warp-lang 1.0.2__py3-none-win_amd64.whl → 1.1.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +115 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3425 -3354
  8. warp/codegen.py +2878 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +45 -45
  11. warp/context.py +5194 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +383 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
  34. warp/examples/benchmarks/benchmark_launches.py +295 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +234 -219
  37. warp/examples/core/example_fluid.py +293 -267
  38. warp/examples/core/example_graph_capture.py +144 -126
  39. warp/examples/core/example_marching_cubes.py +188 -174
  40. warp/examples/core/example_mesh.py +174 -155
  41. warp/examples/core/example_mesh_intersect.py +205 -193
  42. warp/examples/core/example_nvdb.py +176 -170
  43. warp/examples/core/example_raycast.py +105 -90
  44. warp/examples/core/example_raymarch.py +199 -178
  45. warp/examples/core/example_render_opengl.py +185 -141
  46. warp/examples/core/example_sph.py +405 -387
  47. warp/examples/core/example_torch.py +222 -181
  48. warp/examples/core/example_wave.py +263 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +407 -389
  51. warp/examples/fem/example_convection_diffusion.py +182 -168
  52. warp/examples/fem/example_convection_diffusion_dg.py +219 -209
  53. warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
  54. warp/examples/fem/example_deformed_geometry.py +177 -159
  55. warp/examples/fem/example_diffusion.py +201 -173
  56. warp/examples/fem/example_diffusion_3d.py +177 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +221 -214
  58. warp/examples/fem/example_mixed_elasticity.py +244 -222
  59. warp/examples/fem/example_navier_stokes.py +259 -243
  60. warp/examples/fem/example_stokes.py +220 -192
  61. warp/examples/fem/example_stokes_transfer.py +265 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +260 -246
  65. warp/examples/optim/example_cloth_throw.py +222 -209
  66. warp/examples/optim/example_diffray.py +566 -536
  67. warp/examples/optim/example_drone.py +864 -835
  68. warp/examples/optim/example_inverse_kinematics.py +176 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +185 -169
  70. warp/examples/optim/example_spring_cage.py +239 -231
  71. warp/examples/optim/example_trajectory.py +223 -199
  72. warp/examples/optim/example_walker.py +306 -293
  73. warp/examples/sim/example_cartpole.py +139 -129
  74. warp/examples/sim/example_cloth.py +196 -186
  75. warp/examples/sim/example_granular.py +124 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +197 -186
  77. warp/examples/sim/example_jacobian_ik.py +236 -214
  78. warp/examples/sim/example_particle_chain.py +118 -105
  79. warp/examples/sim/example_quadruped.py +193 -180
  80. warp/examples/sim/example_rigid_chain.py +197 -187
  81. warp/examples/sim/example_rigid_contact.py +189 -177
  82. warp/examples/sim/example_rigid_force.py +127 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +109 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +134 -122
  85. warp/examples/sim/example_soft_body.py +190 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +60 -27
  88. warp/fem/cache.py +401 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +15 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +744 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +441 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/partition.py +374 -376
  106. warp/fem/geometry/quadmesh_2d.py +532 -532
  107. warp/fem/geometry/tetmesh.py +840 -840
  108. warp/fem/geometry/trimesh_2d.py +577 -577
  109. warp/fem/integrate.py +1630 -1615
  110. warp/fem/operator.py +190 -191
  111. warp/fem/polynomial.py +214 -213
  112. warp/fem/quadrature/__init__.py +2 -2
  113. warp/fem/quadrature/pic_quadrature.py +243 -245
  114. warp/fem/quadrature/quadrature.py +295 -294
  115. warp/fem/space/__init__.py +294 -292
  116. warp/fem/space/basis_space.py +488 -489
  117. warp/fem/space/collocated_function_space.py +100 -105
  118. warp/fem/space/dof_mapper.py +236 -236
  119. warp/fem/space/function_space.py +148 -145
  120. warp/fem/space/grid_2d_function_space.py +267 -267
  121. warp/fem/space/grid_3d_function_space.py +305 -306
  122. warp/fem/space/hexmesh_function_space.py +350 -352
