wavedl 1.3.0__py3-none-any.whl → 1.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wavedl/__init__.py +1 -1
- wavedl/hpc.py +28 -26
- wavedl/models/__init__.py +33 -7
- wavedl/models/_template.py +0 -1
- wavedl/models/base.py +0 -1
- wavedl/models/cnn.py +0 -1
- wavedl/models/convnext.py +4 -1
- wavedl/models/densenet.py +4 -1
- wavedl/models/efficientnet.py +9 -5
- wavedl/models/efficientnetv2.py +292 -0
- wavedl/models/mobilenetv3.py +272 -0
- wavedl/models/registry.py +0 -1
- wavedl/models/regnet.py +383 -0
- wavedl/models/resnet.py +7 -4
- wavedl/models/resnet3d.py +258 -0
- wavedl/models/swin.py +390 -0
- wavedl/models/tcn.py +389 -0
- wavedl/models/unet.py +44 -110
- wavedl/models/vit.py +8 -4
- wavedl/train.py +1113 -1117
- {wavedl-1.3.0.dist-info → wavedl-1.4.0.dist-info}/METADATA +111 -93
- wavedl-1.4.0.dist-info/RECORD +37 -0
- wavedl-1.3.0.dist-info/RECORD +0 -31
- {wavedl-1.3.0.dist-info → wavedl-1.4.0.dist-info}/LICENSE +0 -0
- {wavedl-1.3.0.dist-info → wavedl-1.4.0.dist-info}/WHEEL +0 -0
- {wavedl-1.3.0.dist-info → wavedl-1.4.0.dist-info}/entry_points.txt +0 -0
- {wavedl-1.3.0.dist-info → wavedl-1.4.0.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: wavedl
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.4.0
|
|
4
4
|
Summary: A Scalable Deep Learning Framework for Wave-Based Inverse Problems
|
|
5
5
|
Author: Ductho Le
|
|
6
6
|
License: MIT
|
|
@@ -30,31 +30,18 @@ Requires-Dist: scikit-learn>=1.2.0
|
|
|
30
30
|
Requires-Dist: pandas>=2.0.0
|
|
31
31
|
Requires-Dist: matplotlib>=3.7.0
|
|
32
32
|
Requires-Dist: tqdm>=4.65.0
|
|
33
|
-
Requires-Dist: wandb>=0.15.0
|
|
34
33
|
Requires-Dist: pyyaml>=6.0.0
|
|
35
34
|
Requires-Dist: h5py>=3.8.0
|
|
36
35
|
Requires-Dist: safetensors>=0.3.0
|
|
37
|
-
|
|
38
|
-
Requires-Dist:
|
|
39
|
-
Requires-Dist:
|
|
40
|
-
Requires-Dist:
|
|
41
|
-
Requires-Dist:
|
|
42
|
-
|
|
43
|
-
Requires-Dist:
|
|
44
|
-
Requires-Dist:
|
|
45
|
-
|
|
46
|
-
Requires-Dist: triton; sys_platform == "linux" and extra == "compile"
|
|
47
|
-
Provides-Extra: hpo
|
|
48
|
-
Requires-Dist: optuna>=3.0.0; extra == "hpo"
|
|
49
|
-
Provides-Extra: all
|
|
50
|
-
Requires-Dist: pytest>=7.0.0; extra == "all"
|
|
51
|
-
Requires-Dist: pytest-xdist>=3.5.0; extra == "all"
|
|
52
|
-
Requires-Dist: ruff>=0.8.0; extra == "all"
|
|
53
|
-
Requires-Dist: pre-commit>=3.5.0; extra == "all"
|
|
54
|
-
Requires-Dist: onnx>=1.14.0; extra == "all"
|
|
55
|
-
Requires-Dist: onnxruntime>=1.15.0; extra == "all"
|
|
56
|
-
Requires-Dist: triton; sys_platform == "linux" and extra == "all"
|
|
57
|
-
Requires-Dist: optuna>=3.0.0; extra == "all"
|
|
36
|
+
Requires-Dist: wandb>=0.15.0
|
|
37
|
+
Requires-Dist: optuna>=3.0.0
|
|
38
|
+
Requires-Dist: onnx>=1.14.0
|
|
39
|
+
Requires-Dist: onnxruntime>=1.15.0
|
|
40
|
+
Requires-Dist: pytest>=7.0.0
|
|
41
|
+
Requires-Dist: pytest-xdist>=3.5.0
|
|
42
|
+
Requires-Dist: ruff>=0.8.0
|
|
43
|
+
Requires-Dist: pre-commit>=3.5.0
|
|
44
|
+
Requires-Dist: triton>=2.0.0; sys_platform == "linux"
|
|
58
45
|
|
|
59
46
|
<div align="center">
|
|
60
47
|
|
|
@@ -210,20 +197,20 @@ Deploy models anywhere:
|
|
|
210
197
|
|
|
211
198
|
### Installation
|
|
212
199
|
|
|
200
|
+
#### From PyPI (recommended for all users)
|
|
201
|
+
|
|
213
202
|
```bash
|
|
214
|
-
# Install from PyPI (recommended)
|
|
215
203
|
pip install wavedl
|
|
216
|
-
|
|
217
|
-
# Or install with all extras (ONNX export, HPO, dev tools)
|
|
218
|
-
pip install wavedl[all]
|
|
219
204
|
```
|
|
220
205
|
|
|
206
|
+
This installs everything you need: training, inference, HPO, ONNX export, and dev tools.
