wavedl 1.3.0__py3-none-any.whl → 1.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: wavedl
3
- Version: 1.3.0
3
+ Version: 1.4.0
4
4
  Summary: A Scalable Deep Learning Framework for Wave-Based Inverse Problems
5
5
  Author: Ductho Le
6
6
  License: MIT
@@ -30,31 +30,18 @@ Requires-Dist: scikit-learn>=1.2.0
30
30
  Requires-Dist: pandas>=2.0.0
31
31
  Requires-Dist: matplotlib>=3.7.0
32
32
  Requires-Dist: tqdm>=4.65.0
33
- Requires-Dist: wandb>=0.15.0
34
33
  Requires-Dist: pyyaml>=6.0.0
35
34
  Requires-Dist: h5py>=3.8.0
36
35
  Requires-Dist: safetensors>=0.3.0
37
- Provides-Extra: dev
38
- Requires-Dist: pytest>=7.0.0; extra == "dev"
39
- Requires-Dist: pytest-xdist>=3.5.0; extra == "dev"
40
- Requires-Dist: ruff>=0.8.0; extra == "dev"
41
- Requires-Dist: pre-commit>=3.5.0; extra == "dev"
42
- Provides-Extra: onnx
43
- Requires-Dist: onnx>=1.14.0; extra == "onnx"
44
- Requires-Dist: onnxruntime>=1.15.0; extra == "onnx"
45
- Provides-Extra: compile
46
- Requires-Dist: triton; sys_platform == "linux" and extra == "compile"
47
- Provides-Extra: hpo
48
- Requires-Dist: optuna>=3.0.0; extra == "hpo"
49
- Provides-Extra: all
50
- Requires-Dist: pytest>=7.0.0; extra == "all"
51
- Requires-Dist: pytest-xdist>=3.5.0; extra == "all"
52
- Requires-Dist: ruff>=0.8.0; extra == "all"
53
- Requires-Dist: pre-commit>=3.5.0; extra == "all"
54
- Requires-Dist: onnx>=1.14.0; extra == "all"
55
- Requires-Dist: onnxruntime>=1.15.0; extra == "all"
56
- Requires-Dist: triton; sys_platform == "linux" and extra == "all"
57
- Requires-Dist: optuna>=3.0.0; extra == "all"
36
+ Requires-Dist: wandb>=0.15.0
37
+ Requires-Dist: optuna>=3.0.0
38
+ Requires-Dist: onnx>=1.14.0
39
+ Requires-Dist: onnxruntime>=1.15.0
40
+ Requires-Dist: pytest>=7.0.0
41
+ Requires-Dist: pytest-xdist>=3.5.0
42
+ Requires-Dist: ruff>=0.8.0
43
+ Requires-Dist: pre-commit>=3.5.0
44
+ Requires-Dist: triton>=2.0.0; sys_platform == "linux"
58
45
 
59
46
  <div align="center">
60
47
 
@@ -210,20 +197,20 @@ Deploy models anywhere:
210
197
 
211
198
  ### Installation
212
199
 
200
+ #### From PyPI (recommended for all users)
201
+
213
202
  ```bash
214
- # Install from PyPI (recommended)
215
203
  pip install wavedl
216
-
217
- # Or install with all extras (ONNX export, HPO, dev tools)
218
- pip install wavedl[all]
219
204
  ```
220
205
 
206
+ This installs everything you need: training, inference, HPO, ONNX export, and dev tools.
207
+
221
208
  #### From Source (for development)
222
209
 
223
210
  ```bash
224
211
  git clone https://github.com/ductho-le/WaveDL.git
225
212
  cd WaveDL
226
- pip install -e ".[dev]"
213
+ pip install -e .
227
214
  ```
228
215
 
