warp-lang 1.6.2__py3-none-win_amd64.whl → 1.7.1__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (191) hide show
  1. warp/__init__.py +7 -1
  2. warp/autograd.py +12 -2
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +410 -0
  6. warp/build_dll.py +6 -14
  7. warp/builtins.py +463 -372
  8. warp/codegen.py +196 -124
  9. warp/config.py +42 -6
  10. warp/context.py +496 -271
  11. warp/dlpack.py +8 -6
  12. warp/examples/assets/nonuniform.usd +0 -0
  13. warp/examples/assets/nvidia_logo.png +0 -0
  14. warp/examples/benchmarks/benchmark_cloth.py +1 -1
  15. warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
  16. warp/examples/core/example_sample_mesh.py +300 -0
  17. warp/examples/distributed/example_jacobi_mpi.py +507 -0
  18. warp/examples/fem/example_apic_fluid.py +1 -1
  19. warp/examples/fem/example_burgers.py +2 -2
  20. warp/examples/fem/example_deformed_geometry.py +1 -1
  21. warp/examples/fem/example_distortion_energy.py +1 -1
  22. warp/examples/fem/example_magnetostatics.py +6 -6
  23. warp/examples/fem/utils.py +9 -3
  24. warp/examples/interop/example_jax_callable.py +116 -0
  25. warp/examples/interop/example_jax_ffi_callback.py +132 -0
  26. warp/examples/interop/example_jax_kernel.py +205 -0
  27. warp/examples/optim/example_fluid_checkpoint.py +497 -0
  28. warp/examples/tile/example_tile_matmul.py +2 -4
  29. warp/fem/__init__.py +11 -1
  30. warp/fem/adaptivity.py +4 -4
  31. warp/fem/field/field.py +11 -1
  32. warp/fem/field/nodal_field.py +56 -88
  33. warp/fem/field/virtual.py +62 -23
  34. warp/fem/geometry/adaptive_nanogrid.py +16 -13
  35. warp/fem/geometry/closest_point.py +1 -1
  36. warp/fem/geometry/deformed_geometry.py +5 -2
  37. warp/fem/geometry/geometry.py +5 -0
  38. warp/fem/geometry/grid_2d.py +12 -12
  39. warp/fem/geometry/grid_3d.py +12 -15
  40. warp/fem/geometry/hexmesh.py +5 -7
  41. warp/fem/geometry/nanogrid.py +9 -11
  42. warp/fem/geometry/quadmesh.py +13 -13
  43. warp/fem/geometry/tetmesh.py +3 -4
  44. warp/fem/geometry/trimesh.py +7 -20
  45. warp/fem/integrate.py +262 -93
  46. warp/fem/linalg.py +5 -5
  47. warp/fem/quadrature/pic_quadrature.py +37 -22
  48. warp/fem/quadrature/quadrature.py +194 -25
  49. warp/fem/space/__init__.py +1 -1
  50. warp/fem/space/basis_function_space.py +4 -2
  51. warp/fem/space/basis_space.py +25 -18
  52. warp/fem/space/hexmesh_function_space.py +2 -2
  53. warp/fem/space/partition.py +6 -2
  54. warp/fem/space/quadmesh_function_space.py +8 -8
  55. warp/fem/space/shape/cube_shape_function.py +23 -23
  56. warp/fem/space/shape/square_shape_function.py +12 -12
  57. warp/fem/space/shape/triangle_shape_function.py +1 -1
  58. warp/fem/space/tetmesh_function_space.py +3 -3
  59. warp/fem/space/trimesh_function_space.py +2 -2
  60. warp/fem/utils.py +12 -6
  61. warp/jax.py +14 -1
  62. warp/jax_experimental/__init__.py +16 -0
  63. warp/{jax_experimental.py → jax_experimental/custom_call.py} +28 -29
  64. warp/jax_experimental/ffi.py +702 -0
  65. warp/jax_experimental/xla_ffi.py +602 -0
  66. warp/math.py +89 -0
  67. warp/native/array.h +13 -0
  68. warp/native/builtin.h +29 -3
  69. warp/native/bvh.cpp +3 -1
  70. warp/native/bvh.cu +42 -14
  71. warp/native/bvh.h +2 -1
  72. warp/native/clang/clang.cpp +30 -3
  73. warp/native/cuda_util.cpp +14 -0
  74. warp/native/cuda_util.h +2 -0
  75. warp/native/exports.h +68 -63
  76. warp/native/intersect.h +26 -26
  77. warp/native/intersect_adj.h +33 -33
  78. warp/native/marching.cu +1 -1
  79. warp/native/mat.h +513 -9
