warp-lang 1.7.2rc1__py3-none-macosx_10_13_universal2.whl → 1.8.0__py3-none-macosx_10_13_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +3 -1
- warp/__init__.pyi +3489 -1
- warp/autograd.py +45 -122
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +241 -252
- warp/build_dll.py +125 -26
- warp/builtins.py +1907 -384
- warp/codegen.py +257 -101
- warp/config.py +12 -1
- warp/constants.py +1 -1
- warp/context.py +657 -223
- warp/dlpack.py +1 -1
- warp/examples/benchmarks/benchmark_cloth.py +2 -2
- warp/examples/benchmarks/benchmark_tile_sort.py +155 -0
- warp/examples/core/example_sample_mesh.py +1 -1
- warp/examples/core/example_spin_lock.py +93 -0
- warp/examples/core/example_work_queue.py +118 -0
- warp/examples/fem/example_adaptive_grid.py +5 -5
- warp/examples/fem/example_apic_fluid.py +1 -1
- warp/examples/fem/example_burgers.py +1 -1
- warp/examples/fem/example_convection_diffusion.py +9 -6
- warp/examples/fem/example_darcy_ls_optimization.py +489 -0
- warp/examples/fem/example_deformed_geometry.py +1 -1
- warp/examples/fem/example_diffusion.py +2 -2
- warp/examples/fem/example_diffusion_3d.py +1 -1
- warp/examples/fem/example_distortion_energy.py +1 -1
- warp/examples/fem/example_elastic_shape_optimization.py +387 -0
- warp/examples/fem/example_magnetostatics.py +5 -3
- warp/examples/fem/example_mixed_elasticity.py +5 -3
- warp/examples/fem/example_navier_stokes.py +11 -9
- warp/examples/fem/example_nonconforming_contact.py +5 -3
- warp/examples/fem/example_streamlines.py +8 -3
- warp/examples/fem/utils.py +9 -8
- warp/examples/interop/example_jax_ffi_callback.py +2 -2
- warp/examples/optim/example_drone.py +1 -1
- warp/examples/sim/example_cloth.py +1 -1
- warp/examples/sim/example_cloth_self_contact.py +48 -54
- warp/examples/tile/example_tile_block_cholesky.py +502 -0
- warp/examples/tile/example_tile_cholesky.py +2 -1
- warp/examples/tile/example_tile_convolution.py +1 -1
- warp/examples/tile/example_tile_filtering.py +1 -1
- warp/examples/tile/example_tile_matmul.py +1 -1
- warp/examples/tile/example_tile_mlp.py +2 -0
- warp/fabric.py +7 -7
- warp/fem/__init__.py +5 -0
- warp/fem/adaptivity.py +1 -1
- warp/fem/cache.py +152 -63
- warp/fem/dirichlet.py +2 -2
- warp/fem/domain.py +136 -6
- warp/fem/field/field.py +141 -99
- warp/fem/field/nodal_field.py +85 -39
- warp/fem/field/virtual.py +97 -52
- warp/fem/geometry/adaptive_nanogrid.py +91 -86
- warp/fem/geometry/closest_point.py +13 -0
- warp/fem/geometry/deformed_geometry.py +102 -40
- warp/fem/geometry/element.py +56 -2
- warp/fem/geometry/geometry.py +323 -22
- warp/fem/geometry/grid_2d.py +157 -62
- warp/fem/geometry/grid_3d.py +116 -20
- warp/fem/geometry/hexmesh.py +86 -20
- warp/fem/geometry/nanogrid.py +166 -86
- warp/fem/geometry/partition.py +59 -25
- warp/fem/geometry/quadmesh.py +86 -135
- warp/fem/geometry/tetmesh.py +47 -119
- warp/fem/geometry/trimesh.py +77 -270
- warp/fem/integrate.py +107 -52
- warp/fem/linalg.py +25 -58
- warp/fem/operator.py +124 -27
- warp/fem/quadrature/pic_quadrature.py +36 -14
- warp/fem/quadrature/quadrature.py +40 -16
- warp/fem/space/__init__.py +1 -1
- warp/fem/space/basis_function_space.py +66 -46
- warp/fem/space/basis_space.py +17 -4
- warp/fem/space/dof_mapper.py +1 -1
- warp/fem/space/function_space.py +2 -2
- warp/fem/space/grid_2d_function_space.py +4 -1
- warp/fem/space/hexmesh_function_space.py +4 -2
- warp/fem/space/nanogrid_function_space.py +3 -1
- warp/fem/space/partition.py +11 -2
- warp/fem/space/quadmesh_function_space.py +4 -1
- warp/fem/space/restriction.py +5 -2
- warp/fem/space/shape/__init__.py +10 -8
