warp-lang 1.6.2__py3-none-macosx_10_13_universal2.whl → 1.7.1__py3-none-macosx_10_13_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +7 -1
- warp/autograd.py +12 -2
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +410 -0
- warp/build_dll.py +6 -14
- warp/builtins.py +463 -372
- warp/codegen.py +196 -124
- warp/config.py +42 -6
- warp/context.py +496 -271
- warp/dlpack.py +8 -6
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/benchmarks/benchmark_cloth.py +1 -1
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/distributed/example_jacobi_mpi.py +507 -0
- warp/examples/fem/example_apic_fluid.py +1 -1
- warp/examples/fem/example_burgers.py +2 -2
- warp/examples/fem/example_deformed_geometry.py +1 -1
- warp/examples/fem/example_distortion_energy.py +1 -1
- warp/examples/fem/example_magnetostatics.py +6 -6
- warp/examples/fem/utils.py +9 -3
- warp/examples/interop/example_jax_callable.py +116 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +205 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/tile/example_tile_matmul.py +2 -4
- warp/fem/__init__.py +11 -1
- warp/fem/adaptivity.py +4 -4
- warp/fem/field/field.py +11 -1
- warp/fem/field/nodal_field.py +56 -88
- warp/fem/field/virtual.py +62 -23
- warp/fem/geometry/adaptive_nanogrid.py +16 -13
- warp/fem/geometry/closest_point.py +1 -1
- warp/fem/geometry/deformed_geometry.py +5 -2
- warp/fem/geometry/geometry.py +5 -0
- warp/fem/geometry/grid_2d.py +12 -12
- warp/fem/geometry/grid_3d.py +12 -15
- warp/fem/geometry/hexmesh.py +5 -7
- warp/fem/geometry/nanogrid.py +9 -11
- warp/fem/geometry/quadmesh.py +13 -13
- warp/fem/geometry/tetmesh.py +3 -4
- warp/fem/geometry/trimesh.py +7 -20
- warp/fem/integrate.py +262 -93
- warp/fem/linalg.py +5 -5
- warp/fem/quadrature/pic_quadrature.py +37 -22
- warp/fem/quadrature/quadrature.py +194 -25
- warp/fem/space/__init__.py +1 -1
- warp/fem/space/basis_function_space.py +4 -2
- warp/fem/space/basis_space.py +25 -18
- warp/fem/space/hexmesh_function_space.py +2 -2
- warp/fem/space/partition.py +6 -2
- warp/fem/space/quadmesh_function_space.py +8 -8
- warp/fem/space/shape/cube_shape_function.py +23 -23
- warp/fem/space/shape/square_shape_function.py +12 -12
- warp/fem/space/shape/triangle_shape_function.py +1 -1
- warp/fem/space/tetmesh_function_space.py +3 -3
- warp/fem/space/trimesh_function_space.py +2 -2
- warp/fem/utils.py +12 -6
- warp/jax.py +14 -1
- warp/jax_experimental/__init__.py +16 -0
- warp/{jax_experimental.py → jax_experimental/custom_call.py} +28 -29
- warp/jax_experimental/ffi.py +702 -0
- warp/jax_experimental/xla_ffi.py +602 -0
- warp/math.py +89 -0
- warp/native/array.h +13 -0
- warp/native/builtin.h +29 -3
- warp/native/bvh.cpp +3 -1
- warp/native/bvh.cu +42 -14
- warp/native/bvh.h +2 -1
- warp/native/clang/clang.cpp +30 -3
- warp/native/cuda_util.cpp +14 -0
- warp/native/cuda_util.h +2 -0
- warp/native/exports.h +68 -63
- warp/native/intersect.h +26 -26
- warp/native/intersect_adj.h +33 -33
- warp/native/marching.cu +1 -1
- warp/native/mat.h +513 -9
- warp/native/mesh.h +10 -10
- warp/native/quat.h +99 -11
- warp/native/rand.h +6 -0
- warp/native/sort.cpp +122 -59
- warp/native/sort.cu +152 -15
- warp/native/sort.h +8 -1
- warp/native/sparse.cpp +43 -22
- warp/native/sparse.cu +52 -17
- warp/native/svd.h +116 -0
- warp/native/tile.h +312 -116
- warp/native/tile_reduce.h +46 -3
- warp/native/vec.h +68 -7
- warp/native/volume.cpp +85 -113