  80. warp/native/mesh.h +10 -10
  81. warp/native/quat.h +99 -11
  82. warp/native/rand.h +6 -0
  83. warp/native/sort.cpp +122 -59
  84. warp/native/sort.cu +152 -15
  85. warp/native/sort.h +8 -1
  86. warp/native/sparse.cpp +43 -22
  87. warp/native/sparse.cu +52 -17
  88. warp/native/svd.h +116 -0
  89. warp/native/tile.h +312 -116
  90. warp/native/tile_reduce.h +46 -3
  91. warp/native/vec.h +68 -7
  92. warp/native/volume.cpp +85 -113
  93. warp/native/volume_builder.cu +25 -10
  94. warp/native/volume_builder.h +6 -0
  95. warp/native/warp.cpp +5 -6
  96. warp/native/warp.cu +100 -11
  97. warp/native/warp.h +19 -10
  98. warp/optim/linear.py +10 -10
  99. warp/render/render_opengl.py +19 -17
  100. warp/render/render_usd.py +93 -3
  101. warp/sim/articulation.py +4 -4
  102. warp/sim/collide.py +32 -19
  103. warp/sim/import_mjcf.py +449 -155
  104. warp/sim/import_urdf.py +32 -12
  105. warp/sim/inertia.py +189 -156
  106. warp/sim/integrator_euler.py +8 -5
  107. warp/sim/integrator_featherstone.py +3 -10
  108. warp/sim/integrator_vbd.py +207 -2
  109. warp/sim/integrator_xpbd.py +8 -5
  110. warp/sim/model.py +71 -25
  111. warp/sim/render.py +4 -0
  112. warp/sim/utils.py +2 -2
  113. warp/sparse.py +642 -555
  114. warp/stubs.py +217 -20
  115. warp/tests/__main__.py +0 -15
  116. warp/tests/assets/torus.usda +1 -1
  117. warp/tests/cuda/__init__.py +0 -0
  118. warp/tests/{test_mempool.py → cuda/test_mempool.py} +39 -0
  119. warp/tests/{test_streams.py → cuda/test_streams.py} +71 -0
  120. warp/tests/geometry/__init__.py +0 -0
  121. warp/tests/{test_mesh_query_point.py → geometry/test_mesh_query_point.py} +66 -63
  122. warp/tests/{test_mesh_query_ray.py → geometry/test_mesh_query_ray.py} +1 -1
  123. warp/tests/{test_volume.py → geometry/test_volume.py} +41 -6
  124. warp/tests/interop/__init__.py +0 -0
  125. warp/tests/{test_dlpack.py → interop/test_dlpack.py} +28 -5
  126. warp/tests/sim/__init__.py +0 -0
  127. warp/tests/{disabled_kinematics.py → sim/disabled_kinematics.py} +9 -10
  128. warp/tests/{test_collision.py → sim/test_collision.py} +236 -205
  129. warp/tests/sim/test_inertia.py +161 -0
  130. warp/tests/{test_model.py → sim/test_model.py} +40 -0
  131. warp/tests/{flaky_test_sim_grad.py → sim/test_sim_grad.py} +4 -0
  132. warp/tests/{test_sim_kinematics.py → sim/test_sim_kinematics.py} +2 -1
  133. warp/tests/sim/test_vbd.py +597 -0
  134. warp/tests/sim/test_xpbd.py +399 -0
  135. warp/tests/test_bool.py +1 -1
  136. warp/tests/test_codegen.py +24 -3
  137. warp/tests/test_examples.py +40 -38
  138. warp/tests/test_fem.py +98 -14
  139. warp/tests/test_linear_solvers.py +0 -11
  140. warp/tests/test_mat.py +577 -156
  141. warp/tests/test_mat_scalar_ops.py +4 -4
  142. warp/tests/test_overwrite.py +0 -60
  143. warp/tests/test_quat.py +356 -151
  144. warp/tests/test_rand.py +44 -37
  145. warp/tests/test_sparse.py +47 -6
  146. warp/tests/test_spatial.py +75 -0
  147. warp/tests/test_static.py +1 -1
  148. warp/tests/test_utils.py +84 -4
  149. warp/tests/test_vec.py +336 -178
  150. warp/tests/tile/__init__.py +0 -0
  151. warp/tests/{test_tile.py → tile/test_tile.py} +136 -51
  152. warp/tests/{test_tile_load.py → tile/test_tile_load.py} +98 -1
  153. warp/tests/{test_tile_mathdx.py → tile/test_tile_mathdx.py} +9 -6
  154. warp/tests/{test_tile_mlp.py → tile/test_tile_mlp.py} +25 -14
  155. warp/tests/{test_tile_reduce.py → tile/test_tile_reduce.py} +60 -1
  156. warp/tests/{test_tile_view.py → tile/test_tile_view.py} +1 -1