|
|
207
|
+
|
|
221
208
|
#### From Source (for development)
|
|
222
209
|
|
|
223
210
|
```bash
|
|
224
211
|
git clone https://github.com/ductho-le/WaveDL.git
|
|
225
212
|
cd WaveDL
|
|
226
|
-
pip install -e
|
|
213
|
+
pip install -e .
|
|
227
214
|
```
|
|
228
215
|
|
|
229
216
|
> [!NOTE]
|
|
@@ -359,41 +346,47 @@ WaveDL handles everything else: training loop, logging, checkpoints, multi-GPU,
|
|
|
359
346
|
```
|
|
360
347
|
WaveDL/
|
|
361
348
|
├── src/
|
|
362
|
-
│ └── wavedl/
|
|
363
|
-
│ ├── __init__.py
|
|
364
|
-
│ ├── train.py
|
|
365
|
-
│ ├── test.py
|
|
366
|
-
│ ├── hpo.py
|
|
367
|
-
│ ├── hpc.py
|
|
349
|
+
│ └── wavedl/ # Main package (namespaced)
|
|
350
|
+
│ ├── __init__.py # Package init with __version__
|
|
351
|
+
│ ├── train.py # Training entry point
|
|
352
|
+
│ ├── test.py # Testing & inference script
|
|
353
|
+
│ ├── hpo.py # Hyperparameter optimization
|
|
354
|
+
│ ├── hpc.py # HPC distributed training launcher
|
|
368
355
|
│ │
|
|
369
|
-
│ ├── models/
|
|
370
|
-
│ │ ├── registry.py
|
|
371
|
-
│ │ ├── base.py
|
|
372
|
-
│ │ ├── cnn.py
|
|
373
|
-
│ │ ├── resnet.py
|
|
374
|
-
│ │ ├──
|
|
375
|
-
│ │ ├──
|
|
376
|
-
│ │ ├──
|
|
377
|
-
│ │ ├──
|
|
378
|
-
│ │
|
|
356
|
+
│ ├── models/ # Model architectures (38 variants)
|
|
357
|
+
│ │ ├── registry.py # Model factory (@register_model)
|
|
358
|
+
│ │ ├── base.py # Abstract base class
|
|
359
|
+
│ │ ├── cnn.py # Baseline CNN (1D/2D/3D)
|
|
360
|
+
│ │ ├── resnet.py # ResNet-18/34/50 (1D/2D/3D)
|
|
361
|
+
│ │ ├── resnet3d.py # ResNet3D-18, MC3-18 (3D only)
|
|
362
|
+
│ │ ├── tcn.py # TCN (1D only)
|
|
363
|
+
│ │ ├── efficientnet.py # EfficientNet-B0/B1/B2 (2D)
|
|
364
|
+
│ │ ├── efficientnetv2.py # EfficientNetV2-S/M/L (2D)
|
|
365
|
+
│ │ ├── mobilenetv3.py # MobileNetV3-Small/Large (2D)
|
|
366
|
+
│ │ ├── regnet.py # RegNetY variants (2D)
|
|
367
|
+
│ │ ├── swin.py # Swin Transformer (2D)
|
|
368
|
+
│ │ ├── vit.py # Vision Transformer (1D/2D)
|
|
369
|
+
│ │ ├── convnext.py # ConvNeXt (1D/2D/3D)
|
|
370
|
+
│ │ ├── densenet.py # DenseNet-121/169 (1D/2D/3D)
|
|
371
|
+
│ │ └── unet.py # U-Net Regression
|
|
379
372
|
│ │
|
|
380
|
-
│ └── utils/
|
|
381
|
-
│ ├── data.py
|
|
382
|
-
│ ├── metrics.py
|
|
383
|
-
│ ├── distributed.py
|
|
384
|
-
│ ├── losses.py
|
|
385
|
-
│ ├── optimizers.py