- warp/fem/space/tetmesh_function_space.py +4 -1
- warp/fem/space/topology.py +52 -21
- warp/fem/space/trimesh_function_space.py +4 -1
- warp/fem/utils.py +53 -8
- warp/jax.py +1 -2
- warp/jax_experimental/ffi.py +12 -17
- warp/jax_experimental/xla_ffi.py +37 -24
- warp/math.py +171 -1
- warp/native/array.h +99 -0
- warp/native/builtin.h +174 -31
- warp/native/coloring.cpp +1 -1
- warp/native/exports.h +118 -63
- warp/native/intersect.h +3 -3
- warp/native/mat.h +5 -10
- warp/native/mathdx.cpp +11 -5
- warp/native/matnn.h +1 -123
- warp/native/quat.h +28 -4
- warp/native/sparse.cpp +121 -258
- warp/native/sparse.cu +181 -274
- warp/native/spatial.h +305 -17
- warp/native/tile.h +583 -72
- warp/native/tile_radix_sort.h +1108 -0
- warp/native/tile_reduce.h +237 -2
- warp/native/tile_scan.h +240 -0
- warp/native/tuple.h +189 -0
- warp/native/vec.h +6 -16
- warp/native/warp.cpp +36 -4
- warp/native/warp.cu +574 -51
- warp/native/warp.h +47 -74
- warp/optim/linear.py +5 -1
- warp/paddle.py +7 -8
- warp/py.typed +0 -0
- warp/render/render_opengl.py +58 -29
- warp/render/render_usd.py +124 -61
- warp/sim/__init__.py +9 -0
- warp/sim/collide.py +252 -78
- warp/sim/graph_coloring.py +8 -1
- warp/sim/import_mjcf.py +4 -3
- warp/sim/import_usd.py +11 -7
- warp/sim/integrator.py +5 -2
- warp/sim/integrator_euler.py +1 -1
- warp/sim/integrator_featherstone.py +1 -1
- warp/sim/integrator_vbd.py +751 -320
- warp/sim/integrator_xpbd.py +1 -1
- warp/sim/model.py +265 -260
- warp/sim/utils.py +10 -7
- warp/sparse.py +303 -166
- warp/tape.py +52 -51
- warp/tests/cuda/test_conditional_captures.py +1046 -0
- warp/tests/cuda/test_streams.py +1 -1
- warp/tests/geometry/test_volume.py +2 -2
- warp/tests/interop/test_dlpack.py +9 -9
- warp/tests/interop/test_jax.py +0 -1
- warp/tests/run_coverage_serial.py +1 -1
- warp/tests/sim/disabled_kinematics.py +2 -2
- warp/tests/sim/{test_vbd.py → test_cloth.py} +296 -113
- warp/tests/sim/test_collision.py +159 -51
- warp/tests/sim/test_coloring.py +15 -1
- warp/tests/test_array.py +254 -2
- warp/tests/test_array_reduce.py +2 -2
- warp/tests/test_atomic_cas.py +299 -0
- warp/tests/test_codegen.py +142 -19
- warp/tests/test_conditional.py +47 -1
- warp/tests/test_ctypes.py +0 -20
- warp/tests/test_devices.py +8 -0
- warp/tests/test_fabricarray.py +4 -2
- warp/tests/test_fem.py +58 -25
- warp/tests/test_func.py +42 -1
- warp/tests/test_grad.py +1 -1
- warp/tests/test_lerp.py +1 -3
- warp/tests/test_map.py +481 -0
- warp/tests/test_mat.py +1 -24
- warp/tests/test_quat.py +6 -15
- warp/tests/test_rounding.py +10 -38
- warp/tests/test_runlength_encode.py +7 -7
- warp/tests/test_smoothstep.py +1 -1
- warp/tests/test_sparse.py +51 -2
- warp/tests/test_spatial.py +507 -1
- warp/tests/test_struct.py +2 -2
- warp/tests/test_tuple.py +265 -0
- warp/tests/test_types.py +2 -2
- warp/tests/test_utils.py +24 -18
- warp/tests/tile/test_tile.py +420 -1
- warp/tests/tile/test_tile_mathdx.py +518 -14
- warp/tests/tile/test_tile_reduce.py +213 -0
- warp/tests/tile/test_tile_shared_memory.py +130 -1
- warp/tests/tile/test_tile_sort.py +117 -0
- warp/tests/unittest_suites.py +4 -6
- warp/types.py +462 -308
- warp/utils.py +647 -86
- {warp_lang-1.7.2rc1.dist-info → warp_lang-1.8.0.dist-info}/METADATA +20 -6
- {warp_lang-1.7.2rc1.dist-info → warp_lang-1.8.0.dist-info}/RECORD +177 -165
- warp/stubs.py +0 -3381
- warp/tests/sim/test_xpbd.py +0 -399
- warp/tests/test_mlp.py +0 -282
- {warp_lang-1.7.2rc1.dist-info → warp_lang-1.8.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.7.2rc1.dist-info → warp_lang-1.8.0.dist-info}/licenses/LICENSE.md +0 -0