  157. warp/tests/unittest_serial.py +1 -0
  158. warp/tests/unittest_suites.py +45 -62
  159. warp/tests/unittest_utils.py +2 -1
  160. warp/thirdparty/unittest_parallel.py +3 -1
  161. warp/types.py +175 -666
  162. warp/utils.py +137 -72
  163. {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/METADATA +46 -12
  164. {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/RECORD +184 -171
  165. {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/WHEEL +1 -1
  166. {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info/licenses}/LICENSE.md +0 -26
  167. warp/examples/optim/example_walker.py +0 -317
  168. warp/native/cutlass_gemm.cpp +0 -43
  169. warp/native/cutlass_gemm.cu +0 -382
  170. warp/tests/test_matmul.py +0 -511
  171. warp/tests/test_matmul_lite.py +0 -411
  172. warp/tests/test_vbd.py +0 -386
  173. warp/tests/unused_test_misc.py +0 -77
  174. /warp/tests/{test_async.py → cuda/test_async.py} +0 -0
  175. /warp/tests/{test_ipc.py → cuda/test_ipc.py} +0 -0
  176. /warp/tests/{test_multigpu.py → cuda/test_multigpu.py} +0 -0
  177. /warp/tests/{test_peer.py → cuda/test_peer.py} +0 -0
  178. /warp/tests/{test_pinned.py → cuda/test_pinned.py} +0 -0
  179. /warp/tests/{test_bvh.py → geometry/test_bvh.py} +0 -0
  180. /warp/tests/{test_hash_grid.py → geometry/test_hash_grid.py} +0 -0
  181. /warp/tests/{test_marching_cubes.py → geometry/test_marching_cubes.py} +0 -0
  182. /warp/tests/{test_mesh.py → geometry/test_mesh.py} +0 -0
  183. /warp/tests/{test_mesh_query_aabb.py → geometry/test_mesh_query_aabb.py} +0 -0
  184. /warp/tests/{test_volume_write.py → geometry/test_volume_write.py} +0 -0
  185. /warp/tests/{test_jax.py → interop/test_jax.py} +0 -0
  186. /warp/tests/{test_paddle.py → interop/test_paddle.py} +0 -0
  187. /warp/tests/{test_torch.py → interop/test_torch.py} +0 -0
  188. /warp/tests/{test_coloring.py → sim/test_coloring.py} +0 -0
  189. /warp/tests/{test_sim_grad_bounce_linear.py → sim/test_sim_grad_bounce_linear.py} +0 -0
  190. /warp/tests/{test_tile_shared_memory.py → tile/test_tile_shared_memory.py} +0 -0
  191. {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/top_level.txt +0 -0
warp/dlpack.py CHANGED
@@ -48,10 +48,6 @@ Py_DecRef.restype = None
48
48
 
49
49
  PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.c_void_p)
50
50
 
51
- PyCapsule_New = ctypes.pythonapi.PyCapsule_New
52
- PyCapsule_New.argtypes = [ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor]
53
- PyCapsule_New.restype = ctypes.py_object
54
-
55
51
  PyCapsule_IsValid = ctypes.pythonapi.PyCapsule_IsValid
56
52
  PyCapsule_IsValid.argtypes = [ctypes.py_object, ctypes.c_char_p]
57
53
  PyCapsule_IsValid.restype = ctypes.c_int
@@ -105,8 +101,8 @@ def _dlpack_capsule_deleter(ptr) -> None:
105
101
 
106
102
  capsule = ctypes.cast(ptr, ctypes.py_object)
107
103
 
108
- if ctypes.pythonapi.PyCapsule_IsValid(capsule, _c_str_dltensor):
109
- managed_ptr = ctypes.pythonapi.PyCapsule_GetPointer(capsule, _c_str_dltensor)
104
+ if PyCapsule_IsValid(capsule, _c_str_dltensor):
105
+ managed_ptr = PyCapsule_GetPointer(capsule, _c_str_dltensor)
110
106
  managed_tensor = DLManagedTensor.from_address(managed_ptr)
111
107
  if managed_tensor.deleter:
112
108
  managed_tensor.deleter(managed_ptr)
@@ -302,6 +298,12 @@ def to_dlpack(wp_array: warp.array):
302
298
 
303
299
  managed_tensor.deleter = _dlpack_tensor_deleter
304
300
 
301
+ # NOTE: jax.ffi.pycapsule() defines the PyCapsule_New() argtypes incorrectly, which causes problems.
