warp-lang 1.6.2__py3-none-macosx_10_13_universal2.whl → 1.7.1__py3-none-macosx_10_13_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +7 -1
- warp/autograd.py +12 -2
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +410 -0
- warp/build_dll.py +6 -14
- warp/builtins.py +463 -372
- warp/codegen.py +196 -124
- warp/config.py +42 -6
- warp/context.py +496 -271
- warp/dlpack.py +8 -6
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/benchmarks/benchmark_cloth.py +1 -1
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/distributed/example_jacobi_mpi.py +507 -0
- warp/examples/fem/example_apic_fluid.py +1 -1
- warp/examples/fem/example_burgers.py +2 -2
- warp/examples/fem/example_deformed_geometry.py +1 -1
- warp/examples/fem/example_distortion_energy.py +1 -1
- warp/examples/fem/example_magnetostatics.py +6 -6
- warp/examples/fem/utils.py +9 -3
- warp/examples/interop/example_jax_callable.py +116 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +205 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/tile/example_tile_matmul.py +2 -4
- warp/fem/__init__.py +11 -1
- warp/fem/adaptivity.py +4 -4
- warp/fem/field/field.py +11 -1
- warp/fem/field/nodal_field.py +56 -88
- warp/fem/field/virtual.py +62 -23
- warp/fem/geometry/adaptive_nanogrid.py +16 -13
- warp/fem/geometry/closest_point.py +1 -1
- warp/fem/geometry/deformed_geometry.py +5 -2
- warp/fem/geometry/geometry.py +5 -0
- warp/fem/geometry/grid_2d.py +12 -12
- warp/fem/geometry/grid_3d.py +12 -15
- warp/fem/geometry/hexmesh.py +5 -7
- warp/fem/geometry/nanogrid.py +9 -11
- warp/fem/geometry/quadmesh.py +13 -13
- warp/fem/geometry/tetmesh.py +3 -4
- warp/fem/geometry/trimesh.py +7 -20
- warp/fem/integrate.py +262 -93
- warp/fem/linalg.py +5 -5
- warp/fem/quadrature/pic_quadrature.py +37 -22
- warp/fem/quadrature/quadrature.py +194 -25
- warp/fem/space/__init__.py +1 -1
- warp/fem/space/basis_function_space.py +4 -2
- warp/fem/space/basis_space.py +25 -18
- warp/fem/space/hexmesh_function_space.py +2 -2
- warp/fem/space/partition.py +6 -2
- warp/fem/space/quadmesh_function_space.py +8 -8
- warp/fem/space/shape/cube_shape_function.py +23 -23
- warp/fem/space/shape/square_shape_function.py +12 -12
- warp/fem/space/shape/triangle_shape_function.py +1 -1
- warp/fem/space/tetmesh_function_space.py +3 -3
- warp/fem/space/trimesh_function_space.py +2 -2
- warp/fem/utils.py +12 -6
- warp/jax.py +14 -1
- warp/jax_experimental/__init__.py +16 -0
- warp/{jax_experimental.py → jax_experimental/custom_call.py} +28 -29
- warp/jax_experimental/ffi.py +702 -0
- warp/jax_experimental/xla_ffi.py +602 -0
- warp/math.py +89 -0
- warp/native/array.h +13 -0
- warp/native/builtin.h +29 -3
- warp/native/bvh.cpp +3 -1
- warp/native/bvh.cu +42 -14
- warp/native/bvh.h +2 -1
- warp/native/clang/clang.cpp +30 -3
- warp/native/cuda_util.cpp +14 -0
- warp/native/cuda_util.h +2 -0
- warp/native/exports.h +68 -63
- warp/native/intersect.h +26 -26
- warp/native/intersect_adj.h +33 -33
- warp/native/marching.cu +1 -1
- warp/native/mat.h +513 -9
- warp/native/mesh.h +10 -10
- warp/native/quat.h +99 -11
- warp/native/rand.h +6 -0
- warp/native/sort.cpp +122 -59
- warp/native/sort.cu +152 -15
- warp/native/sort.h +8 -1
- warp/native/sparse.cpp +43 -22
- warp/native/sparse.cu +52 -17
- warp/native/svd.h +116 -0
- warp/native/tile.h +312 -116
- warp/native/tile_reduce.h +46 -3
- warp/native/vec.h +68 -7
- warp/native/volume.cpp +85 -113
- warp/native/volume_builder.cu +25 -10
- warp/native/volume_builder.h +6 -0
- warp/native/warp.cpp +5 -6
- warp/native/warp.cu +100 -11
- warp/native/warp.h +19 -10
- warp/optim/linear.py +10 -10
- warp/render/render_opengl.py +19 -17
- warp/render/render_usd.py +93 -3
- warp/sim/articulation.py +4 -4
- warp/sim/collide.py +32 -19
- warp/sim/import_mjcf.py +449 -155
- warp/sim/import_urdf.py +32 -12
- warp/sim/inertia.py +189 -156
- warp/sim/integrator_euler.py +8 -5
- warp/sim/integrator_featherstone.py +3 -10
- warp/sim/integrator_vbd.py +207 -2
- warp/sim/integrator_xpbd.py +8 -5
- warp/sim/model.py +71 -25
- warp/sim/render.py +4 -0
- warp/sim/utils.py +2 -2
- warp/sparse.py +642 -555
- warp/stubs.py +217 -20
- warp/tests/__main__.py +0 -15
- warp/tests/assets/torus.usda +1 -1