- {warp_lang-1.7.2rc1.dist-info → warp_lang-1.8.0.dist-info}/top_level.txt +0 -0
warp/tests/tile/test_tile.py
CHANGED
|
@@ -14,6 +14,7 @@
|
|
|
14
14
|
# limitations under the License.
|
|
15
15
|
|
|
16
16
|
import unittest
|
|
17
|
+
from typing import Any
|
|
17
18
|
|
|
18
19
|
import numpy as np
|
|
19
20
|
|
|
@@ -360,13 +361,208 @@ def test_tile_operators(test, device):
|
|
|
360
361
|
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.75)
|
|
361
362
|
|
|
362
363
|
|
|
364
|
+
@wp.kernel
|
|
365
|
+
def test_tile_tile_preserve_type_kernel(x: wp.array(dtype=Any), y: wp.array(dtype=Any)):
|
|
366
|
+
a = x[0]
|
|
367
|
+
t = wp.tile(a, preserve_type=True)
|
|
368
|
+
wp.tile_store(y, t)
|
|
369
|
+
|
|
370
|
+
|
|
371
|
+
@wp.kernel
|
|
372
|
+
def test_tile_tile_scalar_expansion_kernel(x: wp.array(dtype=float), y: wp.array(dtype=float)):
|
|
373
|
+
a = x[0]
|
|
374
|
+
t = wp.tile(a)
|
|
375
|
+
wp.tile_store(y, t)
|
|
376
|
+
|
|
377
|
+
|
|
378
|
+
@wp.kernel
|
|
379
|
+
def test_tile_tile_vec_expansion_kernel(x: wp.array(dtype=wp.vec3), y: wp.array2d(dtype=float)):
|
|
380
|
+
a = x[0]
|
|
381
|
+
t = wp.tile(a)
|
|
382
|
+
wp.tile_store(y, t)
|
|
383
|
+
|
|
384
|
+
|
|
385
|
+
@wp.kernel
|
|
386
|
+
def test_tile_tile_mat_expansion_kernel(x: wp.array(dtype=wp.mat33), y: wp.array3d(dtype=float)):
|
|
387
|
+
a = x[0]
|
|
388
|
+
t = wp.tile(a)
|
|
389
|
+
wp.tile_store(y, t)
|
|
390
|
+
|
|
391
|
+
|
|
392
|
+
def test_tile_tile(test, device):
|
|
393
|
+
# preserve type
|
|
394
|
+
def test_func_preserve_type(type: Any):
|
|
395
|
+
x = wp.ones(1, dtype=type, requires_grad=True, device=device)
|
|
396
|
+
y = wp.zeros((TILE_DIM), dtype=type, requires_grad=True, device=device)
|
|
397
|
+
|
|
398
|
+
tape = wp.Tape()
|
|
399
|
+
with tape:
|
|
400
|
+
wp.launch(
|
|
401
|
+
test_tile_tile_preserve_type_kernel,
|
|
402
|
+
dim=[TILE_DIM],
|
|
403
|
+
inputs=[x],
|
|
404
|
+
outputs=[y],
|
|
405
|
+
block_dim=TILE_DIM,
|
|
406
|
+
device=device,
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
y.grad = wp.ones_like(y)
|
|
410
|
+
|
|
411
|
+
tape.backward()
|
|
412
|
+
|
|
413
|
+
assert_np_equal(y.numpy(), wp.full((TILE_DIM), type(1.0), dtype=type, device="cpu").numpy())
|
|
414
|
+
assert_np_equal(x.grad.numpy(), wp.full((1,), type(TILE_DIM), dtype=type, device="cpu").numpy())
|
|
415
|
+
|
|
416
|
+
test_func_preserve_type(float)
|
|
417
|
+
test_func_preserve_type(wp.vec3)
|
|
418
|
+
test_func_preserve_type(wp.quat)
|
|
419
|
+
test_func_preserve_type(wp.mat33)
|
|
420
|
+
|
|
421
|
+
# scalar expansion
|
|
422
|
+
x = wp.ones(1, dtype=float, requires_grad=True, device=device)
|
|
423
|
+
y = wp.zeros((TILE_DIM), dtype=float, requires_grad=True, device=device)
|
|
424
|
+
|
|
425
|
+
tape = wp.Tape()
|
|
426
|
+
with tape:
|
|
427
|
+
wp.launch(
|
|
428
|
+
test_tile_tile_scalar_expansion_kernel,
|
|
429
|
+
dim=[TILE_DIM],
|
|
430
|
+
inputs=[x],
|
|
431
|
+
outputs=[y],
|
|
432
|
+
block_dim=TILE_DIM,
|
|
433
|
+
device=device,
|
|
434
|
+
)
|
|
435
|
+
|
|
436
|
+
y.grad = wp.ones_like(y)
|
|
437
|
+
|
|
438
|
+
tape.backward()
|
|
439
|
+
|
|
440
|
+
assert_np_equal(y.numpy(), wp.full((TILE_DIM), 1.0, dtype=float, device="cpu").numpy())
|
|
441
|
+
assert_np_equal(x.grad.numpy(), wp.full((1,), wp.float32(TILE_DIM), dtype=float, device="cpu").numpy())