302
+ # Here we make sure that the PyCapsule_Destructor callback is correctly defined.
303
+ PyCapsule_New = ctypes.pythonapi.PyCapsule_New
304
+ PyCapsule_New.argtypes = [ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor]
305
+ PyCapsule_New.restype = ctypes.py_object
306
+
305
307
  capsule = PyCapsule_New(
306
308
  ctypes.byref(managed_tensor),
307
309
  _c_str_dltensor,
Binary file
Binary file
@@ -160,7 +160,7 @@ def run_benchmark(mode, dim, timers, render=False):
160
160
  stage = Usd.Stage.CreateNew("benchmark.usd")
161
161
  stage.SetStartTimeCode(0.0)
162
162
  stage.SetEndTimeCode(sim_duration * sim_fps)
163
- stage.SetTimeCodesPerSecond(sim_fps)
163
+ stage.SetFramesPerSecond(sim_fps)
164
164
 
165
165
  grid = UsdGeom.Mesh.Define(stage, "/root")
166
166
  grid.GetPointsAttr().Set(cloth.positions, 0.0)
@@ -0,0 +1,103 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import numpy as np
17
+
18
+ import warp as wp
19
+
20
+ BLOCK_DIM = 128
21
+
22
+ TILE = 32
23
+
24
+
25
+ def create_test_kernel(storage_type: str):
26
+ @wp.kernel
27
+ def load_store(a: wp.array2d(dtype=wp.float32), b: wp.array2d(dtype=wp.float32)):
28
+ i, j = wp.tid()
29
+
30
+ if wp.static(storage_type == "shared"):
31
+ a_tile = wp.tile_load(a, shape=(TILE, TILE), offset=(i * TILE, j * TILE), storage="shared")
32
+ else:
33
+ a_tile = wp.tile_load(a, shape=(TILE, TILE), offset=(i * TILE, j * TILE), storage="register")
34
+
35
+ wp.tile_store(b, a_tile, offset=(i * TILE, j * TILE))
36
+
37
+ return load_store
38
+
39
+
40
+ if __name__ == "__main__":
41
+ wp.config.quiet = True
42
+ wp.init()
43
+ wp.clear_kernel_cache()
44
+ wp.set_module_options({"fast_math": True, "enable_backward": False})
45
+
46
+ iterations = 100
47
+ rng = np.random.default_rng(42)
48
+
49
+ shared_benchmark_data = {}
50
+ register_benchmark_data = {}
51
+ memcpy_benchmark_data = {}
52
+
53
+ sizes = list(range(128, 4097, 128))
54
+
55
+ print(f"{'Transfer Size (Bytes)':<23s} {'Shared (GiB/s)':<16s} {'Register (GiB/s)':<18s} {'memcpy (GiB/s)':<16s}")
56
+ print("-" * 79)
57
+
58
+ for size in sizes:
59
+ a = wp.array(rng.random((size, size), dtype=np.float32), dtype=wp.float32)
60
+ b = wp.empty_like(a)
61
+
62
+ for storage_type in ("shared", "register"):
63
+ load_store = create_test_kernel(storage_type)
64
+
65
+ cmd = wp.launch_tiled(
66
+ load_store,
67
+ dim=(a.shape[0] // TILE, a.shape[1] // TILE),
68
+ inputs=[a],
69
+ outputs=[b],
70
+ block_dim=BLOCK_DIM,
71
+ record_cmd=True,
72
+ )
73
+ # Warmup
74
+ for _ in range(5):
75
+ cmd.launch()
76
+
77
+ with wp.ScopedTimer("benchmark", cuda_filter=wp.TIMING_KERNEL, print=False, synchronize=True) as timer:
78
+ for _ in range(iterations):
79
+ cmd.launch()
80
+
81
+ np.testing.assert_equal(a.numpy(), b.numpy())
82
+
83
+ timing_results = [result.elapsed for result in timer.timing_results]