|
|
386
|
-
│ ├── schedulers.py
|
|
387
|
-
│ └── config.py
|
|
373
|
+
│ └── utils/ # Utilities
|
|
374
|
+
│ ├── data.py # Memory-mapped data pipeline
|
|
375
|
+
│ ├── metrics.py # R², Pearson, visualization
|
|
376
|
+
│ ├── distributed.py # DDP synchronization
|
|
377
|
+
│ ├── losses.py # Loss function factory
|
|
378
|
+
│ ├── optimizers.py # Optimizer factory
|
|
379
|
+
│ ├── schedulers.py # LR scheduler factory
|
|
380
|
+
│ └── config.py # YAML configuration support
|
|
388
381
|
│
|
|
389
|
-
├── configs/
|
|
390
|
-
├── examples/
|
|
391
|
-
├── notebooks/
|
|
392
|
-
├── unit_tests/
|
|
382
|
+
├── configs/ # YAML config templates
|
|
383
|
+
├── examples/ # Ready-to-run examples
|
|
384
|
+
├── notebooks/ # Jupyter notebooks
|
|
385
|
+
├── unit_tests/ # Pytest test suite (704 tests)
|
|
393
386
|
│
|
|
394
|
-
├── pyproject.toml
|
|
395
|
-
├── CHANGELOG.md
|
|
396
|
-
└── CITATION.cff
|
|
387
|
+
├── pyproject.toml # Package config, dependencies
|
|
388
|
+
├── CHANGELOG.md # Version history
|
|
389
|
+
└── CITATION.cff # Citation metadata
|
|
397
390
|
```
|
|
398
391
|
---
|
|
399
392
|
|
|
@@ -412,33 +405,63 @@ WaveDL/
|
|
|
412
405
|
> ```
|
|
413
406
|
|
|
414
407
|
<details>
|
|
415
|
-
<summary><b>Available Models</b> —
|
|
416
|
-
|
|
417
|
-
| Model |
|
|
418
|
-
|
|
419
|
-
|
|
|
420
|
-
| `
|
|
421
|
-
|
|
|
422
|
-
| `
|
|
423
|
-
| `
|
|
424
|
-
| `
|
|
425
|
-
| `
|
|
426
|
-
| `
|
|
427
|
-
|
|
|
428
|
-
| `
|
|
429
|
-
| `
|
|
430
|
-
|
|
|
431
|
-
| `
|
|
432
|
-
| `
|
|
433
|
-
| `
|
|
434
|
-
|
|
|
435
|
-
| `
|
|
436
|
-
| `
|
|
437
|
-
| `
|
|
438
|
-
|
|
|
439
|
-
| `
|
|
440
|
-
|
|
441
|
-
|
|
408
|
+
<summary><b>Available Models</b> — 38 architectures</summary>
|
|
409
|
+
|
|
410
|
+
| Model | Params | Dim |
|
|
411
|
+
|-------|--------|-----|
|
|
412
|
+
| **CNN** — Convolutional Neural Network |||
|
|
413
|
+
| `cnn` | 1.7M | 1D/2D/3D |
|
|
414
|
+
| **ResNet** — Residual Network |||
|
|
415
|
+
| `resnet18` | 11.4M | 1D/2D/3D |
|
|
416
|
+
| `resnet34` | 21.5M | 1D/2D/3D |
|
|
417
|
+
| `resnet50` | 24.6M | 1D/2D/3D |
|
|
418
|
+
| `resnet18_pretrained` ⭐ | 11.4M | 2D |
|
|
419
|
+
| `resnet50_pretrained` ⭐ | 24.6M | 2D |
|
|
420
|
+
| **ResNet3D** — 3D Residual Network |||
|
|
421
|
+
| `resnet3d_18` | 33.6M | 3D |
|
|
422
|
+