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/{test_mempool.py → cuda/test_mempool.py} +39 -0
- warp/tests/{test_streams.py → cuda/test_streams.py} +71 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/{test_mesh_query_point.py → geometry/test_mesh_query_point.py} +66 -63
- warp/tests/{test_mesh_query_ray.py → geometry/test_mesh_query_ray.py} +1 -1
- warp/tests/{test_volume.py → geometry/test_volume.py} +41 -6
- warp/tests/interop/__init__.py +0 -0
- warp/tests/{test_dlpack.py → interop/test_dlpack.py} +28 -5
- warp/tests/sim/__init__.py +0 -0
- warp/tests/{disabled_kinematics.py → sim/disabled_kinematics.py} +9 -10
- warp/tests/{test_collision.py → sim/test_collision.py} +236 -205
- warp/tests/sim/test_inertia.py +161 -0
- warp/tests/{test_model.py → sim/test_model.py} +40 -0
- warp/tests/{flaky_test_sim_grad.py → sim/test_sim_grad.py} +4 -0
- warp/tests/{test_sim_kinematics.py → sim/test_sim_kinematics.py} +2 -1
- warp/tests/sim/test_vbd.py +597 -0
- warp/tests/sim/test_xpbd.py +399 -0
- warp/tests/test_bool.py +1 -1
- warp/tests/test_codegen.py +24 -3
- warp/tests/test_examples.py +40 -38
- warp/tests/test_fem.py +98 -14
- warp/tests/test_linear_solvers.py +0 -11
- warp/tests/test_mat.py +577 -156
- warp/tests/test_mat_scalar_ops.py +4 -4
- warp/tests/test_overwrite.py +0 -60
- warp/tests/test_quat.py +356 -151
- warp/tests/test_rand.py +44 -37
- warp/tests/test_sparse.py +47 -6
- warp/tests/test_spatial.py +75 -0
- warp/tests/test_static.py +1 -1
- warp/tests/test_utils.py +84 -4
- warp/tests/test_vec.py +336 -178
- warp/tests/tile/__init__.py +0 -0
- warp/tests/{test_tile.py → tile/test_tile.py} +136 -51
- warp/tests/{test_tile_load.py → tile/test_tile_load.py} +98 -1
- warp/tests/{test_tile_mathdx.py → tile/test_tile_mathdx.py} +9 -6
- warp/tests/{test_tile_mlp.py → tile/test_tile_mlp.py} +25 -14
- warp/tests/{test_tile_reduce.py → tile/test_tile_reduce.py} +60 -1
- warp/tests/{test_tile_view.py → tile/test_tile_view.py} +1 -1
- warp/tests/unittest_serial.py +1 -0
- warp/tests/unittest_suites.py +45 -62
- warp/tests/unittest_utils.py +2 -1
- warp/thirdparty/unittest_parallel.py +3 -1
- warp/types.py +175 -666
- warp/utils.py +137 -72
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/METADATA +46 -12
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/RECORD +184 -171
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/WHEEL +1 -1
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info/licenses}/LICENSE.md +0 -26
- warp/examples/optim/example_walker.py +0 -317
- warp/native/cutlass_gemm.cpp +0 -43
- warp/native/cutlass_gemm.cu +0 -382
- warp/tests/test_matmul.py +0 -511
- warp/tests/test_matmul_lite.py +0 -411
- warp/tests/test_vbd.py +0 -386
- warp/tests/unused_test_misc.py +0 -77
- /warp/tests/{test_async.py → cuda/test_async.py} +0 -0
- /warp/tests/{test_ipc.py → cuda/test_ipc.py} +0 -0
- /warp/tests/{test_multigpu.py → cuda/test_multigpu.py} +0 -0
- /warp/tests/{test_peer.py → cuda/test_peer.py} +0 -0
- /warp/tests/{test_pinned.py → cuda/test_pinned.py} +0 -0
- /warp/tests/{test_bvh.py → geometry/test_bvh.py} +0 -0
- /warp/tests/{test_hash_grid.py → geometry/test_hash_grid.py} +0 -0
- /warp/tests/{test_marching_cubes.py → geometry/test_marching_cubes.py} +0 -0
- /warp/tests/{test_mesh.py → geometry/test_mesh.py} +0 -0
- /warp/tests/{test_mesh_query_aabb.py → geometry/test_mesh_query_aabb.py} +0 -0
- /warp/tests/{test_volume_write.py → geometry/test_volume_write.py} +0 -0
- /warp/tests/{test_jax.py → interop/test_jax.py} +0 -0
- /warp/tests/{test_paddle.py → interop/test_paddle.py} +0 -0
- /warp/tests/{test_torch.py → interop/test_torch.py} +0 -0
- /warp/tests/{test_coloring.py → sim/test_coloring.py} +0 -0
- /warp/tests/{test_sim_grad_bounce_linear.py → sim/test_sim_grad_bounce_linear.py} +0 -0
- /warp/tests/{test_tile_shared_memory.py → tile/test_tile_shared_memory.py} +0 -0
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,507 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
"""An example implementation of a distributed Jacobi solver using MPI.
|
|
16
|
+
|
|
17
|
+
This example shows how to solve the Laplace equation using Jacobi iteration on
|
|
18
|
+
multiple GPUs using Warp and mpi4py. This example is based on the basic "mpi"
|
|
19
|
+
example from the Multi GPU Programming Models repository.