229
216
  > [!NOTE]
@@ -359,41 +346,47 @@ WaveDL handles everything else: training loop, logging, checkpoints, multi-GPU,
359
346
  ```
360
347
  WaveDL/
361
348
  ├── src/
362
- │ └── wavedl/ # Main package (namespaced)
363
- │ ├── __init__.py # Package init with __version__
364
- │ ├── train.py # Training entry point
365
- │ ├── test.py # Testing & inference script
366
- │ ├── hpo.py # Hyperparameter optimization
367
- │ ├── hpc.py # HPC distributed training launcher
349
+ │ └── wavedl/ # Main package (namespaced)
350
+ │ ├── __init__.py # Package init with __version__
351
+ │ ├── train.py # Training entry point
352
+ │ ├── test.py # Testing & inference script
353
+ │ ├── hpo.py # Hyperparameter optimization
354
+ │ ├── hpc.py # HPC distributed training launcher
368
355
  │ │
369
- │ ├── models/ # Model architectures
370
- │ │ ├── registry.py # Model factory (@register_model)
371
- │ │ ├── base.py # Abstract base class
372
- │ │ ├── cnn.py # Baseline CNN
373
- │ │ ├── resnet.py # ResNet-18/34/50 (1D/2D/3D)
374
- │ │ ├── efficientnet.py# EfficientNet-B0/B1/B2
375
- │ │ ├── vit.py # Vision Transformer (1D/2D)
376
- │ │ ├── convnext.py # ConvNeXt (1D/2D/3D)
377
- │ │ ├── densenet.py # DenseNet-121/169 (1D/2D/3D)
378
- │ │ └── unet.py # U-Net / U-Net Regression
356
+ │ ├── models/ # Model architectures (38 variants)
357
+ │ │ ├── registry.py # Model factory (@register_model)
358
+ │ │ ├── base.py # Abstract base class
359
+ │ │ ├── cnn.py # Baseline CNN (1D/2D/3D)
360
+ │ │ ├── resnet.py # ResNet-18/34/50 (1D/2D/3D)
361
+ │ │ ├── resnet3d.py # ResNet3D-18, MC3-18 (3D only)
362
+ │ │ ├── tcn.py # TCN (1D only)
363
+ │ │ ├── efficientnet.py # EfficientNet-B0/B1/B2 (2D)
364
+ │ │ ├── efficientnetv2.py # EfficientNetV2-S/M/L (2D)
365
+ │ │ ├── mobilenetv3.py # MobileNetV3-Small/Large (2D)
366
+ │ │ ├── regnet.py # RegNetY variants (2D)
367
+ │ │ ├── swin.py # Swin Transformer (2D)
368
+ │ │ ├── vit.py # Vision Transformer (1D/2D)
369
+ │ │ ├── convnext.py # ConvNeXt (1D/2D/3D)
370
+ │ │ ├── densenet.py # DenseNet-121/169 (1D/2D/3D)
371
+ │ │ └── unet.py # U-Net Regression
379
372
  │ │
380
- │ └── utils/ # Utilities
381
- │ ├── data.py # Memory-mapped data pipeline
382
- │ ├── metrics.py # R², Pearson, visualization
383
- │ ├── distributed.py # DDP synchronization
384
- │ ├── losses.py # Loss function factory
385
- │ ├── optimizers.py # Optimizer factory
386
- │ ├── schedulers.py # LR scheduler factory
387
- │ └── config.py # YAML configuration support
373
+ │ └── utils/ # Utilities
374
+ │ ├── data.py # Memory-mapped data pipeline
375
+ │ ├── metrics.py # R², Pearson, visualization
376
+ │ ├── distributed.py # DDP synchronization
377
+ │ ├── losses.py # Loss function factory
378
+ │ ├── optimizers.py # Optimizer factory
379
+ │ ├── schedulers.py # LR scheduler factory
380
+ │ └── config.py # YAML configuration support
388
381
 
389
- ├── configs/ # YAML config templates
390
- ├── examples/ # Ready-to-run examples
391
- ├── notebooks/ # Jupyter notebooks
392
- ├── unit_tests/ # Pytest test suite (422 tests)
382
+ ├── configs/ # YAML config templates
383
+ ├── examples/ # Ready-to-run examples
384
+ ├── notebooks/ # Jupyter notebooks
385
+ ├── unit_tests/ # Pytest test suite (704 tests)
393
386
 
394
- ├── pyproject.toml # Package config, dependencies
395
- ├── CHANGELOG.md # Version history
396
- └── CITATION.cff # Citation metadata
387
+ ├── pyproject.toml # Package config, dependencies
388
+ ├── CHANGELOG.md # Version history
389
+ └── CITATION.cff # Citation metadata
397
390
  ```
398
391
  ---
399
392
 