- warp/native/volume_builder.cu +25 -10
- warp/native/volume_builder.h +6 -0
- warp/native/warp.cpp +5 -6
- warp/native/warp.cu +100 -11
- warp/native/warp.h +19 -10
- warp/optim/linear.py +10 -10
- warp/render/render_opengl.py +19 -17
- warp/render/render_usd.py +93 -3
- warp/sim/articulation.py +4 -4
- warp/sim/collide.py +32 -19
- warp/sim/import_mjcf.py +449 -155
- warp/sim/import_urdf.py +32 -12
- warp/sim/inertia.py +189 -156
- warp/sim/integrator_euler.py +8 -5
- warp/sim/integrator_featherstone.py +3 -10
- warp/sim/integrator_vbd.py +207 -2
- warp/sim/integrator_xpbd.py +8 -5
- warp/sim/model.py +71 -25
- warp/sim/render.py +4 -0
- warp/sim/utils.py +2 -2
- warp/sparse.py +642 -555
- warp/stubs.py +217 -20
- warp/tests/__main__.py +0 -15
- warp/tests/assets/torus.usda +1 -1
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/{test_mempool.py → cuda/test_mempool.py} +39 -0
- warp/tests/{test_streams.py → cuda/test_streams.py} +71 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/{test_mesh_query_point.py → geometry/test_mesh_query_point.py} +66 -63
- warp/tests/{test_mesh_query_ray.py → geometry/test_mesh_query_ray.py} +1 -1
- warp/tests/{test_volume.py → geometry/test_volume.py} +41 -6
- warp/tests/interop/__init__.py +0 -0
- warp/tests/{test_dlpack.py → interop/test_dlpack.py} +28 -5
- warp/tests/sim/__init__.py +0 -0
- warp/tests/{disabled_kinematics.py → sim/disabled_kinematics.py} +9 -10
- warp/tests/{test_collision.py → sim/test_collision.py} +236 -205
- warp/tests/sim/test_inertia.py +161 -0
- warp/tests/{test_model.py → sim/test_model.py} +40 -0
- warp/tests/{flaky_test_sim_grad.py → sim/test_sim_grad.py} +4 -0
- warp/tests/{test_sim_kinematics.py → sim/test_sim_kinematics.py} +2 -1
- warp/tests/sim/test_vbd.py +597 -0
- warp/tests/sim/test_xpbd.py +399 -0
- warp/tests/test_bool.py +1 -1
- warp/tests/test_codegen.py +24 -3
- warp/tests/test_examples.py +40 -38
- warp/tests/test_fem.py +98 -14
- warp/tests/test_linear_solvers.py +0 -11
- warp/tests/test_mat.py +577 -156
- warp/tests/test_mat_scalar_ops.py +4 -4
- warp/tests/test_overwrite.py +0 -60
- warp/tests/test_quat.py +356 -151
- warp/tests/test_rand.py +44 -37
- warp/tests/test_sparse.py +47 -6
- warp/tests/test_spatial.py +75 -0
- warp/tests/test_static.py +1 -1
- warp/tests/test_utils.py +84 -4
- warp/tests/test_vec.py +336 -178
- warp/tests/tile/__init__.py +0 -0
- warp/tests/{test_tile.py → tile/test_tile.py} +136 -51
- warp/tests/{test_tile_load.py → tile/test_tile_load.py} +98 -1
- warp/tests/{test_tile_mathdx.py → tile/test_tile_mathdx.py} +9 -6
- warp/tests/{test_tile_mlp.py → tile/test_tile_mlp.py} +25 -14
- warp/tests/{test_tile_reduce.py → tile/test_tile_reduce.py} +60 -1
- warp/tests/{test_tile_view.py → tile/test_tile_view.py} +1 -1
- warp/tests/unittest_serial.py +1 -0
- warp/tests/unittest_suites.py +45 -62
- warp/tests/unittest_utils.py +2 -1
- warp/thirdparty/unittest_parallel.py +3 -1
- warp/types.py +175 -666
- warp/utils.py +137 -72
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/METADATA +46 -12
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/RECORD +184 -171
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/WHEEL +1 -1
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info/licenses}/LICENSE.md +0 -26
- warp/examples/optim/example_walker.py +0 -317
- warp/native/cutlass_gemm.cpp +0 -43
- warp/native/cutlass_gemm.cu +0 -382