|
|
20
|
+
|
|
21
|
+
This example requires mpi4py and a CUDA-aware MPI implementation. We suggest
|
|
22
|
+
downloading and installing NVIDIA HPC-X, followed by installing mpi4py from its
|
|
23
|
+
source distribution: python -m pip install mpi4py
|
|
24
|
+
|
|
25
|
+
Usage:
|
|
26
|
+
mpirun -n 2 python example_jacobi_mpi.py
|
|
27
|
+
|
|
28
|
+
References:
|
|
29
|
+
https://github.com/NVIDIA/multi-gpu-programming-models
|
|
30
|
+
https://developer.nvidia.com/networking/hpc-x
|
|
31
|
+
https://github.com/mpi4py/mpi4py
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
import math
|
|
35
|
+
import sys
|
|
36
|
+
from typing import Tuple
|
|
37
|
+
|
|
38
|
+
import numpy as np
|
|
39
|
+
from mpi4py import MPI
|
|
40
|
+
|
|
41
|
+
import warp as wp
|
|
42
|
+
import warp.context
|
|
43
|
+
from warp.types import warp_type_to_np_dtype
|
|
44
|
+
|
|
45
|
+
wp.config.quiet = True # Suppress wp.init() output
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
tol = 1e-8
|
|
49
|
+
wptype = wp.float32 # Global precision setting, can set wp.float64 here for double precision
|
|
50
|
+
pi = wptype(math.pi) # GitHub #485
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def calc_default_device(mpi_comm: "MPI.Comm") -> warp.context.Device:
|
|
54
|
+
"""Return the device that should be used for the current rank.
|
|
55
|
+
|
|
56
|
+
This function is used to ensure that multiple MPI ranks running on the same
|
|
57
|
+
node are assigned to different GPUs.
|
|
58
|
+
|
|
59
|
+
Args:
|
|
60
|
+
mpi_comm: The MPI communicator.
|
|
61
|
+
|
|
62
|
+
Returns:
|
|
63
|
+
The Warp device that should be used for the current rank.
|
|
64
|
+
|
|
65
|
+
Raises:
|
|
66
|
+
RuntimeError: If the number of visible devices is less than the number of ranks on the node.
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
# Find the local rank and size
|
|
70
|
+
local_mpi_comm = mpi_comm.Split_type(MPI.COMM_TYPE_SHARED)
|
|
71
|
+
|
|
72
|
+
local_size = local_mpi_comm.Get_size()
|
|
73
|
+
local_rank = local_mpi_comm.Get_rank()
|
|
74
|
+
|
|
75
|
+
num_cuda_devices = warp.get_cuda_device_count()
|
|
76
|
+
|
|
77
|
+
if 1 < num_cuda_devices < local_size:
|
|
78
|
+
raise RuntimeError(
|
|
79
|
+
f"Number of visible devices ({num_cuda_devices}) is less than number of ranks on the node ({local_size})"
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
if 1 < num_cuda_devices:
|
|
83
|
+
# Get the device based on local_rank
|
|
84
|
+
return warp.get_cuda_device(local_rank)
|
|
85
|
+
else:
|
|
86
|
+
return warp.get_device()
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def calc_decomp_1d(total_points: int, rank: int, total_ranks: int) -> Tuple[int, int]:
|
|
90
|
+
"""Calculate a 1-D decomposition to divide ``total_points`` among ``total_ranks`` domains.
|
|
91
|
+
|
|
92
|
+
Returns a tuple containing the starting index of the decomposition followed
|
|
93
|
+
by number of points in the domain.
|
|
94
|
+
|
|
95
|
+
If ``total_points`` can not be evenly divided among ``total_ranks``,
|
|
96
|
+
the first ``total_points % total_ranks`` domains will contain one additional
|
|
97
|
+
point.
|
|
98
|
+
"""
|
|
99
|
+
|
|
100
|
+
if rank < total_points % total_ranks:
|
|
101
|
+
num_domain_points = total_points // total_ranks + 1
|
|
102
|
+
start_index = rank * num_domain_points
|
|
103
|
+
else:
|
|
104
|
+
num_domain_points = total_points // total_ranks
|
|
105
|
+
start_index = total_points - (total_ranks - rank) * num_domain_points
|
|
106
|
+
|
|
107
|
+
return (start_index, num_domain_points)
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
@wp.kernel
|
|
111
|
+
def jacobi_update(
|
|
112
|
+
a: wp.array2d(dtype=wptype),
|
|
113
|
+
iy_start: int,
|
|
114
|
+
iy_end: int,
|
|
115
|
+
nx: int,
|
|
116
|
+
calculate_norm: bool,
|
|
117
|
+
a_new: wp.array2d(dtype=wptype),
|
|
118
|
+
l2_norm: wp.array(dtype=wptype),
|
|
119
|
+
):
|
|
120
|
+
i, j = wp.tid()
|
|
121
|
+
|
|
122
|
+
# Convert from local thread indices to the indices used to access the arrays
|
|
123
|
+
|
|
124
|
+
iy = i + iy_start
|
|
125
|
+
ix = j + 1
|
|
126
|
+
|
|
127
|
+
local_l2_norm = wptype(0.0)
|
|
128
|
+
|
|
129
|
+
if iy < iy_end and ix < nx - 1:
|
|
130
|
+
new_val = wptype(0.25) * (a[iy - 1, ix] + a[iy + 1, ix] + a[iy, ix - 1] + a[iy, ix + 1])
|
|
131
|
+
a_new[iy, ix] = new_val
|
|
132
|
+
|
|
133
|
+
if calculate_norm:
|
|
134
|
+
residue = new_val - a[iy, ix]
|
|
135
|
+
local_l2_norm = residue * residue
|
|
136
|
+
|
|
137
|
+
if calculate_norm:
|
|
138
|
+
t = wp.tile(local_l2_norm)
|
|
139
|
+
s = wp.tile_sum(t)
|
|
140
|
+
wp.tile_atomic_add(l2_norm, s)
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
@wp.kernel
|
|
144
|
+
def initialize_boundaries(
|
|
145
|
+
nx: int,
|
|
146
|
+
ny: int,
|
|
147
|
+
offset: int,
|
|
148
|
+
a: wp.array2d(dtype=wptype),
|
|
149
|
+
a_new: wp.array2d(dtype=wptype),
|
|
150
|
+
):
|
|
151
|
+
i = wp.tid()
|
|
152
|
+
|
|
153
|
+
boundary_val = wp.sin(wptype(2.0) * pi * wptype(i + offset) / wptype(ny - 1))
|
|
154
|
+
|
|
155
|
+
a[i, 0] = boundary_val
|
|
156
|
+
a[i, nx - 1] = boundary_val
|
|
157
|
+
a_new[i, 0] = boundary_val
|
|
158
|
+
a_new[i, nx - 1] = boundary_val
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
def benchmark_single_gpu(nx: int, ny: int, iter_max: int, nccheck: int = 1, verbose: bool = False):
|
|
162
|
+
"""Compute the solution on a single GPU for performance and correctness comparisons.