|
|
442
|
+
|
|
443
|
+
# vec expansion
|
|
444
|
+
x = wp.ones(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
445
|
+
y = wp.zeros((3, TILE_DIM), dtype=float, requires_grad=True, device=device)
|
|
446
|
+
|
|
447
|
+
tape = wp.Tape()
|
|
448
|
+
with tape:
|
|
449
|
+
wp.launch(
|
|
450
|
+
test_tile_tile_vec_expansion_kernel,
|
|
451
|
+
dim=[TILE_DIM],
|
|
452
|
+
inputs=[x],
|
|
453
|
+
outputs=[y],
|
|
454
|
+
block_dim=TILE_DIM,
|
|
455
|
+
device=device,
|
|
456
|
+
)
|
|
457
|
+
|
|
458
|
+
y.grad = wp.ones_like(y)
|
|
459
|
+
|
|
460
|
+
tape.backward()
|
|
461
|
+
|
|
462
|
+
assert_np_equal(y.numpy(), wp.full((3, TILE_DIM), 1.0, dtype=float, device="cpu").numpy())
|
|
463
|
+
assert_np_equal(x.grad.numpy(), wp.full((1,), wp.float32(TILE_DIM), dtype=wp.vec3, device="cpu").numpy())
|
|
464
|
+
|
|
465
|
+
# mat expansion
|
|
466
|
+
x = wp.ones(1, dtype=wp.mat33, requires_grad=True, device=device)
|
|
467
|
+
y = wp.zeros((3, 3, TILE_DIM), dtype=float, requires_grad=True, device=device)
|
|
468
|
+
|
|
469
|
+
tape = wp.Tape()
|
|
470
|
+
with tape:
|
|
471
|
+
wp.launch(
|
|
472
|
+
test_tile_tile_mat_expansion_kernel,
|
|
473
|
+
dim=[TILE_DIM],
|
|
474
|
+
inputs=[x],
|
|
475
|
+
outputs=[y],
|
|
476
|
+
block_dim=TILE_DIM,
|
|
477
|
+
device=device,
|
|
478
|
+
)
|
|
479
|
+
|
|
480
|
+
y.grad = wp.ones_like(y)
|
|
481
|
+
|
|
482
|
+
tape.backward()
|
|
483
|
+
|
|
484
|
+
assert_np_equal(y.numpy(), wp.full((3, 3, TILE_DIM), 1.0, dtype=float, device="cpu").numpy())
|
|
485
|
+
assert_np_equal(x.grad.numpy(), wp.full((1,), wp.float32(TILE_DIM), dtype=wp.mat33, device="cpu").numpy())
|
|
486
|
+
|
|
487
|
+
|
|
488
|
+
@wp.kernel
|
|
489
|
+
def test_tile_untile_preserve_type_kernel(x: wp.array(dtype=Any), y: wp.array(dtype=Any)):
|
|
490
|
+
i = wp.tid()
|
|
491
|
+
a = x[i]
|
|
492
|
+
t = wp.tile(a, preserve_type=True)
|
|
493
|
+
b = wp.untile(t)
|
|
494
|
+
y[i] = b
|
|
495
|
+
|
|
496
|
+
|
|
497
|
+
@wp.kernel
|
|
498
|
+
def test_tile_untile_kernel(x: wp.array(dtype=Any), y: wp.array(dtype=Any)):
|
|
499
|
+
i = wp.tid()
|
|
500
|
+
a = x[i]
|
|
501
|
+
t = wp.tile(a)
|
|
502
|
+
b = wp.untile(t)
|
|
503
|
+
y[i] = b
|
|
504
|
+
|
|
505
|
+
|
|
506
|
+
def test_tile_untile(test, device):
|
|
507
|
+
def test_func_preserve_type(type: Any):
|
|
508
|
+
x = wp.ones(TILE_DIM, dtype=type, requires_grad=True, device=device)
|
|
509
|
+
y = wp.zeros_like(x)
|
|
510
|
+
|
|
511
|
+
tape = wp.Tape()
|
|
512
|
+
with tape:
|
|
513
|
+
wp.launch(
|
|
514
|
+
test_tile_untile_preserve_type_kernel,
|
|
515
|
+
dim=TILE_DIM,
|
|
516
|
+
inputs=[x],
|
|
517
|
+
outputs=[y],
|
|
518
|
+
block_dim=TILE_DIM,
|
|
519
|
+
device=device,
|
|
520
|
+
)
|
|
521
|
+
|
|
522
|
+
y.grad = wp.ones_like(y)
|
|
523
|
+
|
|
524
|
+
tape.backward()
|
|
525
|
+
|
|
526
|
+
assert_np_equal(y.numpy(), x.numpy())
|
|
527
|
+
assert_np_equal(x.grad.numpy(), y.grad.numpy())
|
|
528
|
+
|
|
529
|
+
test_func_preserve_type(float)
|
|
530
|
+
test_func_preserve_type(wp.vec3)
|
|
531
|
+
test_func_preserve_type(wp.quat)
|
|
532
|
+
test_func_preserve_type(wp.mat33)
|
|
533
|
+
|
|
534
|
+
def test_func(type: Any):
|
|
535
|
+
x = wp.ones(TILE_DIM, dtype=type, requires_grad=True, device=device)
|
|
536
|
+
y = wp.zeros_like(x)
|