  123. warp/fem/space/partition.py +350 -350
  124. warp/fem/space/quadmesh_2d_function_space.py +368 -369
  125. warp/fem/space/restriction.py +158 -160
  126. warp/fem/space/shape/__init__.py +13 -15
  127. warp/fem/space/shape/cube_shape_function.py +738 -738
  128. warp/fem/space/shape/shape_function.py +102 -103
  129. warp/fem/space/shape/square_shape_function.py +611 -611
  130. warp/fem/space/shape/tet_shape_function.py +565 -567
  131. warp/fem/space/shape/triangle_shape_function.py +429 -429
  132. warp/fem/space/tetmesh_function_space.py +294 -292
  133. warp/fem/space/topology.py +297 -295
  134. warp/fem/space/trimesh_2d_function_space.py +223 -221
  135. warp/fem/types.py +77 -77
  136. warp/fem/utils.py +495 -495
  137. warp/jax.py +166 -141
  138. warp/jax_experimental.py +341 -339
  139. warp/native/array.h +1072 -1025
  140. warp/native/builtin.h +1560 -1560
  141. warp/native/bvh.cpp +398 -398
  142. warp/native/bvh.cu +525 -525
  143. warp/native/bvh.h +429 -429
  144. warp/native/clang/clang.cpp +495 -464
  145. warp/native/crt.cpp +31 -31
  146. warp/native/crt.h +334 -334
  147. warp/native/cuda_crt.h +1049 -1049
  148. warp/native/cuda_util.cpp +549 -540
  149. warp/native/cuda_util.h +288 -203
  150. warp/native/cutlass_gemm.cpp +34 -34
  151. warp/native/cutlass_gemm.cu +372 -372
  152. warp/native/error.cpp +66 -66
  153. warp/native/error.h +27 -27
  154. warp/native/fabric.h +228 -228
  155. warp/native/hashgrid.cpp +301 -278
  156. warp/native/hashgrid.cu +78 -77
  157. warp/native/hashgrid.h +227 -227
  158. warp/native/initializer_array.h +32 -32
  159. warp/native/intersect.h +1204 -1204
  160. warp/native/intersect_adj.h +365 -365
  161. warp/native/intersect_tri.h +322 -322
  162. warp/native/marching.cpp +2 -2
  163. warp/native/marching.cu +497 -497
  164. warp/native/marching.h +2 -2
  165. warp/native/mat.h +1498 -1498
  166. warp/native/matnn.h +333 -333
  167. warp/native/mesh.cpp +203 -203
  168. warp/native/mesh.cu +293 -293
  169. warp/native/mesh.h +1887 -1887
  170. warp/native/nanovdb/NanoVDB.h +4782 -4782
  171. warp/native/nanovdb/PNanoVDB.h +2553 -2553
  172. warp/native/nanovdb/PNanoVDBWrite.h +294 -294
  173. warp/native/noise.h +850 -850
  174. warp/native/quat.h +1084 -1084
  175. warp/native/rand.h +299 -299
  176. warp/native/range.h +108 -108
  177. warp/native/reduce.cpp +156 -156
  178. warp/native/reduce.cu +348 -348
  179. warp/native/runlength_encode.cpp +61 -61
  180. warp/native/runlength_encode.cu +46 -46
  181. warp/native/scan.cpp +30 -30
  182. warp/native/scan.cu +36 -36
  183. warp/native/scan.h +7 -7
  184. warp/native/solid_angle.h +442 -442
  185. warp/native/sort.cpp +94 -94
  186. warp/native/sort.cu +97 -97
  187. warp/native/sort.h +14 -14
  188. warp/native/sparse.cpp +337 -337
  189. warp/native/sparse.cu +544 -544
  190. warp/native/spatial.h +630 -630
  191. warp/native/svd.h +562 -562
  192. warp/native/temp_buffer.h +30 -30
  193. warp/native/vec.h +1132 -1132
  194. warp/native/volume.cpp +297 -297
  195. warp/native/volume.cu +32 -32
  196. warp/native/volume.h +538 -538
  197. warp/native/volume_builder.cu +425 -425
  198. warp/native/volume_builder.h +19 -19
  199. warp/native/warp.cpp +1057 -1052
  200. warp/native/warp.cu +2943 -2828
  201. warp/native/warp.h +313 -305
  202. warp/optim/__init__.py +9 -9
  203. warp/optim/adam.py +120 -120
  204. warp/optim/linear.py +1104 -939
  205. warp/optim/sgd.py +104 -92
  206. warp/render/__init__.py +10 -10
  207. warp/render/render_opengl.py +3217 -3204
  208. warp/render/render_usd.py +768 -749
  209. warp/render/utils.py +152 -150
  210. warp/sim/__init__.py +52 -59
  211. warp/sim/articulation.py +685 -685
  212. warp/sim/collide.py +1594 -1590
  213. warp/sim/import_mjcf.py +489 -481
  214. warp/sim/import_snu.py +220 -221
  215. warp/sim/import_urdf.py +536 -516
  216. warp/sim/import_usd.py +887 -881
  217. warp/sim/inertia.py +316 -317
  218. warp/sim/integrator.py +234 -233
  219. warp/sim/integrator_euler.py +1956 -1956
  220. warp/sim/integrator_featherstone.py +1910 -1991
  221. warp/sim/integrator_xpbd.py +3294 -3312
  222. warp/sim/model.py +4473 -4314
  223. warp/sim/particles.py +113 -112
  224. warp/sim/render.py +417 -403
  225. warp/sim/utils.py +413 -410
  226. warp/sparse.py +1227 -1227
  227. warp/stubs.py +2109 -2469