84
+ avg_bw = 2.0 * (a.capacity / (1024 * 1024 * 1024)) / (1e-3 * np.mean(timing_results))
85
+
86
+ if storage_type == "shared":
87
+ shared_benchmark_data[a.capacity] = avg_bw
88
+ else:
89
+ register_benchmark_data[a.capacity] = avg_bw
90
+
91
+ # Compare with memcpy
92
+ with wp.ScopedTimer("benchmark", cuda_filter=wp.TIMING_MEMCPY, print=False, synchronize=True) as timer:
93
+ for _ in range(iterations):
94
+ wp.copy(b, a)
95
+
96
+ timing_results = [result.elapsed for result in timer.timing_results]
97
+ avg_bw = 2.0 * (a.capacity / (1024 * 1024 * 1024)) / (1e-3 * np.mean(timing_results))
98
+ memcpy_benchmark_data[a.capacity] = avg_bw
99
+
100
+ # Print results
101
+ print(
102
+ f"{a.capacity:<23d} {shared_benchmark_data[a.capacity]:<#16.4g} {register_benchmark_data[a.capacity]:<#18.4g} {memcpy_benchmark_data[a.capacity]:<#16.4g}"
103
+ )
@@ -0,0 +1,300 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ ###########################################################################
17
+ # Example Sample Mesh
18
+ #
19
+ # Shows how to sample points on a mesh's surface using
20
+ # a Cumulative Distribution Function (CDF).
21
+ #
22
+ # The CDF enables uniform sampling of points across the mesh's surface,
23
+ # even when the density of triangles varies. It represents the cumulative
24
+ # probability of selecting a triangle from the mesh, with each triangle
25
+ # weighted by its area relative to the total surface area of the mesh.
26
+ #
27
+ ###########################################################################
28
+
29
+ import numpy as np
30
+
31
+ import warp as wp
32
+ import warp.render
33
+
34
+ # fmt: off
35
+ POINTS = np.array(
36
+ (
37
+ (-0.986598, -0.400638, -0.175759), (-0.81036 , -0.482105, -0.541125),
38
+ (-1.079616, 0.022652, -0.023381), (-0.894468, -0.080795, -0.618379),
39
+ (-0.607365, -0.702012, -0.556551), (-0.366107, -0.800096, -0.620734),
40
+ (-0.801777, -0.690991, -0.239593), (-0.553576, -0.871746, -0.335518),
41
+ (-0.309133, -0.370805, -0.965784), (-0.288299, -0.956987, -0.402091),
42
+ (-0.051878, -0.894342, -0.597583), (-0.386774, -1.003107, -0.145116),
43
+ (-0.19062 , -1.061165, 0.012418), (-0.176053, -1.044838, -0.217194),
44
+ ( 0.001479, -1.020045, -0.356905), (-0.105375, -0.655117, -0.861365),
45
+ (-0.542102, -0.517255, -0.795259), (-0.476599, -0.105709, -0.981171),
46
+ (-1.047915, -0.121584, 0.322098), (-0.527852, 0.137252, 0.501813),
47
+ (-0.721762, -0.803275, 0.117162), (-0.904992, -0.573281, 0.168408),
48
+ (-0.796762, -0.473428, 0.569649), (-0.606446, -0.753374, 0.492938),
49
+ (-0.466481, -0.576566, 0.802562), (-0.50476 , -0.908596, 0.300064),
50
+ (-0.337425, -1.008902, 0.170911), (-0.048676, -1.055594, 0.246732),
51
+ (-0.212871, -0.760442, 0.738447), (-0.281356, -0.9322 , 0.474965),
52
+ (-0.560476, 0.062512, -0.561019), (-0.003252, 0.083237, -1.049784),