|
537
|
+
|
|
538
|
+
tape = wp.Tape()
|
|
539
|
+
with tape:
|
|
540
|
+
wp.launch(test_tile_untile_kernel, dim=TILE_DIM, inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device)
|
|
541
|
+
|
|
542
|
+
y.grad = wp.ones_like(y)
|
|
543
|
+
|
|
544
|
+
tape.backward()
|
|
545
|
+
|
|
546
|
+
assert_np_equal(y.numpy(), x.numpy())
|
|
547
|
+
assert_np_equal(x.grad.numpy(), y.grad.numpy())
|
|
548
|
+
|
|
549
|
+
test_func(float)
|
|
550
|
+
test_func(wp.vec3)
|
|
551
|
+
test_func(wp.mat33)
|
|
552
|
+
|
|
553
|
+
|
|
554
|
+
@wp.func
|
|
555
|
+
def tile_sum_func(a: wp.tile(dtype=float, shape=(TILE_M, TILE_N))):
|
|
556
|
+
return wp.tile_sum(a) * 0.5
|
|
557
|
+
|
|
558
|
+
|
|
363
559
|
@wp.kernel
|
|
364
560
|
def tile_sum_kernel(input: wp.array3d(dtype=float), output: wp.array(dtype=float)):
|
|
365
561
|
# output tile index
|
|
366
562
|
i = wp.tid()
|
|
367
563
|
|
|
368
564
|
a = wp.tile_load(input[i], shape=(TILE_M, TILE_N))
|
|
369
|
-
s =
|
|
565
|
+
s = tile_sum_func(a)
|
|
370
566
|
|
|
371
567
|
wp.tile_store(output, s, offset=i)
|
|
372
568
|
|
|
@@ -728,6 +924,116 @@ def test_tile_broadcast_grad(test, device):
|
|
|
728
924
|
assert_np_equal(a.grad.numpy(), np.ones(5) * 5.0)
|
|
729
925
|
|
|
730
926
|
|
|
927
|
+
@wp.kernel
|
|
928
|
+
def test_tile_squeeze_kernel(x: wp.array3d(dtype=float), y: wp.array(dtype=float)):
|
|
929
|
+
a = wp.tile_load(x, shape=(1, TILE_M, 1), offset=(0, 0, 0))
|
|
930
|
+
b = wp.tile_squeeze(a, axis=(2,))
|
|
931
|
+
c = wp.tile_squeeze(b)
|
|
932
|
+
|
|
933
|
+
wp.tile_store(y, c, offset=(0,))
|
|
934
|
+
|
|
935
|
+
|
|
936
|
+
def test_tile_squeeze(test, device):
|
|
937
|
+
x = wp.ones((1, TILE_M, 1), dtype=float, device=device, requires_grad=True)
|
|
938
|
+
y = wp.zeros((TILE_M,), dtype=float, device=device, requires_grad=True)
|
|
939
|
+
|
|
940
|
+
tape = wp.Tape()
|
|
941
|
+
with tape:
|
|
942
|
+
wp.launch_tiled(test_tile_squeeze_kernel, dim=1, inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device)
|
|
943
|
+
|
|
944
|
+
y.grad = wp.ones_like(y)
|
|
945
|
+
tape.backward()
|
|
946
|
+
|
|
947
|
+
assert_np_equal(y.numpy(), np.ones((TILE_M,), dtype=np.float32))
|
|
948
|
+
assert_np_equal(x.grad.numpy(), np.ones((1, TILE_M, 1), dtype=np.float32))
|
|
949
|
+
|
|
950
|
+
|
|
951
|
+
@wp.kernel
|
|
952
|
+
def test_tile_reshape_kernel(x: wp.array2d(dtype=float), y: wp.array2d(dtype=float)):
|
|
953
|
+
a = wp.tile_load(x, shape=(TILE_M, TILE_N), offset=(0, 0))
|
|
954
|
+
b = wp.tile_reshape(a, shape=(wp.static(TILE_M * TILE_N), 1))
|
|
955
|
+
c = wp.tile_reshape(b, shape=(-1, 1))
|
|
956
|
+
|
|
957
|
+
wp.tile_store(y, c, offset=(0, 0))
|
|
958
|
+
|
|
959
|
+
|
|
960
|
+
def test_tile_reshape(test, device):
|
|
961
|
+
x = wp.ones((TILE_M, TILE_N), dtype=float, device=device, requires_grad=True)
|
|
962
|
+
y = wp.zeros((TILE_M * TILE_N, 1), dtype=float, device=device, requires_grad=True)
|
|
963
|
+
|
|
964
|
+
tape = wp.Tape()
|
|
965
|
+
with tape:
|
|
966
|
+
wp.launch_tiled(test_tile_reshape_kernel, dim=1, inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device)
|
|
967
|
+
|
|
968
|
+
y.grad = wp.ones_like(y)
|
|
969
|
+
tape.backward()
|
|
970
|
+
|
|
971
|
+
assert_np_equal(y.numpy(), np.ones((TILE_M * TILE_N, 1), dtype=np.float32))
|
|
972
|
+