|
|
163
|
+
|
|
164
|
+
Args:
|
|
165
|
+
nx: The number of points in the x-direction.
|
|
166
|
+
ny: The number of points in the y-direction.
|
|
167
|
+
iter_max: The maximum number of Jacobi iterations.
|
|
168
|
+
nccheck: The number of iterations between norm checks. Defaults to 1.
|
|
169
|
+
verbose: Whether to print verbose output. Defaults to False.
|
|
170
|
+
|
|
171
|
+
Returns:
|
|
172
|
+
tuple: A tuple containing:
|
|
173
|
+
- runtime (float): The execution time of the solution in seconds.
|
|
174
|
+
- solution (warp.array2d): The solution as a Warp array on the host
|
|
175
|
+
with dimensions ``(ny, nx)``.
|
|
176
|
+
"""
|
|
177
|
+
|
|
178
|
+
a = wp.zeros((ny, nx), dtype=wptype)
|
|
179
|
+
a_new = wp.zeros_like(a)
|
|
180
|
+
|
|
181
|
+
l2_norm_d = wp.zeros((1,), dtype=wptype)
|
|
182
|
+
l2_norm_h = wp.ones_like(l2_norm_d, device="cpu", pinned=True)
|
|
183
|
+
|
|
184
|
+
compute_stream = wp.Stream()
|
|
185
|
+
push_top_stream = wp.Stream()
|
|
186
|
+
push_bottom_stream = wp.Stream()
|
|
187
|
+
|
|
188
|
+
compute_done = wp.Event()
|
|
189
|
+
push_top_done = wp.Event()
|
|
190
|
+
push_bottom_done = wp.Event()
|
|
191
|
+
|
|
192
|
+
iy_start = 1
|
|
193
|
+
iy_end = ny - 1
|
|
194
|
+
update_shape = (iy_end - iy_start, nx - 2)
|
|
195
|
+
|
|
196
|
+
wp.launch(initialize_boundaries, dim=(ny,), inputs=[nx, ny, 0], outputs=[a, a_new])
|
|
197
|
+
|
|
198
|
+
if verbose:
|
|
199
|
+
print(
|
|
200
|
+
f"Single GPU jacobi relaxation: {iter_max} iterations on {ny} x {nx} mesh with norm check every {nccheck}"
|
|
201
|
+
" iterations"
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
iter = 0
|
|
205
|
+
l2_norm = 1.0
|
|
206
|
+
|
|
207
|
+
start_time = MPI.Wtime()
|
|
208
|
+
|
|
209
|
+
while l2_norm > tol and iter < iter_max:
|
|
210
|
+
calculate_norm = (iter % nccheck == 0) or (iter % 100 == 0)
|
|
211
|
+
|
|
212
|
+
with wp.ScopedStream(compute_stream):
|
|
213
|
+
l2_norm_d.zero_()
|
|
214
|
+
|
|
215
|
+
compute_stream.wait_event(push_top_done)
|
|
216
|
+
compute_stream.wait_event(push_bottom_done)
|
|
217
|
+
|
|
218
|
+
wp.launch(
|
|
219
|
+
jacobi_update,
|
|
220
|
+
update_shape,
|
|
221
|
+
inputs=[a, iy_start, iy_end, nx, calculate_norm],
|
|
222
|
+
outputs=[a_new, l2_norm_d],
|
|
223
|
+
)
|
|
224
|
+
wp.record_event(compute_done)
|
|
225
|
+
|
|
226
|
+
if calculate_norm:
|
|
227
|
+
wp.copy(l2_norm_h, l2_norm_d, stream=compute_stream)
|
|
228
|
+
|
|
229
|
+
# Apply periodic boundary conditions
|
|
230
|
+
push_top_stream.wait_event(compute_done)
|
|
231
|
+
wp.copy(a_new[0], a_new[iy_end - 1], stream=push_top_stream)
|
|
232
|
+
push_top_stream.record_event(push_top_done)
|
|
233
|
+
|
|
234
|
+
push_bottom_stream.wait_event(compute_done)
|
|
235
|
+
wp.copy(a_new[iy_end], a_new[iy_start], stream=push_bottom_stream)
|
|
236
|
+
push_bottom_stream.record_event(push_bottom_done)
|
|
237
|
+
|
|
238
|
+
if calculate_norm:
|
|
239
|
+
wp.synchronize_stream(compute_stream)
|
|
240
|
+
|
|
241
|
+
l2_norm = math.sqrt(l2_norm_h.numpy()[0])
|
|
242
|
+
|
|
243
|
+
if verbose and iter % 100 == 0:
|
|
244
|
+
print(f"{iter:5d}, {l2_norm:.6f}")
|
|
245
|
+
|
|
246
|
+
# Swap arrays
|
|
247
|
+
a, a_new = a_new, a
|
|
248
|
+
|
|
249
|
+
iter += 1
|
|
250
|
+
|
|
251
|
+
wp.synchronize_device()
|
|
252
|
+
stop_time = MPI.Wtime()
|
|
253
|
+
|
|
254
|
+
a_ref_h = wp.empty((ny, nx), dtype=wptype, device="cpu")
|
|
255
|
+
wp.copy(a_ref_h, a)
|
|
256
|
+
|
|
257
|
+
return stop_time - start_time, a_ref_h
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
class Example:
|
|
261
|
+
def __init__(
|
|
262
|
+
self,
|
|
263
|
+
nx: int = 16384,
|
|
264
|
+
ny: int = 16384,
|
|
265
|
+
iter_max: int = 1000,
|
|
266
|
+
nccheck: int = 1,
|
|
267
|
+
csv: bool = False,
|
|
268
|
+
):
|
|
269
|
+
self.iter_max = iter_max
|
|
270
|
+
self.nx = nx # Global resolution
|
|
271
|
+
self.ny = ny # Global resolution
|
|
272
|
+
self.nccheck = nccheck
|
|
273
|
+
self.csv = csv
|
|
274
|
+
|
|
275
|
+
self.mpi_comm = MPI.COMM_WORLD
|
|
276
|
+