- warp/tests/test_matmul.py +0 -511
- warp/tests/test_matmul_lite.py +0 -411
- warp/tests/test_vbd.py +0 -386
- warp/tests/unused_test_misc.py +0 -77
- /warp/tests/{test_async.py → cuda/test_async.py} +0 -0
- /warp/tests/{test_ipc.py → cuda/test_ipc.py} +0 -0
- /warp/tests/{test_multigpu.py → cuda/test_multigpu.py} +0 -0
- /warp/tests/{test_peer.py → cuda/test_peer.py} +0 -0
- /warp/tests/{test_pinned.py → cuda/test_pinned.py} +0 -0
- /warp/tests/{test_bvh.py → geometry/test_bvh.py} +0 -0
- /warp/tests/{test_hash_grid.py → geometry/test_hash_grid.py} +0 -0
- /warp/tests/{test_marching_cubes.py → geometry/test_marching_cubes.py} +0 -0
- /warp/tests/{test_mesh.py → geometry/test_mesh.py} +0 -0
- /warp/tests/{test_mesh_query_aabb.py → geometry/test_mesh_query_aabb.py} +0 -0
- /warp/tests/{test_volume_write.py → geometry/test_volume_write.py} +0 -0
- /warp/tests/{test_jax.py → interop/test_jax.py} +0 -0
- /warp/tests/{test_paddle.py → interop/test_paddle.py} +0 -0
- /warp/tests/{test_torch.py → interop/test_torch.py} +0 -0
- /warp/tests/{test_coloring.py → sim/test_coloring.py} +0 -0
- /warp/tests/{test_sim_grad_bounce_linear.py → sim/test_sim_grad_bounce_linear.py} +0 -0
- /warp/tests/{test_tile_shared_memory.py → tile/test_tile_shared_memory.py} +0 -0
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.1.dist-info}/top_level.txt +0 -0
warp/dlpack.py
CHANGED
|
@@ -48,10 +48,6 @@ Py_DecRef.restype = None
|
|
|
48
48
|
|
|
49
49
|
PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.c_void_p)
|
|
50
50
|
|
|
51
|
-
PyCapsule_New = ctypes.pythonapi.PyCapsule_New
|
|
52
|
-
PyCapsule_New.argtypes = [ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor]
|
|
53
|
-
PyCapsule_New.restype = ctypes.py_object
|
|
54
|
-
|
|
55
51
|
PyCapsule_IsValid = ctypes.pythonapi.PyCapsule_IsValid
|
|
56
52
|
PyCapsule_IsValid.argtypes = [ctypes.py_object, ctypes.c_char_p]
|
|
57
53
|
PyCapsule_IsValid.restype = ctypes.c_int
|
|
@@ -105,8 +101,8 @@ def _dlpack_capsule_deleter(ptr) -> None:
|
|
|
105
101
|
|
|
106
102
|
capsule = ctypes.cast(ptr, ctypes.py_object)
|
|
107
103
|
|
|
108
|
-
if
|
|
109
|
-
managed_ptr =
|
|
104
|
+
if PyCapsule_IsValid(capsule, _c_str_dltensor):
|
|
105
|
+
managed_ptr = PyCapsule_GetPointer(capsule, _c_str_dltensor)
|
|
110
106
|
managed_tensor = DLManagedTensor.from_address(managed_ptr)
|
|
111
107
|
if managed_tensor.deleter:
|
|
112
108
|
managed_tensor.deleter(managed_ptr)
|
|
@@ -302,6 +298,12 @@ def to_dlpack(wp_array: warp.array):
|
|
|
302
298
|
|
|
303
299
|
managed_tensor.deleter = _dlpack_tensor_deleter
|
|
304
300
|
|
|
301
|
+
# NOTE: jax.ffi.pycapsule() defines the PyCapsule_New() argtypes incorrectly, which causes problems.
|
|
302
|
+
# Here we make sure that the PyCapsule_Destructor callback is correctly defined.
|
|
303
|
+
PyCapsule_New = ctypes.pythonapi.PyCapsule_New
|
|
304
|
+
PyCapsule_New.argtypes = [ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor]
|
|
305
|
+
PyCapsule_New.restype = ctypes.py_object
|
|
306
|
+
|
|
305
307
|
capsule = PyCapsule_New(
|
|
306
308
|
ctypes.byref(managed_tensor),
|
|
307
309
|
_c_str_dltensor,
|
|
Binary file
|
|
Binary file
|
|
@@ -160,7 +160,7 @@ def run_benchmark(mode, dim, timers, render=False):
|
|
|
160
160
|
stage = Usd.Stage.CreateNew("benchmark.usd")
|
|
161
161
|
stage.SetStartTimeCode(0.0)
|
|
162
162
|
stage.SetEndTimeCode(sim_duration * sim_fps)
|
|
163
|
-
stage.