53
+ (-0.009392, 0.593703, -0.522479), (-0.530465, 0.577231, 0.007172),
54
+ (-0.02106 , 0.064189, 1.066722), (-0.003512, 0.59714 , 0.516904),
55
+ ( 0.000194, 1.093899, 0.001113), ( 0.256861, -0.955856, -0.445325),
56
+ ( 0.251205, -1.038759, -0.174212), ( 0.170201, -0.800019, -0.712158),
57
+ ( 0.364385, -0.560298, -0.866843), ( 0.092809, -0.269437, -1.058467),
58
+ ( 0.628127, -0.12359 , -0.9012 ), ( 0.507433, -0.930658, -0.215908),
59
+ ( 0.496448, -0.800205, -0.545904), ( 0.757415, -0.527449, -0.565395),
60
+ ( 0.908704, -0.596257, 0.028995), ( 0.754069, -0.731365, -0.256687),
61
+ ( 0.921362, -0.09028 , -0.546421), ( 1.017846, -0.335787, -0.263017),
62
+ ( 0.016768, -1.080014, -0.058473), ( 0.204245, -1.056388, 0.078346),
63
+ ( 0.260892, -1.001704, 0.322104), ( 0.16608 , -0.739172, 0.788097),
64
+ ( 0.021091, -0.931327, 0.557789), (-0.046158, -0.408417, 1.011046),
65
+ ( 0.429623, -0.987237, 0.088537), ( 0.704993, -0.739396, 0.386838),
66
+ ( 0.37277 , -0.825639, 0.591102), ( 0.493947, -0.896091, 0.339163),
67
+ ( 0.321112, -0.540547, 0.890161), ( 0.654753, -0.520495, 0.690104),
68
+ ( 0.922472, -0.124429, 0.530498), ( 0.662544, -0.85601 , 0.054375),
69
+ ( 0.950976, -0.422783, 0.327726), ( 0.536849, 0.109943, -0.52279 ),
70
+ ( 0.517242, 0.120634, 0.535708), ( 0.532707, 0.598943, -0.000767),
71
+ ( 1.086691, 0.048722, 0.032517), ( 0.528734, -0.109809, 0.96863 ),
72
+ (-0.581832, -0.916941, -0.027829), (-0.625071, -0.14445 , 0.906538),
73
+ ),
74
+ dtype=np.float32,
75
+ )
76
+
77
+ FACE_VERTEX_INDICES = np.array(
78
+ (
79
+ 6, 0, 1, 6, 21, 0, 2, 0, 18, 0, 3, 1, 2, 3, 0, 5,
80
+ 7, 4, 70, 7, 11, 4, 6, 1, 16, 1, 3, 7, 6, 4, 4, 1,
81
+ 16, 9, 7, 5, 3, 17, 16, 16, 17, 8, 41, 8, 17, 30, 17, 3,
82
+ 10, 14, 9, 5, 10, 9, 10, 37, 14, 15, 10, 5, 7, 9, 11, 11,
83
+ 9, 13, 11, 13, 12, 50, 12, 13, 9, 14, 13, 15, 16, 8, 15, 8,
84
+ 41, 16, 5, 4, 16, 15, 5, 17, 31, 41, 21, 22, 18, 20, 21, 6,
85
+ 18, 0, 21, 20, 25, 23, 20, 70, 25, 70, 11, 26, 26, 25, 70, 25,
86
+ 29, 23, 21, 20, 23, 21, 23, 22, 23, 24, 22, 24, 71, 22, 26, 29,
87
+ 25, 26, 11, 12, 12, 27, 26, 26, 27, 29, 27, 54, 29, 27, 12, 50,
88
+ 28, 29, 54, 54, 53, 28, 23, 28, 24, 29, 28, 23, 28, 55, 24, 28,
89
+ 53, 55, 53, 60, 55, 24, 55, 71, 55, 34, 71, 30, 3, 2, 2, 33,
90
+ 30, 17, 30, 31, 32, 31, 30, 33, 36, 32, 19, 33, 2, 19, 35, 33,
91
+ 19, 71, 34, 35, 19, 34, 34, 66, 35, 35, 36, 33, 35, 67, 36, 15,
92
+ 39, 10, 10, 39, 37, 44, 37, 39, 14, 50, 13, 14, 38, 50, 14, 37,
93
+ 38, 37, 43, 38, 40, 15, 41, 40, 39, 15, 41, 42, 40, 44, 39, 40,
94
+ 31, 42, 41, 38, 43, 56, 44, 43, 37, 44, 47, 43, 47, 63, 43, 44,
95
+ 40, 45, 42, 45, 40, 46, 63, 47, 45, 47, 44, 65, 48, 42, 46, 47,
96
+ 49, 49, 47, 45, 48, 45, 42, 45, 48, 49, 68, 49, 48, 27, 52, 54,
97
+ 50, 51, 27, 27, 51, 52, 50, 38, 51, 38, 56, 51, 51, 56, 52, 54,
98