@@ -412,33 +405,63 @@ WaveDL/
412
405
  > ```
413
406
 
414
407
  <details>
415
- <summary><b>Available Models</b> — 21 pre-built architectures</summary>
416
-
417
- | Model | Best For | Params (2D) | Dimensionality |
418
- |-------|----------|-------------|----------------|
419
- | `cnn` | Baseline, lightweight | 1.7M | 1D/2D/3D |
420
- | `resnet18` | Fast training, smaller datasets | 11.4M | 1D/2D/3D |
421
- | `resnet34` | Balanced performance | 21.5M | 1D/2D/3D |
422
- | `resnet50` | High capacity, complex patterns | 24.6M | 1D/2D/3D |
423
- | `resnet18_pretrained` | **Transfer learning** ⭐ | 11.4M | 2D only |
424
- | `resnet50_pretrained` | **Transfer learning** ⭐ | 24.6M | 2D only |
425
- | `efficientnet_b0` | Efficient, **pretrained** ⭐ | 4.7M | 2D only |
426
- | `efficientnet_b1` | Efficient, **pretrained** ⭐ | 7.2M | 2D only |
427
- | `efficientnet_b2` | Efficient, **pretrained** | 8.4M | 2D only |
428
- | `vit_tiny` | Transformer, small datasets | 5.4M | 1D/2D |
429
- | `vit_small` | Transformer, balanced | 21.5M | 1D/2D |
430
- | `vit_base` | Transformer, high capacity | 85.5M | 1D/2D |
431
- | `convnext_tiny` | Modern CNN, transformer-inspired | 28.2M | 1D/2D/3D |
432
- | `convnext_tiny_pretrained` | **Transfer learning** ⭐ | 28.2M | 2D only |
433
- | `convnext_small` | Modern CNN, balanced | 49.8M | 1D/2D/3D |
434
- | `convnext_base` | Modern CNN, high capacity | 88.1M | 1D/2D/3D |
435
- | `densenet121` | Feature reuse, small data | 7.5M | 1D/2D/3D |
436
- | `densenet121_pretrained` | **Transfer learning** ⭐ | 7.5M | 2D only |
437
- | `densenet169` | Deeper DenseNet | 13.3M | 1D/2D/3D |
438
- | `unet` | Spatial output (velocity fields) | 31.0M | 1D/2D/3D |
439
- | `unet_regression` | Multi-scale features for regression | 31.1M | 1D/2D/3D |
440
-
441
- >**Pretrained models** use ImageNet weights for transfer learning.
408
+ <summary><b>Available Models</b> — 38 architectures</summary>
409
+
410
+ | Model | Params | Dim |
411
+ |-------|--------|-----|
412
+ | **CNN** Convolutional Neural Network |||
413
+ | `cnn` | 1.7M | 1D/2D/3D |
414
+ | **ResNet** Residual Network |||
415
+ | `resnet18` | 11.4M | 1D/2D/3D |
416
+ | `resnet34` | 21.5M | 1D/2D/3D |
417
+ | `resnet50` | 24.6M | 1D/2D/3D |
418
+ | `resnet18_pretrained` ⭐ | 11.4M | 2D |
419
+ | `resnet50_pretrained` ⭐ | 24.6M | 2D |
420
+ | **ResNet3D** 3D Residual Network |||
421
+ | `resnet3d_18` | 33.6M | 3D |
422
+ | `mc3_18` Mixed Convolution 3D | 11.9M | 3D |
423
+ | **TCN** Temporal Convolutional Network |||
424
+ | `tcn_small` | 1.0M | 1D |
425
+ | `tcn` | 7.0M | 1D |
426
+ | `tcn_large` | 10.2M | 1D |
427
+ | **EfficientNet** Efficient Neural Network |||
428
+ | `efficientnet_b0` | 4.7M | 2D |
429
+ | `efficientnet_b1` ⭐ | 7.2M | 2D |
430
+ | `efficientnet_b2` | 8.4M | 2D |
431
+ | **EfficientNetV2** Efficient Neural Network V2 |||
432
+ | `efficientnet_v2_s` | 21.0M | 2D |
433
+ | `efficientnet_v2_m` ⭐ | 53.6M | 2D |
434
+ | `efficientnet_v2_l` | 118.0M | 2D |
435
+ | **MobileNetV3** — Mobile Neural Network V3 |||
436
+ | `mobilenet_v3_small` ⭐ | 1.1M | 2D |
437
+ | `mobilenet_v3_large` ⭐ | 3.2M | 2D |
438
+ | **RegNet** — Regularized Network |||
439
+ | `regnet_y_400mf` ⭐ | 4.0M | 2D |
440
+ | `regnet_y_800mf` ⭐ | 5.8M | 2D |
441
+ | `regnet_y_1_6gf` ⭐ | 10.5M | 2D |
442
+ | `regnet_y_3_2gf` ⭐ | 18.3M | 2D |
443
+ | `regnet_y_8gf` ⭐ | 37.9M | 2D |
444
+ | **Swin** — Shifted Window Transformer |||
445
+ | `swin_t` ⭐ | 28.0M | 2D |
446
+ | `swin_s` ⭐ | 49.4M | 2D |
447
+ | `swin_b` ⭐ | 87.4M | 2D |
448
+ | **ConvNeXt** — Convolutional Next |||
449
+ | `convnext_tiny` | 28.2M | 1D/2D/3D |
450
+ | `convnext_small` | 49.8M | 1D/2D/3D |
451
+ | `convnext_base` | 88.1M | 1D/2D/3D |
452
+ | `convnext_tiny_pretrained` ⭐ | 28.2M | 2D |
453
+ | **DenseNet** — Densely Connected Network |||
454
+ | `densenet121` | 7.5M | 1D/2D/3D |
455
+ | `densenet169` | 13.3M | 1D/2D/3D |
456
+ | `densenet121_pretrained` ⭐ | 7.5M | 2D |
457
+ | **ViT** — Vision Transformer |||
458
+ | `vit_tiny` | 5.5M | 1D/2D |
459
+ | `vit_small` | 21.6M | 1D/2D |
460
+ | `vit_base` | 85.6M | 1D/2D |
461
+ | **U-Net** — U-shaped Network |||
462
+ | `unet_regression` | 31.1M | 1D/2D/3D |
463
+
464
+ > ⭐ = Pretrained on ImageNet. Recommended for smaller datasets.
442
465
 