|
|
163
|
+
stage.SetFramesPerSecond(sim_fps)
|
|
164
164
|
|
|
165
165
|
grid = UsdGeom.Mesh.Define(stage, "/root")
|
|
166
166
|
grid.GetPointsAttr().Set(cloth.positions, 0.0)
|
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import numpy as np
|
|
17
|
+
|
|
18
|
+
import warp as wp
|
|
19
|
+
|
|
20
|
+
BLOCK_DIM = 128
|
|
21
|
+
|
|
22
|
+
TILE = 32
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def create_test_kernel(storage_type: str):
|
|
26
|
+
@wp.kernel
|
|
27
|
+
def load_store(a: wp.array2d(dtype=wp.float32), b: wp.array2d(dtype=wp.float32)):
|
|
28
|
+
i, j = wp.tid()
|
|
29
|
+
|
|
30
|
+
if wp.static(storage_type == "shared"):
|
|
31
|
+
a_tile = wp.tile_load(a, shape=(TILE, TILE), offset=(i * TILE, j * TILE), storage="shared")
|
|
32
|
+
else:
|
|
33
|
+
a_tile = wp.tile_load(a, shape=(TILE, TILE), offset=(i * TILE, j * TILE), storage="register")
|
|
34
|
+
|
|
35
|
+
wp.tile_store(b, a_tile, offset=(i * TILE, j * TILE))
|
|
36
|
+
|
|
37
|
+
return load_store
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
if __name__ == "__main__":
|
|
41
|
+
wp.config.quiet = True
|
|
42
|
+
wp.init()
|
|
43
|
+
wp.clear_kernel_cache()
|
|
44
|
+
wp.set_module_options({"fast_math": True, "enable_backward": False})
|
|
45
|
+
|
|
46
|
+
iterations = 100
|
|
47
|
+
rng = np.random.default_rng(42)
|
|
48
|
+
|
|
49
|
+
shared_benchmark_data = {}
|
|
50
|
+
register_benchmark_data = {}
|
|
51
|
+
memcpy_benchmark_data = {}
|
|
52
|
+
|
|
53
|
+
sizes = list(range(128, 4097, 128))
|
|
54
|
+
|
|
55
|
+
print(f"{'Transfer Size (Bytes)':<23s} {'Shared (GiB/s)':<16s} {'Register (GiB/s)':<18s} {'memcpy (GiB/s)':<16s}")
|
|
56
|
+
print("-" * 79)
|
|
57
|
+
|
|
58
|
+
for size in sizes:
|
|
59
|
+
a = wp.array(rng.random((size, size), dtype=np.float32), dtype=wp.float32)
|
|
60
|
+
b = wp.empty_like(a)
|
|
61
|
+
|
|
62
|
+
for storage_type in ("shared", "register"):
|
|
63
|
+
load_store = create_test_kernel(storage_type)
|
|
64
|
+
|
|
65
|
+
cmd = wp.launch_tiled(
|
|
66
|
+
load_store,
|
|
67
|
+
dim=(a.shape[0] // TILE, a.shape[1] // TILE),
|
|
68
|
+
inputs=[a],
|
|
69
|
+
outputs=[b],
|
|
70
|
+
block_dim=BLOCK_DIM,
|
|
71
|
+
record_cmd=True,
|
|
72
|
+
)
|
|
73
|
+
# Warmup
|
|
74
|
+
for _ in range(5):
|
|
75
|
+
cmd.launch()
|
|
76
|
+
|
|
77
|
+
with wp.ScopedTimer("benchmark", cuda_filter=wp.TIMING_KERNEL, print=False, synchronize=True) as timer:
|
|
78
|
+
for _ in range(iterations):
|
|
79
|
+
cmd.launch()
|
|
80
|
+
|
|
81
|
+
np.testing.assert_equal(a.numpy(), b.numpy())
|
|
82
|
+
|
|
83
|
+
timing_results = [result.elapsed for result in timer.timing_results]
|
|
84
|
+
avg_bw = 2.0 * (a.capacity / (1024 * 1024 * 1024)) / (1e-3 * np.mean(timing_results))
|
|
85
|
+
|
|
86
|
+
if storage_type == "shared":
|
|
87
|
+
shared_benchmark_data[a.capacity] = avg_bw
|
|
88
|
+
else:
|
|
89
|
+
register_benchmark_data[a.capacity] = avg_bw
|
|
90
|
+
|
|
91
|
+
# Compare with memcpy
|
|
92
|
+
with wp.ScopedTimer("benchmark", cuda_filter=wp.TIMING_MEMCPY, print=False, synchronize=True) as timer:
|
|
93
|
+
for _ in range(iterations):
|
|
94
|
+
wp.copy(b, a)
|
|
95
|
+
|
|
96
|
+
timing_results = [result.elapsed for result in timer.timing_results]
|
|
97
|
+
avg_bw = 2.0 * (a.capacity / (1024 * 1024 * 1024)) / (1e-3 * np.mean(timing_results))
|
|
98
|
+
memcpy_benchmark_data[a.capacity] = avg_bw
|
|
99
|
+
|
|
100
|
+
# Print results
|
|
101
|
+
print(
|
|
102
|
+
f"{a.capacity:<23d} {shared_benchmark_data[a.capacity]:<#16.4g} {register_benchmark_data[a.capacity]:<#18.4g} {memcpy_benchmark_data[a.capacity]:<#16.4g}"
|
|
103
|
+
)
