wavedl 1.3.0__py3-none-any.whl → 1.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,258 @@
1
+ """
2
+ ResNet3D: 3D Residual Networks for Volumetric Data
3
+ ===================================================
4
+
5
+ 3D extension of ResNet for processing volumetric data such as C-scans,
6
+ 3D wavefield imaging, and spatiotemporal cubes. Wraps torchvision's
7
+ video models adapted for regression tasks.
8
+
9
+ **Key Features**:
10
+ - Native 3D convolutions for volumetric processing
11
+ - Pretrained weights from Kinetics-400 (video action recognition)
12
+ - Adapted for single-channel input (grayscale volumes)
13
+ - Custom regression head for parameter estimation
14
+
15
+ **Variants**:
16
+ - resnet3d_18: Lightweight (33M params)
17
+ - resnet3d_34: Medium depth
18
+ - resnet3d_50: Higher capacity with bottleneck blocks
19
+
20
+ **Use Cases**:
21
+ - C-scan volume analysis (ultrasonic NDT)
22
+ - 3D wavefield imaging and inversion
23
+ - Spatiotemporal data cubes (time × space × space)
24
+ - Medical imaging (CT/MRI volumes)
25
+
26
+ **Note**: ResNet3D is 3D-only. For 1D/2D data, use TCN or standard ResNet.
27
+
28
+ References:
29
+ Hara, K., Kataoka, H., & Satoh, Y. (2018). Can Spatiotemporal 3D CNNs
30
+ Retrace the History of 2D CNNs and ImageNet? CVPR 2018.
31
+ https://arxiv.org/abs/1711.09577
32
+
33
+ He, K., et al. (2016). Deep Residual Learning for Image Recognition.
34
+ CVPR 2016. https://arxiv.org/abs/1512.03385
35
+
36
+ Author: Ductho Le (ductho.le@outlook.com)
37
+ """
38
+
39
+ from typing import Any
40
+
41
+ import torch
42
+ import torch.nn as nn
43
+
44
+
45
+ try:
46
+ from torchvision.models.video import (
47
+ MC3_18_Weights,
48
+ R3D_18_Weights,
49
+ mc3_18,
50
+ r3d_18,
51
+ )
52
+
53
+ RESNET3D_AVAILABLE = True
54
+ except ImportError:
55
+ RESNET3D_AVAILABLE = False
56
+
57
+ from wavedl.models.base import BaseModel
58
+ from wavedl.models.registry import register_model
59
+
60
+
61
+ class ResNet3DBase(BaseModel):
62
+ """
63
+ Base ResNet3D class for volumetric regression tasks.
64
+
65
+ Wraps torchvision 3D ResNet with:
66
+ - Optional pretrained weights (Kinetics-400)
67
+ - Automatic input channel adaptation (grayscale → 3ch)
68
+ - Custom regression head
69
+
70
+ Note: This is 3D-only. Input shape must be (D, H, W).
71
+ """
72
+
73
+ def __init__(
74
+ self,
75
+ in_shape: tuple[int, int, int],
76
+ out_size: int,
77
+ model_fn,
78
+ weights_class,
79
+ pretrained: bool = True,
80
+ dropout_rate: float = 0.3,
81
+ freeze_backbone: bool = False,
82
+ regression_hidden: int = 512,
83
+ **kwargs,
84
+ ):
85
+ """
86
+ Initialize ResNet3D for regression.
87
+
88
+ Args:
89
+ in_shape: (D, H, W) input volume dimensions
90
+ out_size: Number of regression output targets
91
+ model_fn: torchvision model constructor
92
+ weights_class: Pretrained weights enum class
93
+ pretrained: Use Kinetics-400 pretrained weights (default: True)
94
+ dropout_rate: Dropout rate in regression head (default: 0.3)
95
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
96
+ regression_hidden: Hidden units in regression head (default: 512)
97
+ """
98
+ super().__init__(in_shape, out_size)
99
+
100
+ if not RESNET3D_AVAILABLE:
101
+ raise ImportError(
102
+ "torchvision >= 0.12 is required for ResNet3D. "
103
+ "Install with: pip install torchvision>=0.12"
104
+ )
105
+
106
+ if len(in_shape) != 3:
107
+ raise ValueError(
108
+ f"ResNet3D requires 3D input (D, H, W), got {len(in_shape)}D. "
109
+ "For 1D data, use TCN. For 2D data, use standard ResNet."