+ 52, 58, 52, 59, 58, 53, 54, 58, 60, 69, 55, 55, 69, 34, 43, 63,
99
+ 56, 59, 52, 56, 63, 59, 56, 63, 57, 59, 58, 60, 53, 57, 58, 59,
100
+ 58, 57, 61, 60, 58, 61, 57, 64, 61, 62, 61, 64, 60, 61, 69, 62,
101
+ 69, 61, 46, 57, 63, 64, 57, 46, 46, 49, 64, 68, 64, 49, 62, 64,
102
+ 68, 32, 65, 31, 65, 32, 67, 32, 36, 67, 65, 42, 31, 67, 68, 65,
103
+ 48, 65, 68, 34, 69, 66, 67, 35, 66, 68, 66, 62, 66, 69, 62, 67,
104
+ 66, 68, 33, 32, 30, 19, 2, 18, 20, 6, 70, 7, 70, 6, 18, 71,
105
+ 19, 22, 71, 18,
106
+ ),
107
+ dtype=np.int32,
108
+ )
109
+ # fmt: on
110
+
111
+
112
+ @wp.kernel(enable_backward=False)
113
+ def compute_tri_areas(
114
+ points: wp.array(dtype=wp.vec3),
115
+ face_vertex_indices: wp.array(dtype=wp.int32),
116
+ out_tri_areas: wp.array(dtype=wp.float32),
117
+ out_total_area: wp.array(dtype=wp.float32),
118
+ ):
119
+ tri = wp.tid()
120
+
121
+ # Retrieve the indices of the three vertices that form the current triangle.
122
+ vtx_0 = face_vertex_indices[tri * 3]
123
+ vtx_1 = face_vertex_indices[tri * 3 + 1]
124
+ vtx_2 = face_vertex_indices[tri * 3 + 2]
125
+
126
+ # Retrieve their 3D position.
127
+ pt_0 = points[vtx_0]
128
+ pt_1 = points[vtx_1]
129
+ pt_2 = points[vtx_2]
130
+
131
+ # Calculate the cross product of two edges of the triangle,
132
+ # which gives a vector whose magnitude is twice the area of the triangle.
133
+ cross = wp.cross((pt_1 - pt_0), (pt_2 - pt_0))
134
+ area = wp.length(cross) * 0.5
135
+
136
+ # Store the result.
137
+ out_tri_areas[tri] = area
138
+ wp.atomic_add(out_total_area, 0, area)
139
+
140
+
141
+ @wp.kernel(enable_backward=False)
142
+ def compute_probability_distribution(
143
+ tri_areas: wp.array(dtype=wp.float32),
144
+ total_area: wp.array(dtype=wp.float32),
145
+ out_probabilities: wp.array(dtype=wp.float32),
146
+ ):
147
+ tri = wp.tid()
148
+
149
+ # Calculate the probability of selecting this triangle,
150
+ # which is proportional to the triangle's area relative to total mesh area.
151
+ out_probabilities[tri] = tri_areas[tri] / total_area[0]
152
+
153
+
154
+ @wp.kernel(enable_backward=False)
155
+ def accumulate_cdf(
156
+ tri_count: wp.int32,
157
+ out_cdf: wp.array(dtype=wp.float32),
158
+ ):
159
+ # Transform probability values into a Cumulative Distribution Function (CDF).
160
+ for tri in range(1, tri_count):
161
+ out_cdf[tri] += out_cdf[tri - 1]
162
+
163
+
164
+ @wp.kernel(enable_backward=False)
165
+ def sample_mesh(
166
+ mesh: wp.uint64,
167
+ cdf: wp.array(dtype=wp.float32),
168
+ seed: wp.int32,
169
+ out_points: wp.array(dtype=wp.vec3),
170
+ ):
171
+ tid = wp.tid()
172
+
173
+ rng = wp.rand_init(seed, tid)
174
+
175
+ # Sample the triangle index using the CDF.
176
+ sample = wp.randf(rng)
177
+ tri = wp.lower_bound(cdf, sample)
178
+
179
+ # Sample the location in that triangle using random barycentric cordinates.