|
|
@@ -0,0 +1,300 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
###########################################################################
|
|
17
|
+
# Example Sample Mesh
|
|
18
|
+
#
|
|
19
|
+
# Shows how to sample points on a mesh's surface using
|
|
20
|
+
# a Cumulative Distribution Function (CDF).
|
|
21
|
+
#
|
|
22
|
+
# The CDF enables uniform sampling of points across the mesh's surface,
|
|
23
|
+
# even when the density of triangles varies. It represents the cumulative
|
|
24
|
+
# probability of selecting a triangle from the mesh, with each triangle
|
|
25
|
+
# weighted by its area relative to the total surface area of the mesh.
|
|
26
|
+
#
|
|
27
|
+
###########################################################################
|
|
28
|
+
|
|
29
|
+
import numpy as np
|
|
30
|
+
|
|
31
|
+
import warp as wp
|
|
32
|
+
import warp.render
|
|
33
|
+
|
|
34
|
+
# fmt: off
|
|
35
|
+
POINTS = np.array(
|
|
36
|
+
(
|
|
37
|
+
(-0.986598, -0.400638, -0.175759), (-0.81036 , -0.482105, -0.541125),
|
|
38
|
+
(-1.079616, 0.022652, -0.023381), (-0.894468, -0.080795, -0.618379),
|
|
39
|
+
(-0.607365, -0.702012, -0.556551), (-0.366107, -0.800096, -0.620734),
|
|
40
|
+
(-0.801777, -0.690991, -0.239593), (-0.553576, -0.871746, -0.335518),
|
|
41
|
+
(-0.309133, -0.370805, -0.965784), (-0.288299, -0.956987, -0.402091),
|
|
42
|
+
(-0.051878, -0.894342, -0.597583), (-0.386774, -1.003107, -0.145116),
|
|
43
|
+
(-0.19062 , -1.061165, 0.012418), (-0.176053, -1.044838, -0.217194),
|
|
44
|
+
( 0.001479, -1.020045, -0.356905), (-0.105375, -0.655117, -0.861365),
|
|
45
|
+
(-0.542102, -0.517255, -0.795259), (-0.476599, -0.105709, -0.981171),
|
|
46
|
+
(-1.047915, -0.121584, 0.322098), (-0.527852, 0.137252, 0.501813),
|
|
47
|
+
(-0.721762, -0.803275, 0.117162), (-0.904992, -0.573281, 0.168408),
|
|
48
|
+
(-0.796762, -0.473428, 0.569649), (-0.606446, -0.753374, 0.492938),
|
|
49
|
+
(-0.466481, -0.576566, 0.802562), (-0.50476 , -0.908596, 0.300064),
|
|
50
|
+
(-0.337425, -1.008902, 0.170911), (-0.048676, -1.055594, 0.246732),
|
|
51
|
+
(-0.212871, -0.760442, 0.738447), (-0.281356, -0.9322 , 0.474965),
|
|
52
|
+
(-0.560476, 0.062512, -0.561019), (-0.003252, 0.083237, -1.049784),
|
|
53
|
+
(-0.009392, 0.593703, -0.522479), (-0.530465, 0.577231, 0.007172),
|
|
54
|
+
(-0.02106 , 0.064189, 1.066722), (-0.003512, 0.59714 , 0.516904),
|
|
55
|
+
( 0.000194, 1.093899, 0.001113), ( 0.256861, -0.955856, -0.445325),
|
|
56
|
+
( 0.251205, -1.038759, -0.174212), ( 0.170201, -0.800019, -0.712158),
|
|
57
|
+
( 0.364385, -0.560298, -0.866843), ( 0.092809, -0.269437, -1.058467),
|
|
58
|
+
( 0.628127, -0.12359 , -0.9012 ), ( 0.507433, -0.930658, -0.215908),
|
|
59
|
+
( 0.496448, -0.800205, -0.545904), ( 0.757415, -0.527449, -0.565395),
|
|
60
|
+
( 0.908704, -0.596257, 0.028995), ( 0.754069, -0.731365, -0.256687),
|
|
61
|
+
( 0.921362, -0.09028 , -0.546421), ( 1.017846, -0.335787, -0.263017),
|
|
62
|
+
( 0.016768, -1.080014, -0.058473), ( 0.204245, -1.056388, 0.078346),
|
|
63
|
+
( 0.260892, -1.001704, 0.322104), ( 0.16608 , -0.739172, 0.788097),
|
|
64
|
+
( 0.021091, -0.931327, 0.557789), (-0.046158, -0.408417, 1.011046),