assert_np_equal(x.grad.numpy(), np.ones((TILE_M, TILE_N), dtype=np.float32))
|
|
973
|
+
|
|
974
|
+
|
|
975
|
+
@wp.kernel
|
|
976
|
+
def test_tile_astype_kernel(x: wp.array2d(dtype=Any), y: wp.array2d(dtype=wp.float32)):
|
|
977
|
+
a = wp.tile_load(x, shape=(TILE_M, TILE_N))
|
|
978
|
+
b = wp.tile_astype(a, dtype=wp.float32)
|
|
979
|
+
wp.tile_store(y, b)
|
|
980
|
+
|
|
981
|
+
|
|
982
|
+
def test_tile_astype(test, device):
|
|
983
|
+
x_np = np.arange(TILE_M * TILE_N, dtype=np.int32).reshape((TILE_M, TILE_N))
|
|
984
|
+
x = wp.array(x_np, dtype=wp.int32, device=device)
|
|
985
|
+
y = wp.zeros((TILE_M, TILE_N), dtype=wp.float32, device=device)
|
|
986
|
+
|
|
987
|
+
wp.launch_tiled(test_tile_astype_kernel, dim=1, inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device)
|
|
988
|
+
|
|
989
|
+
assert_np_equal(y.numpy(), x_np.astype(np.float32))
|
|
990
|
+
|
|
991
|
+
x_np = np.arange(TILE_M * TILE_N, dtype=np.float64).reshape((TILE_M, TILE_N))
|
|
992
|
+
x = wp.array(x_np, dtype=wp.float64, requires_grad=True, device=device)
|
|
993
|
+
y = wp.zeros((TILE_M, TILE_N), dtype=wp.float32, requires_grad=True, device=device)
|
|
994
|
+
|
|
995
|
+
tape = wp.Tape()
|
|
996
|
+
with tape:
|
|
997
|
+
wp.launch_tiled(test_tile_astype_kernel, dim=1, inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device)
|
|
998
|
+
|
|
999
|
+
y.grad = wp.ones_like(y)
|
|
1000
|
+
|
|
1001
|
+
tape.backward()
|
|
1002
|
+
|
|
1003
|
+
assert_np_equal(y.numpy(), x_np.astype(np.float32))
|
|
1004
|
+
assert_np_equal(x.grad.numpy(), np.ones_like(x_np))
|
|
1005
|
+
|
|
1006
|
+
|
|
1007
|
+
@wp.func
|
|
1008
|
+
def test_tile_func_return_func(tile: Any):
|
|
1009
|
+
return tile
|
|
1010
|
+
|
|
1011
|
+
|
|
1012
|
+
@wp.kernel
|
|
1013
|
+
def test_tile_func_return_kernel(x: wp.array2d(dtype=wp.float32), y: wp.array2d(dtype=wp.float32)):
|
|
1014
|
+
a = wp.tile_load(x, shape=(TILE_M, 1))
|
|
1015
|
+
b = wp.tile_broadcast(a, shape=(TILE_M, TILE_K))
|
|
1016
|
+
c = test_tile_func_return_func(b)
|
|
1017
|
+
wp.tile_store(y, c)
|
|
1018
|
+
|
|
1019
|
+
|
|
1020
|
+
def test_tile_func_return(test, device):
|
|
1021
|
+
x = wp.ones(shape=(TILE_M, 1), dtype=wp.float32, requires_grad=True, device=device)
|
|
1022
|
+
y = wp.zeros(shape=(TILE_M, TILE_K), dtype=wp.float32, requires_grad=True, device=device)
|
|
1023
|
+
|
|
1024
|
+
tape = wp.Tape()
|
|
1025
|
+
with tape:
|
|
1026
|
+
wp.launch_tiled(
|
|
1027
|
+
test_tile_func_return_kernel, dim=[1, 1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
|
|
1028
|
+
)
|
|
1029
|
+
|
|
1030
|
+
y.grad = wp.ones_like(y)
|
|
1031
|
+
tape.backward()
|
|
1032
|
+
|
|
1033
|
+
assert_np_equal(y.numpy(), np.ones((TILE_M, TILE_K), dtype=np.float32))
|
|
1034
|
+
assert_np_equal(x.grad.numpy(), np.ones((TILE_M, 1), dtype=np.float32) * TILE_K)
|
|
1035
|
+
|
|
1036
|
+
|
|
731
1037
|
@wp.kernel
|
|
732
1038
|
def tile_len_kernel(
|
|
733
1039
|
a: wp.array(dtype=float, ndim=2),
|
|
@@ -771,6 +1077,111 @@ def test_tile_print(test, device):
|
|
|
771
1077
|
wp.synchronize()
|
|
772
1078
|
|
|
773
1079
|
|
|
1080
|
+
@wp.kernel
|
|
1081
|
+
def test_tile_add_inplace_kernel(
|
|
1082
|
+
input_a: wp.array2d(dtype=float),
|
|
1083
|
+
input_b: wp.array2d(dtype=float),
|
|
1084
|
+
output_reg: wp.array2d(dtype=float),
|
|
1085
|
+