110
+ )
111
+
112
+ self.pretrained = pretrained
113
+ self.dropout_rate = dropout_rate
114
+ self.freeze_backbone = freeze_backbone
115
+ self.regression_hidden = regression_hidden
116
+
117
+ # Load pretrained backbone
118
+ weights = weights_class.DEFAULT if pretrained else None
119
+ self.backbone = model_fn(weights=weights)
120
+
121
+ # Get the fc input features
122
+ in_features = self.backbone.fc.in_features
123
+
124
+ # Replace fc with regression head
125
+ self.backbone.fc = nn.Sequential(
126
+ nn.Dropout(dropout_rate),
127
+ nn.Linear(in_features, regression_hidden),
128
+ nn.ReLU(inplace=True),
129
+ nn.Dropout(dropout_rate * 0.5),
130
+ nn.Linear(regression_hidden, regression_hidden // 2),
131
+ nn.ReLU(inplace=True),
132
+ nn.Linear(regression_hidden // 2, out_size),
133
+ )
134
+
135
+ # Optionally freeze backbone for fine-tuning
136
+ if freeze_backbone:
137
+ self._freeze_backbone()
138
+
139
+ def _freeze_backbone(self):
140
+ """Freeze all backbone parameters except the fc head."""
141
+ for name, param in self.backbone.named_parameters():
142
+ if "fc" not in name:
143
+ param.requires_grad = False
144
+
145
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
146
+ """
147
+ Forward pass.
148
+
149
+ Args:
150
+ x: Input tensor of shape (B, C, D, H, W) where C is 1 or 3
151
+
152
+ Returns:
153
+ Output tensor of shape (B, out_size)
154
+ """
155
+ # Expand single channel to 3 channels for pretrained weights compatibility
156
+ if x.size(1) == 1:
157
+ x = x.expand(-1, 3, -1, -1, -1)
158
+
159
+ return self.backbone(x)
160
+
161
+ @classmethod
162
+ def get_default_config(cls) -> dict[str, Any]:
163
+ """Return default configuration for ResNet3D."""
164
+ return {
165
+ "pretrained": True,
166
+ "dropout_rate": 0.3,
167
+ "freeze_backbone": False,
168
+ "regression_hidden": 512,
169
+ }
170
+
171
+
172
+ # =============================================================================
173
+ # REGISTERED MODEL VARIANTS
174
+ # =============================================================================
175
+
176
+
177
+ @register_model("resnet3d_18")
178
+ class ResNet3D18(ResNet3DBase):
179
+ """
180
+ ResNet3D-18: Lightweight 3D ResNet for volumetric data.
181
+
182
+ ~33M parameters. Uses 3D convolutions throughout for true volumetric processing.
183
+ Pretrained on Kinetics-400 (video action recognition).
184
+
185
+ Recommended for:
186
+ - C-scan ultrasonic inspection volumes
187
+ - 3D wavefield data cubes
188
+ - Medical imaging (CT/MRI)
189
+ - Moderate compute budgets
190
+
191
+ Args:
192
+ in_shape: (D, H, W) volume dimensions
193
+ out_size: Number of regression targets
194
+ pretrained: Use Kinetics-400 pretrained weights (default: True)
195
+ dropout_rate: Dropout rate in head (default: 0.3)
196
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
197
+ regression_hidden: Hidden units in regression head (default: 512)
198
+
199
+ Example:
200
+ >>> model = ResNet3D18(in_shape=(16, 112, 112), out_size=3)
201
+ >>> x = torch.randn(2, 1, 16, 112, 112)
202
+ >>> out = model(x) # (2, 3)
203
+ """
204
+
205
+ def __init__(self, in_shape: tuple[int, int, int], out_size: int, **kwargs):
206
+ super().__init__(
207
+ in_shape=in_shape,
208
+ out_size=out_size,
209
+ model_fn=r3d_18,
210
+ weights_class=R3D_18_Weights,
211
+ **kwargs,
212
+ )
213
+
214
+ def __repr__(self) -> str:
215
+ pt = "pretrained" if self.pretrained else "scratch"
216
+ return f"ResNet3D_18({pt}, in={self.in_shape}, out={self.out_size})"
217
+
218
+
219
+ @register_model("mc3_18")
220
+ class MC3_18(ResNet3DBase):
221
+ """
222
+ MC3-18: Mixed Convolution 3D ResNet (3D stem + 2D residual blocks).