|
|
65
|
+
( 0.429623, -0.987237, 0.088537), ( 0.704993, -0.739396, 0.386838),
|
|
66
|
+
( 0.37277 , -0.825639, 0.591102), ( 0.493947, -0.896091, 0.339163),
|
|
67
|
+
( 0.321112, -0.540547, 0.890161), ( 0.654753, -0.520495, 0.690104),
|
|
68
|
+
( 0.922472, -0.124429, 0.530498), ( 0.662544, -0.85601 , 0.054375),
|
|
69
|
+
( 0.950976, -0.422783, 0.327726), ( 0.536849, 0.109943, -0.52279 ),
|
|
70
|
+
( 0.517242, 0.120634, 0.535708), ( 0.532707, 0.598943, -0.000767),
|
|
71
|
+
( 1.086691, 0.048722, 0.032517), ( 0.528734, -0.109809, 0.96863 ),
|
|
72
|
+
(-0.581832, -0.916941, -0.027829), (-0.625071, -0.14445 , 0.906538),
|
|
73
|
+
),
|
|
74
|
+
dtype=np.float32,
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
FACE_VERTEX_INDICES = np.array(
|
|
78
|
+
(
|
|
79
|
+
6, 0, 1, 6, 21, 0, 2, 0, 18, 0, 3, 1, 2, 3, 0, 5,
|
|
80
|
+
7, 4, 70, 7, 11, 4, 6, 1, 16, 1, 3, 7, 6, 4, 4, 1,
|
|
81
|
+
16, 9, 7, 5, 3, 17, 16, 16, 17, 8, 41, 8, 17, 30, 17, 3,
|
|
82
|
+
10, 14, 9, 5, 10, 9, 10, 37, 14, 15, 10, 5, 7, 9, 11, 11,
|
|
83
|
+
9, 13, 11, 13, 12, 50, 12, 13, 9, 14, 13, 15, 16, 8, 15, 8,
|
|
84
|
+
41, 16, 5, 4, 16, 15, 5, 17, 31, 41, 21, 22, 18, 20, 21, 6,
|
|
85
|
+
18, 0, 21, 20, 25, 23, 20, 70, 25, 70, 11, 26, 26, 25, 70, 25,
|
|
86
|
+
29, 23, 21, 20, 23, 21, 23, 22, 23, 24, 22, 24, 71, 22, 26, 29,
|
|
87
|
+
25, 26, 11, 12, 12, 27, 26, 26, 27, 29, 27, 54, 29, 27, 12, 50,
|
|
88
|
+
28, 29, 54, 54, 53, 28, 23, 28, 24, 29, 28, 23, 28, 55, 24, 28,
|
|
89
|
+
53, 55, 53, 60, 55, 24, 55, 71, 55, 34, 71, 30, 3, 2, 2, 33,
|
|
90
|
+
30, 17, 30, 31, 32, 31, 30, 33, 36, 32, 19, 33, 2, 19, 35, 33,
|
|
91
|
+
19, 71, 34, 35, 19, 34, 34, 66, 35, 35, 36, 33, 35, 67, 36, 15,
|
|
92
|
+
39, 10, 10, 39, 37, 44, 37, 39, 14, 50, 13, 14, 38, 50, 14, 37,
|
|
93
|
+
38, 37, 43, 38, 40, 15, 41, 40, 39, 15, 41, 42, 40, 44, 39, 40,
|
|
94
|
+
31, 42, 41, 38, 43, 56, 44, 43, 37, 44, 47, 43, 47, 63, 43, 44,
|
|
95
|
+
40, 45, 42, 45, 40, 46, 63, 47, 45, 47, 44, 65, 48, 42, 46, 47,
|
|
96
|
+
49, 49, 47, 45, 48, 45, 42, 45, 48, 49, 68, 49, 48, 27, 52, 54,
|
|
97
|
+
50, 51, 27, 27, 51, 52, 50, 38, 51, 38, 56, 51, 51, 56, 52, 54,
|
|
98
|
+
52, 58, 52, 59, 58, 53, 54, 58, 60, 69, 55, 55, 69, 34, 43, 63,
|
|
99
|
+
56, 59, 52, 56, 63, 59, 56, 63, 57, 59, 58, 60, 53, 57, 58, 59,
|
|
100
|
+
58, 57, 61, 60, 58, 61, 57, 64, 61, 62, 61, 64, 60, 61, 69, 62,
|
|
101
|
+
69, 61, 46, 57, 63, 64, 57, 46, 46, 49, 64, 68, 64, 49, 62, 64,
|
|
102
|
+
68, 32, 65, 31, 65, 32, 67, 32, 36, 67, 65, 42, 31, 67, 68, 65,
|
|
103
|
+
48, 65, 68, 34, 69, 66, 67, 35, 66, 68, 66, 62, 66, 69, 62, 67,
|
|
104
|
+
66, 68, 33, 32, 30, 19, 2, 18, 20, 6, 70, 7, 70, 6, 18, 71,
|
|
105
|
+
19, 22, 71, 18,
|
|
106
|
+
),
|
|
107
|
+
dtype=np.int32,
|
|
108
|
+
)
|
|
109
|
+
# fmt: on
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
@wp.kernel(enable_backward=False)
|
|
113
|
+
def compute_tri_areas(
|
|
114
|
+
points: wp.array(dtype=wp.vec3),
|
|
115
|
+
face_vertex_indices: wp.array(dtype=wp.int32),
|
|
116
|
+
out_tri_areas: wp.array(dtype=wp.float32),
|
|
117
|
+
out_total_area: wp.array(dtype=wp.float32),
|
|
118
|
+
):
|
|
119
|
+
tri = wp.tid()