| `mc3_18` — Mixed Convolution 3D | 11.9M | 3D |
|
|
423
|
+
| **TCN** — Temporal Convolutional Network |||
|
|
424
|
+
| `tcn_small` | 1.0M | 1D |
|
|
425
|
+
| `tcn` | 7.0M | 1D |
|
|
426
|
+
| `tcn_large` | 10.2M | 1D |
|
|
427
|
+
| **EfficientNet** — Efficient Neural Network |||
|
|
428
|
+
| `efficientnet_b0` ⭐ | 4.7M | 2D |
|
|
429
|
+
| `efficientnet_b1` ⭐ | 7.2M | 2D |
|
|
430
|
+
| `efficientnet_b2` ⭐ | 8.4M | 2D |
|
|
431
|
+
| **EfficientNetV2** — Efficient Neural Network V2 |||
|
|
432
|
+
| `efficientnet_v2_s` ⭐ | 21.0M | 2D |
|
|
433
|
+
| `efficientnet_v2_m` ⭐ | 53.6M | 2D |
|
|
434
|
+
| `efficientnet_v2_l` ⭐ | 118.0M | 2D |
|
|
435
|
+
| **MobileNetV3** — Mobile Neural Network V3 |||
|
|
436
|
+
| `mobilenet_v3_small` ⭐ | 1.1M | 2D |
|
|
437
|
+
| `mobilenet_v3_large` ⭐ | 3.2M | 2D |
|
|
438
|
+
| **RegNet** — Regularized Network |||
|
|
439
|
+
| `regnet_y_400mf` ⭐ | 4.0M | 2D |
|
|
440
|
+
| `regnet_y_800mf` ⭐ | 5.8M | 2D |
|
|
441
|
+
| `regnet_y_1_6gf` ⭐ | 10.5M | 2D |
|
|
442
|
+
| `regnet_y_3_2gf` ⭐ | 18.3M | 2D |
|
|
443
|
+
| `regnet_y_8gf` ⭐ | 37.9M | 2D |
|
|
444
|
+
| **Swin** — Shifted Window Transformer |||
|
|
445
|
+
| `swin_t` ⭐ | 28.0M | 2D |
|
|
446
|
+
| `swin_s` ⭐ | 49.4M | 2D |
|
|
447
|
+
| `swin_b` ⭐ | 87.4M | 2D |
|
|
448
|
+
| **ConvNeXt** — Convolutional Next |||
|
|
449
|
+
| `convnext_tiny` | 28.2M | 1D/2D/3D |
|
|
450
|
+
| `convnext_small` | 49.8M | 1D/2D/3D |
|
|
451
|
+
| `convnext_base` | 88.1M | 1D/2D/3D |
|
|
452
|
+
| `convnext_tiny_pretrained` ⭐ | 28.2M | 2D |
|
|
453
|
+
| **DenseNet** — Densely Connected Network |||
|
|
454
|
+
| `densenet121` | 7.5M | 1D/2D/3D |
|
|
455
|
+
| `densenet169` | 13.3M | 1D/2D/3D |
|
|
456
|
+
| `densenet121_pretrained` ⭐ | 7.5M | 2D |
|
|
457
|
+
| **ViT** — Vision Transformer |||
|
|
458
|
+
| `vit_tiny` | 5.5M | 1D/2D |
|
|
459
|
+
| `vit_small` | 21.6M | 1D/2D |
|
|
460
|
+
| `vit_base` | 85.6M | 1D/2D |
|
|
461
|
+
| **U-Net** — U-shaped Network |||
|
|
462
|
+
| `unet_regression` | 31.1M | 1D/2D/3D |
|
|
463
|
+
|
|
464
|
+
> ⭐ = Pretrained on ImageNet. Recommended for smaller datasets.
|
|
442
465
|
|
|
443
466
|
</details>
|
|
444
467
|
|
|
@@ -653,12 +676,7 @@ seed: 2025
|
|
|
653
676
|
|
|
654
677
|
Automatically find the best training configuration using [Optuna](https://optuna.org/).