output_shared: wp.array2d(dtype=float),
|
|
1086
|
+
):
|
|
1087
|
+
i, j = wp.tid()
|
|
1088
|
+
|
|
1089
|
+
a_reg = wp.tile_load(input_a, shape=(TILE_M, TILE_N), offset=(i * TILE_M, j * TILE_N), storage="register")
|
|
1090
|
+
b_reg = wp.tile_load(input_b, shape=(TILE_M, TILE_N), offset=(i * TILE_M, j * TILE_N), storage="register")
|
|
1091
|
+
a_shared = wp.tile_load(input_a, shape=(TILE_M, TILE_N), offset=(i * TILE_M, j * TILE_N), storage="shared")
|
|
1092
|
+
b_shared = wp.tile_load(input_b, shape=(TILE_M, TILE_N), offset=(i * TILE_M, j * TILE_N), storage="shared")
|
|
1093
|
+
|
|
1094
|
+
a_reg += b_reg
|
|
1095
|
+
a_reg += b_shared
|
|
1096
|
+
a_shared += b_reg
|
|
1097
|
+
a_shared += b_shared
|
|
1098
|
+
|
|
1099
|
+
wp.tile_store(output_reg, a_reg, offset=(i * TILE_M, j * TILE_N))
|
|
1100
|
+
wp.tile_store(output_shared, a_shared, offset=(i * TILE_M, j * TILE_N))
|
|
1101
|
+
|
|
1102
|
+
|
|
1103
|
+
@wp.kernel
|
|
1104
|
+
def test_tile_sub_inplace_kernel(
|
|
1105
|
+
input_a: wp.array2d(dtype=float),
|
|
1106
|
+
input_b: wp.array2d(dtype=float),
|
|
1107
|
+
output_reg: wp.array2d(dtype=float),
|
|
1108
|
+
output_shared: wp.array2d(dtype=float),
|
|
1109
|
+
):
|
|
1110
|
+
i, j = wp.tid()
|
|
1111
|
+
|
|
1112
|
+
a_reg = wp.tile_load(input_a, shape=(TILE_M, TILE_N), offset=(i * TILE_M, j * TILE_N), storage="register")
|
|
1113
|
+
b_reg = wp.tile_load(input_b, shape=(TILE_M, TILE_N), offset=(i * TILE_M, j * TILE_N), storage="register")
|
|
1114
|
+
a_shared = wp.tile_load(input_a, shape=(TILE_M, TILE_N), offset=(i * TILE_M, j * TILE_N), storage="shared")
|
|
1115
|
+
b_shared = wp.tile_load(input_b, shape=(TILE_M, TILE_N), offset=(i * TILE_M, j * TILE_N), storage="shared")
|
|
1116
|
+
|
|
1117
|
+
a_reg -= b_reg
|
|
1118
|
+
a_reg -= b_shared
|
|
1119
|
+
a_shared -= b_reg
|
|
1120
|
+
a_shared -= b_shared
|
|
1121
|
+
|
|
1122
|
+
wp.tile_store(output_reg, a_reg, offset=(i * TILE_M, j * TILE_N))
|
|
1123
|
+
wp.tile_store(output_shared, a_shared, offset=(i * TILE_M, j * TILE_N))
|
|
1124
|
+
|
|
1125
|
+
|
|
1126
|
+
def test_tile_inplace(test, device):
|
|
1127
|
+
M = TILE_M * 2
|
|
1128
|
+
N = TILE_N * 2
|
|
1129
|
+
|
|
1130
|
+
a = wp.zeros((M, N), requires_grad=True, device=device)
|
|
1131
|
+
b = wp.ones_like(a, requires_grad=True, device=device)
|
|
1132
|
+
c = wp.zeros_like(a, requires_grad=True, device=device)
|
|
1133
|
+
d = wp.zeros_like(a, requires_grad=True, device=device)
|
|
1134
|
+
|
|
1135
|
+
with wp.Tape() as tape:
|
|
1136
|
+
wp.launch_tiled(
|
|
1137
|
+
test_tile_add_inplace_kernel,
|
|
1138
|
+
dim=[int(M / TILE_M), int(N / TILE_N)],
|
|
1139
|
+
inputs=[a, b, c, d],
|
|
1140
|
+
block_dim=TILE_DIM,
|
|
1141
|
+
device=device,
|
|
1142
|
+
)
|
|
1143
|
+
|
|
1144
|
+
assert_np_equal(a.numpy(), np.zeros((M, N)))
|
|
1145
|
+
assert_np_equal(b.numpy(), np.ones((M, N)))
|
|
1146
|
+
assert_np_equal(c.numpy(), 2.0 * np.ones((M, N)))
|
|
1147
|
+
assert_np_equal(d.numpy(), 2.0 * np.ones((M, N)))
|
|
1148
|
+
|
|
1149
|
+
c.grad = wp.ones_like(c, device=device)
|
|
1150
|
+
d.grad = wp.ones_like(d, device=device)
|
|
1151
|
+
tape.backward()
|
|
1152
|
+
|
|
1153
|
+
assert_np_equal(a.grad.numpy(), 2.0 * np.ones((M, N)))
|
|
1154
|
+
assert_np_equal(b.grad.numpy(), 4.0 * np.ones((M, N)))
|
|
1155