|
|
120
|
+
|
|
121
|
+
# Retrieve the indices of the three vertices that form the current triangle.
|
|
122
|
+
vtx_0 = face_vertex_indices[tri * 3]
|
|
123
|
+
vtx_1 = face_vertex_indices[tri * 3 + 1]
|
|
124
|
+
vtx_2 = face_vertex_indices[tri * 3 + 2]
|
|
125
|
+
|
|
126
|
+
# Retrieve their 3D position.
|
|
127
|
+
pt_0 = points[vtx_0]
|
|
128
|
+
pt_1 = points[vtx_1]
|
|
129
|
+
pt_2 = points[vtx_2]
|
|
130
|
+
|
|
131
|
+
# Calculate the cross product of two edges of the triangle,
|
|
132
|
+
# which gives a vector whose magnitude is twice the area of the triangle.
|
|
133
|
+
cross = wp.cross((pt_1 - pt_0), (pt_2 - pt_0))
|
|
134
|
+
area = wp.length(cross) * 0.5
|
|
135
|
+
|
|
136
|
+
# Store the result.
|
|
137
|
+
out_tri_areas[tri] = area
|
|
138
|
+
wp.atomic_add(out_total_area, 0, area)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
@wp.kernel(enable_backward=False)
|
|
142
|
+
def compute_probability_distribution(
|
|
143
|
+
tri_areas: wp.array(dtype=wp.float32),
|
|
144
|
+
total_area: wp.array(dtype=wp.float32),
|
|
145
|
+
out_probabilities: wp.array(dtype=wp.float32),
|
|
146
|
+
):
|
|
147
|
+
tri = wp.tid()
|
|
148
|
+
|
|
149
|
+
# Calculate the probability of selecting this triangle,
|
|
150
|
+
# which is proportional to the triangle's area relative to total mesh area.
|
|
151
|
+
out_probabilities[tri] = tri_areas[tri] / total_area[0]
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
@wp.kernel(enable_backward=False)
|
|
155
|
+
def accumulate_cdf(
|
|
156
|
+
tri_count: wp.int32,
|
|
157
|
+
out_cdf: wp.array(dtype=wp.float32),
|
|
158
|
+
):
|
|
159
|
+
# Transform probability values into a Cumulative Distribution Function (CDF).
|
|
160
|
+
for tri in range(1, tri_count):
|
|
161
|
+
out_cdf[tri] += out_cdf[tri - 1]
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
@wp.kernel(enable_backward=False)
|
|
165
|
+
def sample_mesh(
|
|
166
|
+
mesh: wp.uint64,
|
|
167
|
+
cdf: wp.array(dtype=wp.float32),
|
|
168
|
+
seed: wp.int32,
|
|
169
|
+
out_points: wp.array(dtype=wp.vec3),
|
|
170
|
+
):
|
|
171
|
+
tid = wp.tid()
|
|
172
|
+
|
|
173
|
+
rng = wp.rand_init(seed, tid)
|
|
174
|
+
|
|
175
|
+
# Sample the triangle index using the CDF.
|
|
176
|
+
sample = wp.randf(rng)
|
|
177
|
+
tri = wp.lower_bound(cdf, sample)
|
|
178
|
+
|
|
179
|
+
# Sample the location in that triangle using random barycentric cordinates.
|
|
180
|
+
ru = wp.randf(rng)
|
|
181
|
+
rv = wp.randf(rng)
|
|
182
|
+
tri_u = 1.0 - wp.sqrt(ru)
|
|
183
|
+
tri_v = wp.sqrt(ru) * (1.0 - rv)
|
|
184
|
+
pos = wp.mesh_eval_position(mesh, tri, tri_u, tri_v)
|
|
185
|
+
|
|
186
|
+
# Store the result.
|
|
187
|
+
out_points[tid] = pos
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
class Example:
|
|
191
|
+
def __init__(self, stage_path="example_sample_mesh.usd"):
|
|
192
|
+
self.mesh = wp.Mesh(
|
|
193
|
+
points=wp.array(POINTS, dtype=wp.vec3),
|
|
194
|
+
indices=wp.array(FACE_VERTEX_INDICES, dtype=wp.int32),
|
|
195
|
+
)