180
+ ru = wp.randf(rng)
181
+ rv = wp.randf(rng)
182
+ tri_u = 1.0 - wp.sqrt(ru)
183
+ tri_v = wp.sqrt(ru) * (1.0 - rv)
184
+ pos = wp.mesh_eval_position(mesh, tri, tri_u, tri_v)
185
+
186
+ # Store the result.
187
+ out_points[tid] = pos
188
+
189
+
190
+ class Example:
191
+ def __init__(self, stage_path="example_sample_mesh.usd"):
192
+ self.mesh = wp.Mesh(
193
+ points=wp.array(POINTS, dtype=wp.vec3),
194
+ indices=wp.array(FACE_VERTEX_INDICES, dtype=wp.int32),
195
+ )
196
+ self.tri_count = len(FACE_VERTEX_INDICES) // 3
197
+
198
+ # Compute the area of each triangle and the total area of the mesh.
199
+ tri_areas = wp.empty(shape=(self.tri_count,), dtype=wp.float32)
200
+ total_area = wp.zeros(shape=(1,), dtype=wp.float32)
201
+ wp.launch(
202
+ compute_tri_areas,
203
+ dim=tri_areas.shape,
204
+ inputs=(
205
+ self.mesh.points,
206
+ self.mesh.indices,
207
+ ),
208
+ outputs=(
209
+ tri_areas,
210
+ total_area,
211
+ ),
212
+ )
213
+
214
+ # Build a Cumulative Distribution Function (CDF) where the probability
215
+ # of sampling a given triangle is proportional to its area.
216
+ self.cdf = wp.empty(shape=(self.tri_count,), dtype=wp.float32)
217
+ wp.launch(
218
+ compute_probability_distribution,
219
+ dim=self.cdf.shape,
220
+ inputs=(
221
+ tri_areas,
222
+ total_area,
223
+ ),
224
+ outputs=(self.cdf,),
225
+ )
226
+ wp.launch(
227
+ accumulate_cdf,
228
+ dim=(1,),
229
+ inputs=(self.tri_count,),
230
+ outputs=(self.cdf,),
231
+ )
232
+
233
+ # Array to store the sampled points.
234
+ self.points = wp.empty(shape=(100,), dtype=wp.vec3)
235
+
236
+ self.fps = 4
237
+ self.frame = 0
238
+
239
+ if stage_path:
240
+ self.renderer = wp.render.UsdRenderer(stage_path, fps=self.fps)
241
+ else:
242
+ self.renderer = None
243
+
244
+ def step(self):
245
+ with wp.ScopedTimer("step"):
246
+ # Sample new points on the mesh using the CDF and the current frame
247
+ # number as seed to ensure different samples each frame.
248
+ wp.launch(
249
+ sample_mesh,
250
+ dim=self.points.shape,
251
+ inputs=(
252
+ self.mesh.id,
253
+ self.cdf,
254
+ self.frame,
255
+ ),
256
+ outputs=(self.points,),
257
+ )
258
+
259
+ self.frame += 1
260
+
261
+ def render(self):
262
+ if self.renderer is None:
263
+ return
264
+
265
+ with wp.ScopedTimer("render"):
266
+ self.renderer.begin_frame(self.frame / self.fps)
267
+ self.renderer.render_mesh(
268
+ name="mesh",
269
+ points=self.mesh.points.numpy(),
270
+ indices=self.mesh.indices.numpy(),
271
+ colors=(0.35, 0.55, 0.9),
272
+ )
273
+ self.renderer.render_points(name="points", points=self.points.numpy(), radius=0.05, colors=(0.8, 0.3, 0.2))
274
+ self.renderer.end_frame()
275
+
276
+
277
+ if __name__ == "__main__":
278
+ import argparse
279
+
280
+ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
281
+ parser.add_argument("--device", type=str, default=None, help="Override the default Warp device.")
282
+ parser.add_argument(
283
+ "--stage_path",
284
+ type=lambda x: None if x == "None" else str(x),
285
+ default="example_sample_mesh.usd",
286
+ help="Path to the output USD file.",
287
+ )
288
+ parser.add_argument("--num_frames", type=int, default=16, help="Total number of frames.")
289
+
290
+ args = parser.parse_known_args()[0]
291
+
292
+ with wp.ScopedDevice(args.device):
293
+ example = Example(stage_path=args.stage_path)
294
+
295
+ for _ in range(args.num_frames):
296
+ example.step()
297
+ example.render()
298
+
299
+ if example.renderer:
300
+ example.renderer.save()