223
+
224
+ ~11M parameters. More efficient than pure 3D ResNet while maintaining
225
+ good spatiotemporal modeling. Uses 3D convolutions in early layers
226
+ and 2D convolutions in later layers.
227
+
228
+ Recommended for:
229
+ - When pure 3D is too expensive
230
+ - Volumes with limited temporal/depth extent
231
+ - Faster training with reasonable accuracy
232
+
233
+ Args:
234
+ in_shape: (D, H, W) volume dimensions
235
+ out_size: Number of regression targets
236
+ pretrained: Use Kinetics-400 pretrained weights (default: True)
237
+ dropout_rate: Dropout rate in head (default: 0.3)
238
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
239
+ regression_hidden: Hidden units in regression head (default: 512)
240
+
241
+ Example:
242
+ >>> model = MC3_18(in_shape=(16, 112, 112), out_size=3)
243
+ >>> x = torch.randn(2, 1, 16, 112, 112)
244
+ >>> out = model(x) # (2, 3)
245
+ """
246
+
247
+ def __init__(self, in_shape: tuple[int, int, int], out_size: int, **kwargs):
248
+ super().__init__(
249
+ in_shape=in_shape,
250
+ out_size=out_size,
251
+ model_fn=mc3_18,
252
+ weights_class=MC3_18_Weights,
253
+ **kwargs,
254
+ )
255
+
256
+ def __repr__(self) -> str:
257
+ pt = "pretrained" if self.pretrained else "scratch"
258
+ return f"MC3_18({pt}, in={self.in_shape}, out={self.out_size})"
wavedl/models/swin.py ADDED
@@ -0,0 +1,390 @@
1
+ """
2
+ Swin Transformer: Hierarchical Vision Transformer with Shifted Windows
3
+ =======================================================================
4
+
5
+ State-of-the-art vision transformer that computes self-attention within
6
+ local windows while enabling cross-window connections via shifting.
7
+ Achieves excellent accuracy with linear computational complexity.
8
+
9
+ **Key Innovations**:
10
+ - Hierarchical feature maps (like CNNs) for multi-scale processing
11
+ - Shifted window attention: O(n) complexity vs O(n²) for vanilla ViT
12
+ - Local attention with global receptive field through layer stacking
13
+ - Strong inductive bias for structured data
14
+
15
+ **Variants**:
16
+ - swin_t: Tiny (28M params) - Efficient default
17
+ - swin_s: Small (50M params) - Better accuracy
18
+ - swin_b: Base (88M params) - High accuracy
19
+
20
+ **Why Swin over ViT?**:
21
+ - Better for smaller datasets (stronger inductive bias)
22
+ - Handles higher resolution inputs efficiently
23
+ - Produces hierarchical features (useful for multi-scale patterns)
24
+ - More efficient memory usage
25
+
26
+ **Note**: Swin Transformer is 2D-only. For 1D data, use TCN. For 3D data, use ResNet3D.
27
+
28
+ References:
29
+ Liu, Z., et al. (2021). Swin Transformer: Hierarchical Vision Transformer
30
+ using Shifted Windows. ICCV 2021 (Best Paper). https://arxiv.org/abs/2103.14030
31
+
32
+ Author: Ductho Le (ductho.le@outlook.com)
33
+ """
34
+
35
+ from typing import Any
36
+
37
+ import torch
38
+ import torch.nn as nn
39
+
40
+
41
+ try:
42
+ from torchvision.models import (
43
+ Swin_B_Weights,
44
+ Swin_S_Weights,
45
+ Swin_T_Weights,
46
+ swin_b,
47
+ swin_s,
48
+ swin_t,
49
+ )
50
+
51
+ SWIN_AVAILABLE = True
52
+ except ImportError:
53
+ SWIN_AVAILABLE = False
54
+
55
+ from wavedl.models.base import BaseModel
56
+ from wavedl.models.registry import register_model
57
+
58
+
59
+ class SwinTransformerBase(BaseModel):
60
+ """
61
+ Base Swin Transformer class for regression tasks.