|
|
655
678
|
|
|
656
|
-
**
|
|
657
|
-
```bash
|
|
658
|
-
pip install -e ".[hpo]"
|
|
659
|
-
```
|
|
660
|
-
|
|
661
|
-
**Step 2: Run HPO**
|
|
679
|
+
**Run HPO:**
|
|
662
680
|
|
|
663
681
|
You specify which models to search and how many trials to run:
|
|
664
682
|
```bash
|
|
@@ -715,7 +733,7 @@ accelerate launch -m wavedl.train --data_path train.npz --model cnn --lr 3.2e-4
|
|
|
715
733
|
| `--output` | `hpo_results.json` | Output file |
|
|
716
734
|
|
|
717
735
|
> [!TIP]
|
|
718
|
-
> See [Available Models](#available-models) for all
|
|
736
|
+
> See [Available Models](#available-models) for all 38 architectures you can search.
|
|
719
737
|
|
|
720
738
|
</details>
|
|
721
739
|
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
wavedl/__init__.py,sha256=rGJqm3RDNQt8I9vv57urpUSDeLrmKFFYFFbQj7JC85k,1177
|
|
2
|
+
wavedl/hpc.py,sha256=87oGGDj1lRJaM01eInHPJX3L-G5aexC3Y06376BdVhg,7321
|
|
3
|
+
wavedl/hpo.py,sha256=aZoa_Oto_anZpIhz-YM6kN8KxQXTolUvDEyg3NXwBrY,11542
|
|
4
|
+
wavedl/test.py,sha256=jZmRJaivYYTMMTaccCi0yQjHOfp0a9YWR1wAPeKFH-k,36246
|
|
5
|
+
wavedl/train.py,sha256=LtPJqULHZU3tPbJNlSwK4GlLxQB1Df2yQfWiEHMn54o,44945
|
|
6
|
+
wavedl/models/__init__.py,sha256=lfSohEnAUztO14nuwayMJhPjpgySzRN3jGiyAUuBmAU,3206
|
|
7
|
+
wavedl/models/_template.py,sha256=TYQSeH6NIHf9iqJ4n6PK0s7xsjitxFsu-n1EdWL24AA,4822
|
|
8
|
+
wavedl/models/base.py,sha256=atM7NJQhtgpA-NauLBVUkXTd8XccjGPBqg3qxX05SRo,5289
|
|
9
|
+
wavedl/models/cnn.py,sha256=rn2Xmup0w_ll6wuAnYclSeIVazoSUrUGPY-9XnhA1gE,8341
|
|
10
|
+
wavedl/models/convnext.py,sha256=5zELY0ztMB6FxJB9uBurloT7JBdxLXezmrNRzLQjrI0,12846
|
|
11
|
+
wavedl/models/densenet.py,sha256=LzNbQOvtcJJ4SVf-XvIlXGNUgVS2SXl-MMPbr8lcYrA,12995
|
|
12
|
+
wavedl/models/efficientnet.py,sha256=0DHBgEGaOucevtmO1KPUTb5bCdJRg-Gzfpu9EuaylGQ,7456
|
|
13
|
+
wavedl/models/efficientnetv2.py,sha256=rP8y1ZAWyNyi0PXGPXg-4HjgzoELZ-CjMFgr8WnSXeg,10244
|
|
14
|
+
wavedl/models/mobilenetv3.py,sha256=h3f6TiNSyHRH9Qidce7dCGTbdEWYfYF5kbU-TFoTg0U,9490
|
|
15
|
+
wavedl/models/registry.py,sha256=InYAXX2xbRvsFDFnYUPCptJh0F9lHlFPN77A9kqHRT0,2980
|
|
16
|
+
wavedl/models/regnet.py,sha256=Yf9gAoDLv0j4uEuoKC822gizHNh59LCbvFCMP11Q1C0,13116
|
|
17
|
+
wavedl/models/resnet.py,sha256=8DNGIrH5pK8pjEE9BSyBqIc_pkFS_qaYggx-stjTF5k,16961
|
|
18
|
+