|
|
196
|
+
self.tri_count = len(FACE_VERTEX_INDICES) // 3
|
|
197
|
+
|
|
198
|
+
# Compute the area of each triangle and the total area of the mesh.
|
|
199
|
+
tri_areas = wp.empty(shape=(self.tri_count,), dtype=wp.float32)
|
|
200
|
+
total_area = wp.zeros(shape=(1,), dtype=wp.float32)
|
|
201
|
+
wp.launch(
|
|
202
|
+
compute_tri_areas,
|
|
203
|
+
dim=tri_areas.shape,
|
|
204
|
+
inputs=(
|
|
205
|
+
self.mesh.points,
|
|
206
|
+
self.mesh.indices,
|
|
207
|
+
),
|
|
208
|
+
outputs=(
|
|
209
|
+
tri_areas,
|
|
210
|
+
total_area,
|
|
211
|
+
),
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
# Build a Cumulative Distribution Function (CDF) where the probability
|
|
215
|
+
# of sampling a given triangle is proportional to its area.
|
|
216
|
+
self.cdf = wp.empty(shape=(self.tri_count,), dtype=wp.float32)
|
|
217
|
+
wp.launch(
|
|
218
|
+
compute_probability_distribution,
|
|
219
|
+
dim=self.cdf.shape,
|
|
220
|
+
inputs=(
|
|
221
|
+
tri_areas,
|
|
222
|
+
total_area,
|
|
223
|
+
),
|
|
224
|
+
outputs=(self.cdf,),
|
|
225
|
+
)
|
|
226
|
+
wp.launch(
|
|
227
|
+
accumulate_cdf,
|
|
228
|
+
dim=(1,),
|
|
229
|
+
inputs=(self.tri_count,),
|
|
230
|
+
outputs=(self.cdf,),
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
# Array to store the sampled points.
|
|
234
|
+
self.points = wp.empty(shape=(100,), dtype=wp.vec3)
|
|
235
|
+
|
|
236
|
+
self.fps = 4
|
|
237
|
+
self.frame = 0
|
|
238
|
+
|
|
239
|
+
if stage_path:
|
|
240
|
+
self.renderer = wp.render.UsdRenderer(stage_path, fps=self.fps)
|
|
241
|
+
else:
|
|
242
|
+
self.renderer = None
|
|
243
|
+
|
|
244
|
+
def step(self):
|
|
245
|
+
with wp.ScopedTimer("step"):
|
|
246
|
+
# Sample new points on the mesh using the CDF and the current frame
|
|
247
|
+
# number as seed to ensure different samples each frame.
|
|
248
|
+
wp.launch(
|
|
249
|
+
sample_mesh,
|
|
250
|
+
dim=self.points.shape,
|
|
251
|
+
inputs=(
|
|
252
|
+
self.mesh.id,
|
|
253
|
+
self.cdf,
|
|
254
|
+
self.frame,
|
|
255
|
+
),
|
|
256
|
+
outputs=(self.points,),
|
|
257
|
+
)
|
|
258
|
+
|
|
259
|
+
self.frame += 1
|
|
260
|
+
|
|
261
|
+
def render(self):
|
|
262
|
+
if self.renderer is None:
|
|
263
|
+
return
|
|
264
|
+
|
|
265
|
+
with wp.ScopedTimer("render"):
|
|
266
|
+
self.renderer.begin_frame(self.frame / self.fps)
|
|
267
|
+
self.renderer.render_mesh(
|
|
268
|
+
name="mesh",
|
|
269
|
+
points=self.mesh.points.numpy(),
|
|
270
|
+
indices=self.mesh.indices.numpy(),
|
|
271
|
+
colors=(0.35, 0.55, 0.9),
|
|
272
|
+
)
|
|
273
|
+
self.renderer.render_points(name="points", points=self.points.numpy(), radius=0.05, colors=(0.8, 0.3, 0.2))
|
|
274
|
+
self.renderer.end_frame()
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
if __name__ == "__main__":
|
|
278
|
+
import argparse
|
|
279
|
+
|
|
280
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
281
|
+
parser.add_argument("--device", type=str, default=None, help="Override the default Warp device.")
|
|
282
|
+
parser.add_argument(
|
|
283
|
+
"--stage_path",
|
|
284
|
+
type=lambda x: None if x == "None" else str(x),
|
|
285
|
+
default="example_sample_mesh.usd",
|
|
286
|
+
help="Path to the output USD file.",
|
|
287
|
+
)
|
|
288
|
+
parser.add_argument("--num_frames", type=int, default=16, help="Total number of frames.")
|
|
289
|
+
|
|
290
|
+
args = parser.parse_known_args()[0]
|
|
291
|
+
|
|
292
|
+
with wp.ScopedDevice(args.device):
|
|
293
|
+
example = Example(stage_path=args.stage_path)
|
|
294
|
+
|
|
295
|
+
for _ in range(args.num_frames):
|
|
296
|
+
example.step()
|
|
297
|
+
example.render()
|
|
298
|
+
|
|
299
|
+
if example.renderer:
|
|
300
|
+
example.renderer.save()
|