62
+
63
+ Wraps torchvision Swin Transformer with:
64
+ - Optional pretrained weights (ImageNet-1K or ImageNet-22K)
65
+ - Automatic input channel adaptation (grayscale → 3ch)
66
+ - Custom regression head with layer normalization
67
+
68
+ Swin Transformer excels at:
69
+ - Multi-scale feature extraction (dispersion curves, spectrograms)
70
+ - High-resolution inputs (efficient O(n) attention)
71
+ - Tasks requiring both local and global context
72
+ - Transfer learning from pretrained weights
73
+
74
+ Note: This is 2D-only. Input shape must be (H, W).
75
+ """
76
+
77
+ def __init__(
78
+ self,
79
+ in_shape: tuple[int, int],
80
+ out_size: int,
81
+ model_fn,
82
+ weights_class,
83
+ pretrained: bool = True,
84
+ dropout_rate: float = 0.3,
85
+ freeze_backbone: bool = False,
86
+ regression_hidden: int = 512,
87
+ **kwargs,
88
+ ):
89
+ """
90
+ Initialize Swin Transformer for regression.
91
+
92
+ Args:
93
+ in_shape: (H, W) input image dimensions
94
+ out_size: Number of regression output targets
95
+ model_fn: torchvision model constructor
96
+ weights_class: Pretrained weights enum class
97
+ pretrained: Use ImageNet pretrained weights (default: True)
98
+ dropout_rate: Dropout rate in regression head (default: 0.3)
99
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
100
+ regression_hidden: Hidden units in regression head (default: 512)
101
+ """
102
+ super().__init__(in_shape, out_size)
103
+
104
+ if not SWIN_AVAILABLE:
105
+ raise ImportError(
106
+ "torchvision >= 0.12 is required for Swin Transformer. "
107
+ "Install with: pip install torchvision>=0.12"
108
+ )
109
+
110
+ if len(in_shape) != 2:
111
+ raise ValueError(
112
+ f"Swin Transformer requires 2D input (H, W), got {len(in_shape)}D. "
113
+ "For 1D data, use TCN. For 3D data, use ResNet3D."
114
+ )
115
+
116
+ self.pretrained = pretrained
117
+ self.dropout_rate = dropout_rate
118
+ self.freeze_backbone = freeze_backbone
119
+ self.regression_hidden = regression_hidden
120
+
121
+ # Load pretrained backbone
122
+ weights = weights_class.IMAGENET1K_V1 if pretrained else None
123
+ self.backbone = model_fn(weights=weights)
124
+
125
+ # Swin Transformer head structure:
126
+ # head: Linear (embed_dim → num_classes)
127
+ # We need to get the embedding dimension from the head
128
+
129
+ in_features = self.backbone.head.in_features
130
+
131
+ # Replace head with regression head
132
+ # Use LayerNorm for stability (matches Transformer architecture)
133
+ self.backbone.head = nn.Sequential(
134
+ nn.LayerNorm(in_features),
135
+ nn.Dropout(dropout_rate),
136
+ nn.Linear(in_features, regression_hidden),
137
+ nn.GELU(), # GELU matches Transformer's activation
138
+ nn.Dropout(dropout_rate * 0.5),
139
+ nn.Linear(regression_hidden, regression_hidden // 2),
140
+ nn.GELU(),
141
+ nn.Linear(regression_hidden // 2, out_size),
142
+ )
143
+
144
+ # Optionally freeze backbone for fine-tuning
145
+ if freeze_backbone:
146
+ self._freeze_backbone()
147
+
148
+ def _freeze_backbone(self):
149
+ """Freeze all backbone parameters except the head."""
150
+ for name, param in self.backbone.named_parameters():
151
+ if "head" not in name:
152
+ param.requires_grad = False
153
+
154
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
155
+ """
156
+ Forward pass.
