buffer("weights", weights)
|
|
109
|
+
else:
|
|
110
|
+
self.weights = None
|
|
111
|
+
|
|
112
|
+
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
113
|
+
"""
|
|
114
|
+
Compute weighted MSE loss.
|
|
115
|
+
|
|
116
|
+
Args:
|
|
117
|
+
pred: Predicted values of shape (N, T) where T is number of targets
|
|
118
|
+
target: Target values of shape (N, T)
|
|
119
|
+
|
|
120
|
+
Returns:
|
|
121
|
+
Loss value (scalar if reduction is 'mean' or 'sum')
|
|
122
|
+
|
|
123
|
+
Raises:
|
|
124
|
+
ValueError: If weight dimension doesn't match target dimension
|
|
125
|
+
"""
|
|
126
|
+
mse = (pred - target) ** 2
|
|
127
|
+
|
|
128
|
+
if self.weights is not None:
|
|
129
|
+
# Validate weight dimension matches target dimension
|
|
130
|
+
if self.weights.shape[0] != pred.shape[-1]:
|
|
131
|
+
raise ValueError(
|
|
132
|
+
f"Weight dimension ({self.weights.shape[0]}) must match "
|
|
133
|
+
f"output dimension ({pred.shape[-1]}). "
|
|
134
|
+
f"Check your --loss_weights argument."
|
|
135
|
+
)
|
|
136
|
+
# Use local variable to avoid mutating registered buffer
|
|
137
|
+
# (mutating self.weights breaks state_dict semantics)
|
|
138
|
+
weights = self.weights.to(mse.device)
|
|
139
|
+
# Apply per-target weights with correct broadcasting: (N, T) * (T,) -> (N, T)
|
|
140
|
+
mse = mse * weights
|
|
141
|
+
|
|
142
|
+
if self.reduction == "none":
|
|
143
|
+
return mse
|
|
144
|
+
elif self.reduction == "sum":
|
|
145
|
+
return mse.sum()
|
|
146
|
+
else: # mean
|
|
147
|
+
return mse.mean()
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
# ==============================================================================
|
|
151
|
+
# LOSS REGISTRY
|
|
152
|
+
# ==============================================================================
|
|
153
|
+
_LOSS_REGISTRY = {
|
|
154
|
+
"mse": nn.MSELoss,
|
|
155
|
+
"mae": nn.L1Loss,
|
|
156
|
+
"l1": nn.L1Loss, # Alias for mae
|
|
157
|
+
"huber": nn.HuberLoss,
|
|
158
|
+
"smooth_l1": nn.SmoothL1Loss,
|
|
159
|
+
"log_cosh": LogCoshLoss,
|
|
160
|
+
"logcosh": LogCoshLoss, # Alias
|
|
161
|
+
"weighted_mse": WeightedMSELoss,
|
|
162
|
+
}
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
def list_losses() -> list[str]:
|
|
166
|
+
"""
|
|
167
|
+
Return list of available loss function names.
|
|
168
|
+
|
|
169
|
+
Returns:
|
|
170
|
+
List of registered loss function names (excluding aliases)
|
|
171
|
+
"""
|
|
172
|
+
# Return unique loss names (exclude aliases)
|
|
173
|
+
primary_names = ["mse", "mae", "huber", "smooth_l1", "log_cosh", "weighted_mse"]
|
|
174
|
+
return primary_names
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
def get_loss(
|
|
178
|
+
name: str, weights: list[float] | None = None, delta: float = 1.0, **kwargs
|
|
179
|
+
) -> nn.Module:
|
|
180
|
+
"""
|
|
181
|
+
Factory function to create loss function by name.
|
|
182
|
+
|
|
183
|
+
Args:
|
|
184
|
+
name: Loss function name (see list_losses())
|
|
185
|
+
weights: Per-target weights for weighted_mse
|
|
186
|
+
delta: Delta parameter for Huber loss (default: 1.0)
|
|
187
|
+
**kwargs: Additional arguments passed to loss constructor
|
|
188
|
+
|
|
189
|
+
Returns:
|
|
190
|
+
Instantiated loss function (nn.Module)
|
|
191
|
+
|
|
192
|
+
Raises:
|
|
193
|
+
ValueError: If loss name is not recognized
|
|
194
|
+
|
|
195
|
+
Example:
|
|
196
|
+
>>> criterion = get_loss("mse")
|
|
197
|
+
>>> criterion = get_loss("huber", delta=0.5)
|
|
198
|
+
>>> criterion = get_loss("weighted_mse", weights=[2.0, 1.0, 1.0])
|
|
199
|
+
"""
|
|
200
|
+
name_lower = name.lower().replace("-", "_")
|
|
201
|
+
|
|
202
|
+
if name_lower not in _LOSS_REGISTRY:
|
|
203
|
+
available = ", ".join(list_losses())
|
|
204
|
+
raise ValueError(
|
|
205
|
+
f"Unknown loss function: '{name}'. Available options: {available}"
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
loss_cls = _LOSS_REGISTRY[name_lower]
|
|
209
|
+
|
|
210
|
+
# Special handling for specific loss types
|
|
211
|
+
if name_lower == "huber":
|
|
212
|
+
return loss_cls(delta=delta, **kwargs)
|
|
213
|
+
elif name_lower == "weighted_mse":
|
|
214
|
+
return loss_cls(weights=weights, **kwargs)
|
|
215
|
+
else:
|
|
216
|
+
return loss_cls(**kwargs)
|