443
466
  </details>
444
467
 
@@ -653,12 +676,7 @@ seed: 2025
653
676
 
654
677
  Automatically find the best training configuration using [Optuna](https://optuna.org/).
655
678
 
656
- **Step 1: Install**
657
- ```bash
658
- pip install -e ".[hpo]"
659
- ```
660
-
661
- **Step 2: Run HPO**
679
+ **Run HPO:**
662
680
 
663
681
  You specify which models to search and how many trials to run:
664
682
  ```bash
@@ -715,7 +733,7 @@ accelerate launch -m wavedl.train --data_path train.npz --model cnn --lr 3.2e-4
715
733
  | `--output` | `hpo_results.json` | Output file |
716
734
 
717
735
  > [!TIP]
718
- > See [Available Models](#available-models) for all 21 architectures you can search.
736
+ > See [Available Models](#available-models) for all 38 architectures you can search.
719
737
 
720
738
  </details>
721
739
 
@@ -0,0 +1,37 @@
1
+ wavedl/__init__.py,sha256=rGJqm3RDNQt8I9vv57urpUSDeLrmKFFYFFbQj7JC85k,1177
2
+ wavedl/hpc.py,sha256=87oGGDj1lRJaM01eInHPJX3L-G5aexC3Y06376BdVhg,7321
3
+ wavedl/hpo.py,sha256=aZoa_Oto_anZpIhz-YM6kN8KxQXTolUvDEyg3NXwBrY,11542
4
+ wavedl/test.py,sha256=jZmRJaivYYTMMTaccCi0yQjHOfp0a9YWR1wAPeKFH-k,36246
5
+ wavedl/train.py,sha256=LtPJqULHZU3tPbJNlSwK4GlLxQB1Df2yQfWiEHMn54o,44945
6
+ wavedl/models/__init__.py,sha256=lfSohEnAUztO14nuwayMJhPjpgySzRN3jGiyAUuBmAU,3206
7
+ wavedl/models/_template.py,sha256=TYQSeH6NIHf9iqJ4n6PK0s7xsjitxFsu-n1EdWL24AA,4822
8
+ wavedl/models/base.py,sha256=atM7NJQhtgpA-NauLBVUkXTd8XccjGPBqg3qxX05SRo,5289
9
+ wavedl/models/cnn.py,sha256=rn2Xmup0w_ll6wuAnYclSeIVazoSUrUGPY-9XnhA1gE,8341
10
+ wavedl/models/convnext.py,sha256=5zELY0ztMB6FxJB9uBurloT7JBdxLXezmrNRzLQjrI0,12846
11
+ wavedl/models/densenet.py,sha256=LzNbQOvtcJJ4SVf-XvIlXGNUgVS2SXl-MMPbr8lcYrA,12995
12
+ wavedl/models/efficientnet.py,sha256=0DHBgEGaOucevtmO1KPUTb5bCdJRg-Gzfpu9EuaylGQ,7456
13
+ wavedl/models/efficientnetv2.py,sha256=rP8y1ZAWyNyi0PXGPXg-4HjgzoELZ-CjMFgr8WnSXeg,10244
14
+ wavedl/models/mobilenetv3.py,sha256=h3f6TiNSyHRH9Qidce7dCGTbdEWYfYF5kbU-TFoTg0U,9490
15
+ wavedl/models/registry.py,sha256=InYAXX2xbRvsFDFnYUPCptJh0F9lHlFPN77A9kqHRT0,2980
16
+ wavedl/models/regnet.py,sha256=Yf9gAoDLv0j4uEuoKC822gizHNh59LCbvFCMP11Q1C0,13116
17