self.mpi_rank = self.mpi_comm.Get_rank()
|
|
277
|
+
self.mpi_size = self.mpi_comm.Get_size()
|
|
278
|
+
|
|
279
|
+
# Set the default device on the current rank
|
|
280
|
+
self.device = calc_default_device(self.mpi_comm)
|
|
281
|
+
wp.set_device(self.device)
|
|
282
|
+
|
|
283
|
+
# We need to disable memory pools for peer-to-peer transfers using MPI
|
|
284
|
+
# wp.set_mempool_enabled(wp.get_cuda_device(), False)
|
|
285
|
+
self.compute_stream = wp.Stream()
|
|
286
|
+
self.compute_done = wp.Event()
|
|
287
|
+
|
|
288
|
+
# Compute the solution on a single GPU for comparisons
|
|
289
|
+
self.runtime_serial, self.a_ref_h = benchmark_single_gpu(
|
|
290
|
+
self.nx, self.ny, self.iter_max, self.nccheck, not self.csv and self.mpi_rank == 0
|
|
291
|
+
)
|
|
292
|
+
|
|
293
|
+
# num_local_rows: Number of rows from the full (self.ny, self.nx) solution that
|
|
294
|
+
# this rank will calculate (excludes halo regions)
|
|
295
|
+
# iy_start_global: Allows us to go from a local index to a global index.
|
|
296
|
+
|
|
297
|
+
# self.ny-2 rows are distributed among the ranks for comparison with single-GPU case,
|
|
298
|
+
# which reserves the first and last rows for the boundary conditions
|
|
299
|
+
iy_decomp_start, self.num_local_rows = calc_decomp_1d(self.ny - 2, self.mpi_rank, self.mpi_size)
|
|
300
|
+
|
|
301
|
+
# Add 1 to get the global start index since the 1-D decomposition excludes the boundaries
|
|
302
|
+
self.iy_start_global = iy_decomp_start + 1
|
|
303
|
+
|
|
304
|
+
self.mpi_comm.Barrier()
|
|
305
|
+
if not self.csv:
|
|
306
|
+
print(
|
|
307
|
+
f"Rank {self.mpi_rank} on device {wp.get_cuda_device().pci_bus_id}: "
|
|
308
|
+
f"{self.num_local_rows} rows from y = {self.iy_start_global} to y = {self.iy_start_global + self.num_local_rows - 1}"
|
|
309
|
+
)
|
|
310
|
+
self.mpi_comm.Barrier()
|
|
311
|
+
|
|
312
|
+
# Allocate local array (the +2 is for the halo layer on each side)
|
|
313
|
+
self.a = wp.zeros((self.num_local_rows + 2, self.nx), dtype=wptype)
|
|
314
|
+
self.a_new = wp.zeros_like(self.a)
|
|
315
|
+
|
|
316
|
+
# Allocate host array for the final result
|
|
317
|
+
self.a_h = wp.empty((self.ny, self.nx), dtype=wptype, device="cpu")
|
|
318
|
+
|
|
319
|
+
self.l2_norm_d = wp.zeros((1,), dtype=wptype)
|
|
320
|
+
self.l2_norm_h = wp.ones_like(self.l2_norm_d, device="cpu", pinned=True)
|
|
321
|
+
|
|
322
|
+
# Boundary Conditions
|
|
323
|
+
# - y-boundaries (iy=0 and iy=self.ny-1): Periodic
|
|
324
|
+
# - x-boundaries (ix=0 and ix=self.nx-1): Dirichlet
|
|
325
|
+
|
|
326
|
+
# Local Indices
|
|
327
|
+
self.iy_start = 1
|
|
328
|
+
self.iy_end = self.iy_start + self.num_local_rows # Last owned row begins at [iy_end-1, 0]
|
|
329
|
+
|
|
330
|
+
# Don't need to loop over the Dirichlet boundaries in the Jacobi iteration
|
|
331
|
+
self.update_shape = (self.num_local_rows, self.nx - 2)
|
|
332
|
+
|
|
333
|
+
# Used for inter-rank communication
|
|
334
|
+
self.lower_neighbor = (self.mpi_rank + 1) % self.mpi_size
|
|
335
|
+
self.upper_neighbor = self.mpi_rank - 1 if self.mpi_rank > 0 else self.mpi_size - 1
|
|
336
|
+
|
|
337
|
+
# Apply Dirichlet boundary conditions to both a and a_new
|
|
338
|
+
wp.launch(
|
|
339
|
+
initialize_boundaries,
|
|
340
|
+
dim=(self.num_local_rows + 2,),
|
|
341
|
+
inputs=[self.nx, self.ny, self.iy_start_global - 1],
|
|
342
|
+
outputs=[self.a, self.a_new],
|
|
343
|
+
)
|
|
344
|
+
|
|
345
|
+
# MPI Warmup
|
|
346
|
+
wp.synchronize_device()
|
|
347
|
+
|
|
348
|
+
for _mpi_warmup in range(10):
|
|
349
|
+
self.apply_periodic_bc()
|
|
350
|
+
self.a, self.a_new = self.a_new, self.a
|
|
351
|
+
|
|
352
|
+
wp.synchronize_device()
|
|
353
|
+
|
|
354
|
+
if not self.csv and self.mpi_rank == 0:
|
|
355
|
+
print(
|
|
356
|
+
f"Jacobi relaxation: {self.iter_max} iterations on {self.ny} x {self.nx} mesh with norm check "
|
|
357
|
+
f"every {self.nccheck} iterations"
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
def apply_periodic_bc(self) -> None:
|
|
361
|
+
"""Apply periodic boundary conditions to the array.