wavedl/models/resnet3d.py,sha256=C7CL4XeSnRlIBuwf5Ei-z183uzIBObrXfkM9Iwuc5e0,8746
|
|
19
|
+
wavedl/models/swin.py,sha256=p-okfq3Qm4_neJTxCcMzoHoVzC0BHW3BMnbpr_Ri2U0,13224
|
|
20
|
+
wavedl/models/tcn.py,sha256=RtY13QpFHqz72b4ultv2lStCIDxfvjySVe5JaTx_GaM,12601
|
|
21
|
+
wavedl/models/unet.py,sha256=LqIXhasdBygwP7SZNNmiW1bHMPaJTVBpaeHtPgEHkdU,7790
|
|
22
|
+
wavedl/models/vit.py,sha256=0C3GZk11VsYFTl14d86Wtl1Zk1T5rYJjvkaEfEN4N3k,11100
|
|
23
|
+
wavedl/utils/__init__.py,sha256=YMgzuwndjr64kt9k0_6_9PMJYTVdiaH5veSMff_ZycA,3051
|
|
24
|
+
wavedl/utils/config.py,sha256=E0_m5aQ1OdwEwzZysSwc5v905P4g3SDprObFAeVIj9g,8107
|
|
25
|
+
wavedl/utils/cross_validation.py,sha256=117ac9KDzaIaqhtP8ZRs15Xpqmq5fLpX2-vqkNvtMaU,17487
|
|
26
|
+
wavedl/utils/data.py,sha256=9LrB9MC6jRZzbRSc9xiGzJWoh8FahwP_68REqBAT3Os,44131
|
|
27
|
+
wavedl/utils/distributed.py,sha256=7wQ3mRjkp_xjPSxDWMnBf5dSkAGUaTzntxbz0BhC5v0,4145
|
|
28
|
+
wavedl/utils/losses.py,sha256=5762M-TBC_hz6uyj1NPbU1vZeFOJQq7fR3-j7OygJRo,7254
|
|
29
|
+
wavedl/utils/metrics.py,sha256=mkCpqZwl_XUpNvA5Ekjf7y-HqApafR7eR6EuA8cBdM8,37287
|
|
30
|
+
wavedl/utils/optimizers.py,sha256=PyIkJ_hRhFi_Fio81Gy5YQNhcME0JUUEl8OTSyu-0RA,6323
|
|
31
|
+
wavedl/utils/schedulers.py,sha256=e6Sf0yj8VOqkdwkUHLMyUfGfHKTX4NMr-zfgxWqCTYI,7659
|
|
32
|
+
wavedl-1.4.0.dist-info/LICENSE,sha256=cEUCvcvH-9BT9Y-CNGY__PwWONCKu9zsoIqWA-NeHJ4,1066
|
|
33
|
+
wavedl-1.4.0.dist-info/METADATA,sha256=NDjDovaoOPWEno7rQVIId5_kOSyYrTA0nQgkyOfbdXI,39286
|
|
34
|
+
wavedl-1.4.0.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
|
|
35
|
+
wavedl-1.4.0.dist-info/entry_points.txt,sha256=f1RNDkXFZwBzrBzTMFocJ6xhfTvTmaEDTi5YyDEUaF8,140
|
|
36
|
+
wavedl-1.4.0.dist-info/top_level.txt,sha256=ccneUt3D5Qzbh3bsBSSrq9bqrhGiogcWKY24ZC4Q6Xw,7
|
|
37
|
+
wavedl-1.4.0.dist-info/RECORD,,
|
wavedl-1.3.0.dist-info/RECORD
DELETED
|
@@ -1,31 +0,0 @@
|
|
|
1
|
-
wavedl/__init__.py,sha256=tyDZPCdra3-5TMWwIE4AvoDTkdHq-KZ_vp4lPgCfuX8,1177
|
|
2
|
-
wavedl/hpc.py,sha256=OaiGo0Q_ylu6tCEZSnMZ9ohk3nWcqbnwNMXrbZgikF0,7325
|
|
3
|
-
wavedl/hpo.py,sha256=aZoa_Oto_anZpIhz-YM6kN8KxQXTolUvDEyg3NXwBrY,11542
|
|
4
|
-
wavedl/test.py,sha256=jZmRJaivYYTMMTaccCi0yQjHOfp0a9YWR1wAPeKFH-k,36246
|
|
5
|
-
wavedl/train.py,sha256=eIEN53n7ZrJXfcR_TUcL0cdDFzU8BY2L6XbxqGiUnbA,43887
|
|
6
|
-
wavedl/models/__init__.py,sha256=AbsFkRNlsiWv4sJ-kLPdwjA2FS_cSp_TB3CV8884uUE,2219