+ wavedl/models/resnet.py,sha256=8DNGIrH5pK8pjEE9BSyBqIc_pkFS_qaYggx-stjTF5k,16961
18
+ wavedl/models/resnet3d.py,sha256=C7CL4XeSnRlIBuwf5Ei-z183uzIBObrXfkM9Iwuc5e0,8746
19
+ wavedl/models/swin.py,sha256=p-okfq3Qm4_neJTxCcMzoHoVzC0BHW3BMnbpr_Ri2U0,13224
20
+ wavedl/models/tcn.py,sha256=RtY13QpFHqz72b4ultv2lStCIDxfvjySVe5JaTx_GaM,12601
21
+ wavedl/models/unet.py,sha256=LqIXhasdBygwP7SZNNmiW1bHMPaJTVBpaeHtPgEHkdU,7790
22
+ wavedl/models/vit.py,sha256=0C3GZk11VsYFTl14d86Wtl1Zk1T5rYJjvkaEfEN4N3k,11100
23
+ wavedl/utils/__init__.py,sha256=YMgzuwndjr64kt9k0_6_9PMJYTVdiaH5veSMff_ZycA,3051
24
+ wavedl/utils/config.py,sha256=E0_m5aQ1OdwEwzZysSwc5v905P4g3SDprObFAeVIj9g,8107
25
+ wavedl/utils/cross_validation.py,sha256=117ac9KDzaIaqhtP8ZRs15Xpqmq5fLpX2-vqkNvtMaU,17487
26
+ wavedl/utils/data.py,sha256=9LrB9MC6jRZzbRSc9xiGzJWoh8FahwP_68REqBAT3Os,44131
27
+ wavedl/utils/distributed.py,sha256=7wQ3mRjkp_xjPSxDWMnBf5dSkAGUaTzntxbz0BhC5v0,4145
28
+ wavedl/utils/losses.py,sha256=5762M-TBC_hz6uyj1NPbU1vZeFOJQq7fR3-j7OygJRo,7254
29
+ wavedl/utils/metrics.py,sha256=mkCpqZwl_XUpNvA5Ekjf7y-HqApafR7eR6EuA8cBdM8,37287
30
+ wavedl/utils/optimizers.py,sha256=PyIkJ_hRhFi_Fio81Gy5YQNhcME0JUUEl8OTSyu-0RA,6323
31
+ wavedl/utils/schedulers.py,sha256=e6Sf0yj8VOqkdwkUHLMyUfGfHKTX4NMr-zfgxWqCTYI,7659
32
+ wavedl-1.4.0.dist-info/LICENSE,sha256=cEUCvcvH-9BT9Y-CNGY__PwWONCKu9zsoIqWA-NeHJ4,1066
33
+ wavedl-1.4.0.dist-info/METADATA,sha256=NDjDovaoOPWEno7rQVIId5_kOSyYrTA0nQgkyOfbdXI,39286
34
+ wavedl-1.4.0.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
35
+ wavedl-1.4.0.dist-info/entry_points.txt,sha256=f1RNDkXFZwBzrBzTMFocJ6xhfTvTmaEDTi5YyDEUaF8,140
36
+ wavedl-1.4.0.dist-info/top_level.txt,sha256=ccneUt3D5Qzbh3bsBSSrq9bqrhGiogcWKY24ZC4Q6Xw,7
37
+ wavedl-1.4.0.dist-info/RECORD,,
@@ -1,31 +0,0 @@
1
- wavedl/__init__.py,sha256=tyDZPCdra3-5TMWwIE4AvoDTkdHq-KZ_vp4lPgCfuX8,1177
2
- wavedl/hpc.py,sha256=OaiGo0Q_ylu6tCEZSnMZ9ohk3nWcqbnwNMXrbZgikF0,7325
3
- wavedl/hpo.py,sha256=aZoa_Oto_anZpIhz-YM6kN8KxQXTolUvDEyg3NXwBrY,11542
4
- wavedl/test.py,sha256=jZmRJaivYYTMMTaccCi0yQjHOfp0a9YWR1wAPeKFH-k,36246
5
- wavedl/train.py,sha256=eIEN53n7ZrJXfcR_TUcL0cdDFzU8BY2L6XbxqGiUnbA,43887
6