|
|
362
|
+
|
|
363
|
+
This function sends the first row of owned data to the lower neighbor
|
|
364
|
+
and the last row of owned data to the upper neighbor.
|
|
365
|
+
"""
|
|
366
|
+
# Send the first row of owned data to the lower neighbor
|
|
367
|
+
self.mpi_comm.Sendrecv(
|
|
368
|
+
self.a_new[self.iy_start], self.lower_neighbor, 0, self.a_new[self.iy_end], self.upper_neighbor, 0
|
|
369
|
+
)
|
|
370
|
+
# Send the last row of owned data to the upper neighbor
|
|
371
|
+
self.mpi_comm.Sendrecv(
|
|
372
|
+
self.a_new[self.iy_end - 1], self.upper_neighbor, 0, self.a_new[0], self.lower_neighbor, 0
|
|
373
|
+
)
|
|
374
|
+
|
|
375
|
+
def step(self, calculate_norm: bool) -> None:
|
|
376
|
+
"""Perform a single Jacobi iteration step."""
|
|
377
|
+
with wp.ScopedStream(self.compute_stream):
|
|
378
|
+
self.l2_norm_d.zero_()
|
|
379
|
+
wp.launch(
|
|
380
|
+
jacobi_update,
|
|
381
|
+
self.update_shape,
|
|
382
|
+
inputs=[self.a, self.iy_start, self.iy_end, self.nx, calculate_norm],
|
|
383
|
+
outputs=[self.a_new, self.l2_norm_d],
|
|
384
|
+
)
|
|
385
|
+
wp.record_event(self.compute_done)
|
|
386
|
+
|
|
387
|
+
def run(self) -> None:
|
|
388
|
+
"""Run the Jacobi relaxation on multiple GPUs using MPI and compare with single-GPU results."""
|
|
389
|
+
iter = 0
|
|
390
|
+
l2_norm = np.array([1.0], dtype=warp_type_to_np_dtype[wptype])
|
|
391
|
+
|
|
392
|
+
start_time = MPI.Wtime()
|
|
393
|
+
|
|
394
|
+
while l2_norm > tol and iter < self.iter_max:
|
|
395
|
+
calculate_norm = (iter % self.nccheck == 0) or (not self.csv and iter % 100 == 0)
|
|
396
|
+
|
|
397
|
+
self.step(calculate_norm)
|
|
398
|
+
|
|
399
|
+
if calculate_norm:
|
|
400
|
+
wp.copy(self.l2_norm_h, self.l2_norm_d, stream=self.compute_stream)
|
|
401
|
+
|
|
402
|
+
wp.synchronize_event(self.compute_done)
|
|
403
|
+
|
|
404
|
+
self.apply_periodic_bc()
|
|
405
|
+
|
|
406
|
+
if calculate_norm:
|
|
407
|
+
wp.synchronize_stream(self.compute_stream)
|
|
408
|
+
|
|
409
|
+
self.mpi_comm.Allreduce(self.l2_norm_h.numpy(), l2_norm)
|
|
410
|
+
l2_norm = np.sqrt(l2_norm)
|
|
411
|
+
|
|
412
|
+
if not self.csv and self.mpi_rank == 0 and iter % 100 == 0:
|
|
413
|
+
print(f"{iter:5d}, {l2_norm[0]:.6f}")
|
|
414
|
+
|
|
415
|
+
# Swap arrays
|
|
416
|
+
self.a, self.a_new = self.a_new, self.a
|
|
417
|
+
|
|
418
|
+
iter += 1
|
|
419
|
+
|
|
420
|
+
wp.synchronize_device()
|
|
421
|
+
stop_time = MPI.Wtime()
|
|
422
|
+
|
|
423
|
+
result_correct = self.check_results(tol)
|
|
424
|
+
global_result_correct = self.mpi_comm.allreduce(result_correct, op=MPI.MIN)
|
|
425
|
+
|
|
426
|
+
if not global_result_correct:
|
|
427
|
+
sys.exit(1)
|
|
428
|
+
elif global_result_correct and self.mpi_rank == 0:
|
|
429
|
+
if self.csv:
|
|
430
|
+
print(
|
|
431
|
+
f"mpi, {self.nx}, {self.ny}, {self.iter_max}, {self.nccheck}, {self.mpi_size}, 1, "
|
|
432
|
+
f"{stop_time - start_time}, {self.runtime_serial}"
|
|
433
|
+
)
|
|
434
|
+
else:
|
|
435
|
+
print(f"Num GPUs: {self.mpi_size}")
|
|
436
|
+
print(
|
|
437
|
+
f"{self.ny}x{self.nx}: 1 GPU: {self.runtime_serial:8.4f} s, "
|
|
438
|
+
f"{self.mpi_size} GPUs {stop_time - start_time:8.4f} s, "
|
|
439
|
+
f"speedup: {self.runtime_serial / (stop_time - start_time):8.2f}, "
|
|
440
|
+
f"efficiency: {self.runtime_serial / (stop_time - start_time) / self.mpi_size * 100:8.2f}"
|
|
441
|
+
)
|
|
442
|
+
|
|
443
|
+
def check_results(self, tol: float = 1e-8) -> bool:
|
|
444
|
+
"""Returns ``True`` if multi-GPU result is within ``tol`` of the single-GPU result.