|
|
7
|
-
wavedl/models/_template.py,sha256=O7SfL3Ef7eDXGmcOXPD0c82o_t3K4ybgJwpSEDsZNEg,4837
|
|
8
|
-
wavedl/models/base.py,sha256=cql0wv8i1sMaVttXOSdBBTPfa2s2sLH5LyAsfKJdXX8,5304
|
|
9
|
-
wavedl/models/cnn.py,sha256=2FFQetQaCJqeeku6glXbOQ3KJw5VvSTu9-u9cpygVk8,8356
|
|
10
|
-
wavedl/models/convnext.py,sha256=zh-x5NFcZrcRv3bi55p-VKWHLYe-v1nvPcMp9xPizLk,12747
|
|
11
|
-
wavedl/models/densenet.py,sha256=q9qrgnacMQ1GDGGPks0jx-C3DRjacnTV8BQ-iw6BTFY,12864
|
|
12
|
-
wavedl/models/efficientnet.py,sha256=irxab-yt3z89tMTf1x6odR2IqgpMrMM44Wiu3n6-IEs,7285
|
|
13
|
-
wavedl/models/registry.py,sha256=p5Eof3T6cwHggcEM-xzeBoKMbpuNyRmOJIvqMhzHvJA,2995
|
|
14
|
-
wavedl/models/resnet.py,sha256=sT4S_Rx56dqLN5zEPbBKeJet1dvr49IWhnBSjiVfcQs,16777
|
|
15
|
-
wavedl/models/unet.py,sha256=i3DFpeJmvdzNiBSqi4ecjLbC9RZXXbNJ_ZNMr2c3I6I,10019
|
|
16
|
-
wavedl/models/vit.py,sha256=iyJ8FQ1DOAgBhaVIUGGQEP2L37wZ28JeHKkJ1tmgj9w,10898
|
|
17
|
-
wavedl/utils/__init__.py,sha256=YMgzuwndjr64kt9k0_6_9PMJYTVdiaH5veSMff_ZycA,3051
|
|
18
|
-
wavedl/utils/config.py,sha256=E0_m5aQ1OdwEwzZysSwc5v905P4g3SDprObFAeVIj9g,8107
|
|
19
|
-
wavedl/utils/cross_validation.py,sha256=117ac9KDzaIaqhtP8ZRs15Xpqmq5fLpX2-vqkNvtMaU,17487
|
|
20
|
-
wavedl/utils/data.py,sha256=9LrB9MC6jRZzbRSc9xiGzJWoh8FahwP_68REqBAT3Os,44131
|
|
21
|
-
wavedl/utils/distributed.py,sha256=7wQ3mRjkp_xjPSxDWMnBf5dSkAGUaTzntxbz0BhC5v0,4145
|
|
22
|
-
wavedl/utils/losses.py,sha256=5762M-TBC_hz6uyj1NPbU1vZeFOJQq7fR3-j7OygJRo,7254
|
|
23
|
-
wavedl/utils/metrics.py,sha256=mkCpqZwl_XUpNvA5Ekjf7y-HqApafR7eR6EuA8cBdM8,37287
|
|
24
|
-
wavedl/utils/optimizers.py,sha256=PyIkJ_hRhFi_Fio81Gy5YQNhcME0JUUEl8OTSyu-0RA,6323
|
|
25
|
-
wavedl/utils/schedulers.py,sha256=e6Sf0yj8VOqkdwkUHLMyUfGfHKTX4NMr-zfgxWqCTYI,7659
|
|
26
|
-
wavedl-1.3.0.dist-info/LICENSE,sha256=cEUCvcvH-9BT9Y-CNGY__PwWONCKu9zsoIqWA-NeHJ4,1066
|
|
27
|
-
wavedl-1.3.0.dist-info/METADATA,sha256=FiNI2u9YCcVZUolFgKg9GzNc3i5MC1M_JYR171qvKN8,38922
|
|
28
|
-
wavedl-1.3.0.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
|
|
29
|
-
wavedl-1.3.0.dist-info/entry_points.txt,sha256=f1RNDkXFZwBzrBzTMFocJ6xhfTvTmaEDTi5YyDEUaF8,140
|
|
30
|
-
wavedl-1.3.0.dist-info/top_level.txt,sha256=ccneUt3D5Qzbh3bsBSSrq9bqrhGiogcWKY24ZC4Q6Xw,7
|
|
31
|
-
wavedl-1.3.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|