|
+
|
|
1156
|
+
tape.zero()
|
|
1157
|
+
|
|
1158
|
+
a.zero_()
|
|
1159
|
+
b.fill_(1.0)
|
|
1160
|
+
c.zero_()
|
|
1161
|
+
d.zero_()
|
|
1162
|
+
|
|
1163
|
+
with wp.Tape() as tape:
|
|
1164
|
+
wp.launch_tiled(
|
|
1165
|
+
test_tile_sub_inplace_kernel,
|
|
1166
|
+
dim=[int(M / TILE_M), int(N / TILE_N)],
|
|
1167
|
+
inputs=[a, b, c, d],
|
|
1168
|
+
block_dim=TILE_DIM,
|
|
1169
|
+
device=device,
|
|
1170
|
+
)
|
|
1171
|
+
|
|
1172
|
+
assert_np_equal(a.numpy(), np.zeros((M, N)))
|
|
1173
|
+
assert_np_equal(b.numpy(), np.ones((M, N)))
|
|
1174
|
+
assert_np_equal(c.numpy(), -2.0 * np.ones((M, N)))
|
|
1175
|
+
assert_np_equal(d.numpy(), -2.0 * np.ones((M, N)))
|
|
1176
|
+
|
|
1177
|
+
c.grad = wp.ones_like(c, device=device)
|
|
1178
|
+
d.grad = wp.ones_like(d, device=device)
|
|
1179
|
+
tape.backward()
|
|
1180
|
+
|
|
1181
|
+
assert_np_equal(a.grad.numpy(), 2.0 * np.ones((M, N)))
|
|
1182
|
+
assert_np_equal(b.grad.numpy(), -4.0 * np.ones((M, N)))
|
|
1183
|
+
|
|
1184
|
+
|
|
774
1185
|
devices = get_test_devices()
|
|
775
1186
|
|
|
776
1187
|
|
|
@@ -789,6 +1200,8 @@ add_function_test(TestTile, "test_tile_gemm_fp64", test_tile_gemm(wp.float64), d
|
|
|
789
1200
|
add_function_test(TestTile, "test_tile_transpose", test_tile_transpose, devices=devices)
|
|
790
1201
|
add_function_test(TestTile, "test_tile_transpose_matmul", test_tile_transpose_matmul, devices=devices)
|
|
791
1202
|
add_function_test(TestTile, "test_tile_operators", test_tile_operators, devices=devices)
|
|
1203
|
+
add_function_test(TestTile, "test_tile_tile", test_tile_tile, devices=get_cuda_test_devices())
|
|
1204
|
+
add_function_test(TestTile, "test_tile_untile", test_tile_untile, devices=devices)
|
|
792
1205
|
add_function_test(TestTile, "test_tile_sum", test_tile_sum, devices=devices, check_output=False)
|
|
793
1206
|
add_function_test(TestTile, "test_tile_sum_launch", test_tile_sum_launch, devices=devices)
|
|
794
1207
|
add_function_test(TestTile, "test_tile_extract", test_tile_extract, devices=devices)
|
|
@@ -799,8 +1212,14 @@ add_function_test(TestTile, "test_tile_broadcast_add_2d", test_tile_broadcast_ad
|
|
|
799
1212
|
add_function_test(TestTile, "test_tile_broadcast_add_3d", test_tile_broadcast_add_3d, devices=devices)
|
|
800
1213
|
add_function_test(TestTile, "test_tile_broadcast_add_4d", test_tile_broadcast_add_4d, devices=devices)
|
|
801
1214
|
add_function_test(TestTile, "test_tile_broadcast_grad", test_tile_broadcast_grad, devices=devices)
|
|
1215
|
+
add_function_test(TestTile, "test_tile_squeeze", test_tile_squeeze, devices=devices)
|
|
1216
|
+
add_function_test(TestTile, "test_tile_reshape", test_tile_reshape, devices=devices)
|
|
802
1217
|
add_function_test(TestTile, "test_tile_len", test_tile_len, devices=devices)
|
|
803
1218
|
add_function_test(TestTile, "test_tile_print", test_tile_print, devices=devices, check_output=False)
|
|
1219
|
+
add_function_test(TestTile, "test_tile_inplace", test_tile_inplace, devices=devices)
|
|
1220
|
+
add_function_test(TestTile, "test_tile_astype", test_tile_astype, devices=devices)
|
|
1221
|
+
add_function_test(TestTile, "test_tile_func_return", test_tile_func_return, devices=devices)
|
|
1222
|
+
|
|
804
1223
|
|
|
805
1224
|
if __name__ == "__main__":
|
|
806
1225
|
wp.clear_kernel_cache()
|