|
|
445
|
+
|
|
446
|
+
Comparison is performed on the host in a serial manner.
|
|
447
|
+
"""
|
|
448
|
+
result_correct = True
|
|
449
|
+
|
|
450
|
+
wp.copy(
|
|
451
|
+
self.a_h,
|
|
452
|
+
self.a,
|
|
453
|
+
dest_offset=self.iy_start_global * self.nx,
|
|
454
|
+
src_offset=self.nx,
|
|
455
|
+
count=self.num_local_rows * self.nx,
|
|
456
|
+
)
|
|
457
|
+
|
|
458
|
+
a_ref_np = self.a_ref_h.numpy()
|
|
459
|
+
a_np = self.a_h.numpy()
|
|
460
|
+
|
|
461
|
+
for iy in range(self.iy_start_global, self.iy_start_global + self.num_local_rows):
|
|
462
|
+
if not result_correct:
|
|
463
|
+
break
|
|
464
|
+
for ix in range(1, self.nx - 1):
|
|
465
|
+
if math.fabs(a_ref_np[iy, ix] - a_np[iy, ix]) > tol:
|
|
466
|
+
result_correct = False
|
|
467
|
+
print(
|
|
468
|
+
f"ERROR on rank {self.mpi_rank}: a[{iy},{ix}] = {a_np[iy, ix]} does not match "
|
|
469
|
+
f"{a_ref_np[iy, ix]} (reference)"
|
|
470
|
+
)
|
|
471
|
+
break
|
|
472
|
+
|
|
473
|
+
return result_correct
|
|
474
|
+
|
|
475
|
+
|
|
476
|
+
if __name__ == "__main__":
|
|
477
|
+
import argparse
|
|
478
|
+
|
|
479
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
480
|
+
|
|
481
|
+
parser.add_argument("--itermax", type=int, default=1000, help="Maximum number of Jacobi iterations.")
|
|
482
|
+
parser.add_argument("--nccheck", type=int, default=1, help="Check convergence every nccheck iterations.")
|
|
483
|
+
parser.add_argument("--nx", type=int, default=16384, help="Total resolution in x.")
|
|
484
|
+
parser.add_argument("--ny", type=int, default=16384, help="Total resolution in y.")
|
|
485
|
+
parser.add_argument("-csv", action="store_true", help="Print results as CSV values.")
|
|
486
|
+
parser.add_argument(
|
|
487
|
+
"--visualize",
|
|
488
|
+
action="store_true",
|
|
489
|
+
help="Display the final solution in a graphical window using matplotlib.",
|
|
490
|
+
)
|
|
491
|
+
|
|
492
|
+
args = parser.parse_known_args()[0]
|
|
493
|
+
|
|
494
|
+
example = Example(args.nx, args.ny, args.itermax, args.nccheck, args.csv)
|
|
495
|
+
|
|
496
|
+
example.run()
|
|
497
|
+
|
|
498
|
+
if args.visualize:
|
|
499
|
+
import matplotlib.pyplot as plt
|
|
500
|
+
|
|
501
|
+
# Plot the final result
|
|
502
|
+
plt.imshow(example.a.numpy(), cmap="viridis", origin="lower", vmin=-1, vmax=1)
|
|
503
|
+
plt.colorbar(label="Value")
|
|
504
|
+
plt.title(f"Rank {example.mpi_rank} Jacobi Iteration Result")
|
|
505
|
+
plt.xlabel("X-axis")
|
|
506
|
+
plt.ylabel("Y-axis")
|
|
507
|
+
plt.show()
|
|
@@ -117,7 +117,7 @@ def divergence_form(s: Sample, domain: Domain, u: Field, psi: Field):
|
|
|
117
117
|
def invert_volume_kernel(values: wp.array(dtype=float)):
|
|
118
118
|
i = wp.tid()
|
|
119
119
|
m = values[i]
|
|
120
|
-
values[i] = wp.
|
|
120
|
+
values[i] = wp.where(m == 0.0, 0.0, 1.0 / m)
|
|
121
121
|
|
|
122
122
|
|
|
123
123
|
@wp.kernel
|
|
@@ -75,7 +75,7 @@ def cell_transport_form(s: fem.Sample, domain: fem.Domain, u: fem.Field, v: fem.
|
|
|
75
75
|
def initial_condition(s: fem.Sample, domain: fem.Domain):
|
|
76
76
|
x = domain(s)[0] * 2.0
|
|
77
77
|
wave = wp.sin(x * wp.pi)
|
|
78
|
-
return wp.vec2(wp.
|
|
78
|
+
return wp.vec2(wp.where(x <= 1.0, wave, 0.0), 0.0)
|
|
79
79
|
|
|
80
80
|
|
|
81
81
|
@fem.integrand
|
|
@@ -87,7 +87,7 @@ def velocity_norm(s: fem.Sample, u: fem.Field):
|
|
|
87
87
|
def minmod(a: float, b: float):
|
|
88
88
|
sa = wp.sign(a)
|
|
89
89
|
sb = wp.sign(b)
|
|
90
|
-
return wp.