- wavedl/models/__init__.py,sha256=AbsFkRNlsiWv4sJ-kLPdwjA2FS_cSp_TB3CV8884uUE,2219
7
- wavedl/models/_template.py,sha256=O7SfL3Ef7eDXGmcOXPD0c82o_t3K4ybgJwpSEDsZNEg,4837
8
- wavedl/models/base.py,sha256=cql0wv8i1sMaVttXOSdBBTPfa2s2sLH5LyAsfKJdXX8,5304
9
- wavedl/models/cnn.py,sha256=2FFQetQaCJqeeku6glXbOQ3KJw5VvSTu9-u9cpygVk8,8356
10
- wavedl/models/convnext.py,sha256=zh-x5NFcZrcRv3bi55p-VKWHLYe-v1nvPcMp9xPizLk,12747
11
- wavedl/models/densenet.py,sha256=q9qrgnacMQ1GDGGPks0jx-C3DRjacnTV8BQ-iw6BTFY,12864
12
- wavedl/models/efficientnet.py,sha256=irxab-yt3z89tMTf1x6odR2IqgpMrMM44Wiu3n6-IEs,7285
13
- wavedl/models/registry.py,sha256=p5Eof3T6cwHggcEM-xzeBoKMbpuNyRmOJIvqMhzHvJA,2995
14
- wavedl/models/resnet.py,sha256=sT4S_Rx56dqLN5zEPbBKeJet1dvr49IWhnBSjiVfcQs,16777
15
- wavedl/models/unet.py,sha256=i3DFpeJmvdzNiBSqi4ecjLbC9RZXXbNJ_ZNMr2c3I6I,10019
16
- wavedl/models/vit.py,sha256=iyJ8FQ1DOAgBhaVIUGGQEP2L37wZ28JeHKkJ1tmgj9w,10898
17
- wavedl/utils/__init__.py,sha256=YMgzuwndjr64kt9k0_6_9PMJYTVdiaH5veSMff_ZycA,3051
18
- wavedl/utils/config.py,sha256=E0_m5aQ1OdwEwzZysSwc5v905P4g3SDprObFAeVIj9g,8107
19
- wavedl/utils/cross_validation.py,sha256=117ac9KDzaIaqhtP8ZRs15Xpqmq5fLpX2-vqkNvtMaU,17487
20
- wavedl/utils/data.py,sha256=9LrB9MC6jRZzbRSc9xiGzJWoh8FahwP_68REqBAT3Os,44131
21
- wavedl/utils/distributed.py,sha256=7wQ3mRjkp_xjPSxDWMnBf5dSkAGUaTzntxbz0BhC5v0,4145
22
- wavedl/utils/losses.py,sha256=5762M-TBC_hz6uyj1NPbU1vZeFOJQq7fR3-j7OygJRo,7254
23
- wavedl/utils/metrics.py,sha256=mkCpqZwl_XUpNvA5Ekjf7y-HqApafR7eR6EuA8cBdM8,37287
24
- wavedl/utils/optimizers.py,sha256=PyIkJ_hRhFi_Fio81Gy5YQNhcME0JUUEl8OTSyu-0RA,6323
25
- wavedl/utils/schedulers.py,sha256=e6Sf0yj8VOqkdwkUHLMyUfGfHKTX4NMr-zfgxWqCTYI,7659
26
- wavedl-1.3.0.dist-info/LICENSE,sha256=cEUCvcvH-9BT9Y-CNGY__PwWONCKu9zsoIqWA-NeHJ4,1066
27
- wavedl-1.3.0.dist-info/METADATA,sha256=FiNI2u9YCcVZUolFgKg9GzNc3i5MC1M_JYR171qvKN8,38922
28
- wavedl-1.3.0.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
29
- wavedl-1.3.0.dist-info/entry_points.txt,sha256=f1RNDkXFZwBzrBzTMFocJ6xhfTvTmaEDTi5YyDEUaF8,140
30
- wavedl-1.3.0.dist-info/top_level.txt,sha256=ccneUt3D5Qzbh3bsBSSrq9bqrhGiogcWKY24ZC4Q6Xw,7
31
- wavedl-1.3.0.dist-info/RECORD,,
File without changes