157
+
158
+ Args:
159
+ x: Input tensor of shape (B, C, H, W) where C is 1 or 3
160
+
161
+ Returns:
162
+ Output tensor of shape (B, out_size)
163
+ """
164
+ # Expand single channel to 3 channels for pretrained weights compatibility
165
+ if x.size(1) == 1:
166
+ x = x.expand(-1, 3, -1, -1)
167
+
168
+ return self.backbone(x)
169
+
170
+ @classmethod
171
+ def get_default_config(cls) -> dict[str, Any]:
172
+ """Return default configuration for Swin Transformer."""
173
+ return {
174
+ "pretrained": True,
175
+ "dropout_rate": 0.3,
176
+ "freeze_backbone": False,
177
+ "regression_hidden": 512,
178
+ }
179
+
180
+ def get_optimizer_groups(self, base_lr: float, weight_decay: float = 0.05) -> list:
181
+ """
182
+ Get parameter groups with layer-wise learning rate decay.
183
+
184
+ Swin Transformer benefits from decaying learning rate for earlier layers.
185
+ This is a common practice for fine-tuning vision transformers.
186
+
187
+ Args:
188
+ base_lr: Base learning rate (applied to head)
189
+ weight_decay: Weight decay coefficient
190
+
191
+ Returns:
192
+ List of parameter group dictionaries
193
+ """
194
+ # Separate parameters: head (full LR) vs backbone (decayed LR)
195
+ head_params = []
196
+ backbone_params = []
197
+ no_decay_params = []
198
+
199
+ for name, param in self.backbone.named_parameters():
200
+ if not param.requires_grad:
201
+ continue
202
+
203
+ # No weight decay for bias and normalization
204
+ if "bias" in name or "norm" in name:
205
+ no_decay_params.append(param)
206
+ elif "head" in name:
207
+ head_params.append(param)
208
+ else:
209
+ backbone_params.append(param)
210
+
211
+ groups = []
212
+
213
+ if head_params:
214
+ groups.append(
215
+ {
216
+ "params": head_params,
217
+ "lr": base_lr,
218
+ "weight_decay": weight_decay,
219
+ }
220
+ )
221
+
222
+ if backbone_params:
223
+ # Apply 0.1x learning rate to backbone (common for fine-tuning)
224
+ groups.append(
225
+ {
226
+ "params": backbone_params,
227
+ "lr": base_lr * 0.1,
228
+ "weight_decay": weight_decay,
229
+ }
230
+ )
231
+
232
+ if no_decay_params:
233
+ groups.append(
234
+ {
235
+ "params": no_decay_params,
236
+ "lr": base_lr,
237
+ "weight_decay": 0.0,
238
+ }
239
+ )
240
+
241
+ return groups if groups else [{"params": self.parameters(), "lr": base_lr}]
242
+
243
+
244
+ # =============================================================================
245
+ # REGISTERED MODEL VARIANTS
246
+ # =============================================================================
247
+
248
+
249
+ @register_model("swin_t")
250
+ class SwinTiny(SwinTransformerBase):
251
+ """
252
+ Swin-T (Tiny): Efficient default for most wave-based tasks.
253
+
254
+ ~28M parameters. Good balance of accuracy and computational cost.
255
+ Outperforms ResNet50 while being more efficient.
256
+
257
+ Recommended for:
258
+ - Default choice for 2D wave data
259
+ - Dispersion curves, spectrograms, B-scans
260
+ - When hierarchical features matter
261
+ - Transfer learning with limited data
262
+
263
+ Architecture:
264
+ - Patch size: 4×4
265
+ - Window size: 7×7
266
+ - Embed dim: 96
267
+ - Depths: [2, 2, 6, 2]
268
+ - Heads: [3, 6, 12, 24]
269
+
270
+ Args:
271
+ in_shape: (H, W) image dimensions
272
+ out_size: Number of regression targets
273
+ pretrained: Use ImageNet pretrained weights (default: True)
274
+ dropout_rate: Dropout rate in head (default: 0.3)
275
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
276
+ regression_hidden: Hidden units in regression head (default: 512)
277
+
278
+ Example:
279
+ >>> model = SwinTiny(in_shape=(224, 224), out_size=3)
280
+ >>> x = torch.randn(4, 1, 224, 224)
281
+ >>> out = model(x) # (4, 3)
282
+ """
283
+
284
+ def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
285
+ super().__init__(
286
+ in_shape=in_shape,
287
+ out_size=out_size,
288
+ model_fn=swin_t,
289
+ weights_class=Swin_T_Weights,
290
+ **kwargs,
291
+ )
292
+
293
+ def __repr__(self) -> str:
294
+ pt = "pretrained" if self.pretrained else "scratch"
295
+ return f"Swin_Tiny({pt}, in={self.in_shape}, out={self.out_size})"
296
+
297
+
298
+ @register_model("swin_s")
299
+ class SwinSmall(SwinTransformerBase):
300
+ """
301
+ Swin-S (Small): Higher accuracy with moderate compute.