|
|
90
|
+
return wp.where(sa == sb, sa * wp.min(wp.abs(a), wp.abs(b)), 0.0)
|
|
91
91
|
|
|
92
92
|
|
|
93
93
|
@fem.integrand
|
|
@@ -57,7 +57,7 @@ def boundary_projector_form(
|
|
|
57
57
|
Bilinear boundary condition projector form, non-zero on radial edges
|
|
58
58
|
"""
|
|
59
59
|
nor = fem.normal(domain, s)
|
|
60
|
-
active = wp.
|
|
60
|
+
active = wp.where(nor[0] < -0.9999 or nor[1] < -0.9999, 1.0, 0.0)
|
|
61
61
|
return active * u(s) * v(s)
|
|
62
62
|
|
|
63
63
|
|
|
@@ -60,8 +60,8 @@ def cube_to_cylinder_grad(x: wp.vec3):
|
|
|
60
60
|
dir_grad = (wp.identity(n=3, dtype=float) - wp.outer(dir_xz, dir_xz)) / wp.length(pos_xz)
|
|
61
61
|
|
|
62
62
|
abs_xz = wp.abs(pos_xz)
|
|
63
|
-
xinf_grad = wp.
|
|
64
|
-
abs_xz[0] > abs_xz[2], wp.
|
|
63
|
+
xinf_grad = wp.where(
|
|
64
|
+
abs_xz[0] > abs_xz[2], wp.vec(wp.sign(pos_xz[0]), 0.0, 0.0), wp.vec3(0.0, 0.0, wp.sign(pos_xz[2]))
|
|
65
65
|
)
|
|
66
66
|
grad = dir_grad * wp.max(abs_xz) + wp.outer(dir_xz, xinf_grad)
|
|
67
67
|
|
|
@@ -85,10 +85,10 @@ def permeability_field(
|
|
|
85
85
|
r = wp.sqrt(x * x + z * z)
|
|
86
86
|
|
|
87
87
|
if r <= core_radius:
|
|
88
|
-
return wp.
|
|
88
|
+
return wp.where(y < core_height, MU_i, MU_0)
|
|
89
89
|
|
|
90
90
|
if r >= coil_internal_radius and r <= coil_external_radius:
|
|
91
|
-
return wp.
|
|
91
|
+
return wp.where(y < coil_height, MU_c, MU_0)
|
|
92
92
|
|
|
93
93
|
return MU_0
|
|
94
94
|
|
|
@@ -107,10 +107,10 @@ def current_field(
|
|
|
107
107
|
|
|
108
108
|
r = wp.sqrt(x * x + z * z)
|
|
109
109
|
|
|
110
|
-
return wp.
|
|
110
|
+
return wp.where(
|
|
111
111
|
y < coil_height and r >= coil_internal_radius and r <= coil_external_radius,
|
|
112
|
-
wp.vec3(0.0),
|
|
113
112
|
wp.vec3(z, 0.0, -x) * current / r,
|
|
113
|
+
wp.vec3(0.0),
|
|
114
114
|
)
|
|
115
115
|
|
|
116
116
|
|
warp/examples/fem/utils.py
CHANGED
|
@@ -34,6 +34,9 @@ __all__ = [
|
|
|
34
34
|
"Plot",
|
|
35
35
|
]
|
|
36
36
|
|
|
37
|
+
# matrix inversion routines contain nested loops,
|
|
38
|
+
# default unrolling leads to code explosion
|
|
39
|
+
wp.set_module_options({"max_unroll": 6})
|
|
37
40
|
|
|
38
41
|
#
|
|
39
42
|
# Mesh utilities
|
|
@@ -225,6 +228,7 @@ def bsr_cg(
|
|
|
225
228
|
mv_routine=None,
|
|
226
229
|
quiet=False,
|
|
227
230
|
method: str = "cg",
|
|
231
|
+
M: BsrMatrix = None,
|
|
228
232
|
) -> Tuple[float, int]:
|
|
229
233
|
"""Solves the linear system A x = b using an iterative solver, optionally with diagonal preconditioning
|
|
230
234
|
|
|
@@ -245,7 +249,9 @@ def bsr_cg(
|
|
|
245
249
|
|
|
246
250
|
"""
|
|
247
251
|
|
|
248
|
-
if
|
|
252
|
+
if M is not None:
|
|
253
|
+
M = aslinearoperator(M)
|
|
254
|
+
elif mv_routine is None:
|
|
249
255
|
M = preconditioner(A, "diag") if use_diag_precond else None
|
|
250
256
|
else:
|
|
251
257
|
A = LinearOperator(A.shape, A.dtype, A.device, matvec=mv_routine)
|
|
@@ -458,7 +464,7 @@ def bsr_solve_saddle(
|
|
|
458
464
|
return err, end_iter
|
|
459
465
|
|
|
460
466
|
|
|
461
|
-
@wp.kernel
|
|
467
|
+
@wp.kernel(enable_backward=False)
|
|
462
468
|
def _compute_schur_inverse_diagonal(
|
|
463
469
|
B_offsets: wp.array(dtype=int),
|
|
464
470
|
B_indices: wp.array(dtype=int),
|
|
@@ -500,7 +506,7 @@ def invert_diagonal_bsr_matrix(A: BsrMatrix):
|
|
|
500
506
|
)
|
|
501
507
|
|
|
502
508
|
|
|
503
|
-
@wp.kernel
|
|
509
|
+
@wp.kernel(enable_backward=False)
|
|
504
510
|
def _block_diagonal_invert(values: wp.array(dtype=Any)):
|
|
505
511
|
i = wp.tid()
|
|
506
512
|
values[i] = fem.utils.inverse_qr(values[i])
|