302
+
303
+ ~50M parameters. Better accuracy than Swin-T for larger datasets.
304
+
305
+ Recommended for:
306
+ - Larger datasets (>20k samples)
307
+ - When Swin-T doesn't provide enough capacity
308
+ - Complex multi-scale patterns
309
+
310
+ Architecture:
311
+ - Patch size: 4×4
312
+ - Window size: 7×7
313
+ - Embed dim: 96
314
+ - Depths: [2, 2, 18, 2] (deeper stage 3)
315
+ - Heads: [3, 6, 12, 24]
316
+
317
+ Args:
318
+ in_shape: (H, W) image dimensions
319
+ out_size: Number of regression targets
320
+ pretrained: Use ImageNet pretrained weights (default: True)
321
+ dropout_rate: Dropout rate in head (default: 0.3)
322
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
323
+ regression_hidden: Hidden units in regression head (default: 512)
324
+
325
+ Example:
326
+ >>> model = SwinSmall(in_shape=(224, 224), out_size=3)
327
+ >>> x = torch.randn(4, 1, 224, 224)
328
+ >>> out = model(x) # (4, 3)
329
+ """
330
+
331
+ def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
332
+ super().__init__(
333
+ in_shape=in_shape,
334
+ out_size=out_size,
335
+ model_fn=swin_s,
336
+ weights_class=Swin_S_Weights,
337
+ **kwargs,
338
+ )
339
+
340
+ def __repr__(self) -> str:
341
+ pt = "pretrained" if self.pretrained else "scratch"
342
+ return f"Swin_Small({pt}, in={self.in_shape}, out={self.out_size})"
343
+
344
+
345
+ @register_model("swin_b")
346
+ class SwinBase(SwinTransformerBase):
347
+ """
348
+ Swin-B (Base): Maximum accuracy for large-scale tasks.
349
+
350
+ ~88M parameters. Best accuracy but requires more compute and data.
351
+
352
+ Recommended for:
353
+ - Very large datasets (>50k samples)
354
+ - When accuracy is more important than efficiency
355
+ - HPC environments with ample GPU memory
356
+ - Research experiments
357
+
358
+ Architecture:
359
+ - Patch size: 4×4
360
+ - Window size: 7×7
361
+ - Embed dim: 128
362
+ - Depths: [2, 2, 18, 2]
363
+ - Heads: [4, 8, 16, 32]
364
+
365
+ Args:
366
+ in_shape: (H, W) image dimensions
367
+ out_size: Number of regression targets
368
+ pretrained: Use ImageNet pretrained weights (default: True)
369
+ dropout_rate: Dropout rate in head (default: 0.3)
370
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
371
+ regression_hidden: Hidden units in regression head (default: 512)
372
+
373
+ Example:
374
+ >>> model = SwinBase(in_shape=(224, 224), out_size=3)
375
+ >>> x = torch.randn(4, 1, 224, 224)
376
+ >>> out = model(x) # (4, 3)
377
+ """
378
+
379
+ def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
380
+ super().__init__(
381
+ in_shape=in_shape,
382
+ out_size=out_size,
383
+ model_fn=swin_b,
384
+ weights_class=Swin_B_Weights,
385
+ **kwargs,
386
+ )
387
+
388
+ def __repr__(self) -> str:
389
+ pt = "pretrained" if self.pretrained else "scratch"
390
+ return f"Swin_Base({pt}, in={self.in_shape}, out={self.out_size})"