  228. warp/tape.py +1162 -225
  229. warp/tests/__init__.py +1 -1
  230. warp/tests/__main__.py +4 -4
  231. warp/tests/assets/torus.usda +105 -105
  232. warp/tests/aux_test_class_kernel.py +26 -26
  233. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  234. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  235. warp/tests/aux_test_dependent.py +22 -22
  236. warp/tests/aux_test_grad_customs.py +23 -23
  237. warp/tests/aux_test_reference.py +11 -11
  238. warp/tests/aux_test_reference_reference.py +10 -10
  239. warp/tests/aux_test_square.py +17 -17
  240. warp/tests/aux_test_unresolved_func.py +14 -14
  241. warp/tests/aux_test_unresolved_symbol.py +14 -14
  242. warp/tests/disabled_kinematics.py +239 -239
  243. warp/tests/run_coverage_serial.py +31 -31
  244. warp/tests/test_adam.py +157 -157
  245. warp/tests/test_arithmetic.py +1124 -1124
  246. warp/tests/test_array.py +2417 -2326
  247. warp/tests/test_array_reduce.py +150 -150
  248. warp/tests/test_async.py +668 -656
  249. warp/tests/test_atomic.py +141 -141
  250. warp/tests/test_bool.py +204 -149
  251. warp/tests/test_builtins_resolution.py +1292 -1292
  252. warp/tests/test_bvh.py +164 -171
  253. warp/tests/test_closest_point_edge_edge.py +228 -228
  254. warp/tests/test_codegen.py +566 -553
  255. warp/tests/test_compile_consts.py +97 -101
  256. warp/tests/test_conditional.py +246 -246
  257. warp/tests/test_copy.py +232 -215
  258. warp/tests/test_ctypes.py +632 -632
  259. warp/tests/test_dense.py +67 -67
  260. warp/tests/test_devices.py +91 -98
  261. warp/tests/test_dlpack.py +530 -529
  262. warp/tests/test_examples.py +400 -378
  263. warp/tests/test_fabricarray.py +955 -955
  264. warp/tests/test_fast_math.py +62 -54
  265. warp/tests/test_fem.py +1277 -1278
  266. warp/tests/test_fp16.py +130 -130
  267. warp/tests/test_func.py +338 -337
  268. warp/tests/test_generics.py +571 -571
  269. warp/tests/test_grad.py +746 -640
  270. warp/tests/test_grad_customs.py +333 -336
  271. warp/tests/test_hash_grid.py +210 -164
  272. warp/tests/test_import.py +39 -39
  273. warp/tests/test_indexedarray.py +1134 -1134
  274. warp/tests/test_intersect.py +67 -67
  275. warp/tests/test_jax.py +307 -307
  276. warp/tests/test_large.py +167 -164
  277. warp/tests/test_launch.py +354 -354
  278. warp/tests/test_lerp.py +261 -261
  279. warp/tests/test_linear_solvers.py +191 -171
  280. warp/tests/test_lvalue.py +421 -493
  281. warp/tests/test_marching_cubes.py +65 -65
  282. warp/tests/test_mat.py +1801 -1827
  283. warp/tests/test_mat_lite.py +115 -115
  284. warp/tests/test_mat_scalar_ops.py +2907 -2889
  285. warp/tests/test_math.py +126 -193
  286. warp/tests/test_matmul.py +500 -499
  287. warp/tests/test_matmul_lite.py +410 -410
  288. warp/tests/test_mempool.py +188 -190
  289. warp/tests/test_mesh.py +284 -324
  290. warp/tests/test_mesh_query_aabb.py +228 -241
  291. warp/tests/test_mesh_query_point.py +692 -702
  292. warp/tests/test_mesh_query_ray.py +292 -303
  293. warp/tests/test_mlp.py +276 -276
  294. warp/tests/test_model.py +110 -110
  295. warp/tests/test_modules_lite.py +39 -39
  296. warp/tests/test_multigpu.py +163 -163
  297. warp/tests/test_noise.py +248 -248
  298. warp/tests/test_operators.py +250 -250
  299. warp/tests/test_options.py +123 -125
  300. warp/tests/test_peer.py +133 -137
  301. warp/tests/test_pinned.py +78 -78
  302. warp/tests/test_print.py +54 -54
  303. warp/tests/test_quat.py +2086 -2086
  304. warp/tests/test_rand.py +288 -288
  305. warp/tests/test_reload.py +217 -217
  306. warp/tests/test_rounding.py +179 -179
  307. warp/tests/test_runlength_encode.py +190 -190
  308. warp/tests/test_sim_grad.py +243 -0
  309. warp/tests/test_sim_kinematics.py +91 -97
  310. warp/tests/test_smoothstep.py +168 -168
  311. warp/tests/test_snippet.py +305 -266
  312. warp/tests/test_sparse.py +468 -460
  313. warp/tests/test_spatial.py +2148 -2148
  314. warp/tests/test_streams.py +486 -473
  315. warp/tests/test_struct.py +710 -675
  316. warp/tests/test_tape.py +173 -148
  317. warp/tests/test_torch.py +743 -743
  318. warp/tests/test_transient_module.py +87 -87
  319. warp/tests/test_types.py +556 -659
  320. warp/tests/test_utils.py +490 -499
  321. warp/tests/test_vec.py +1264 -1268
  322. warp/tests/test_vec_lite.py +73 -73
  323. warp/tests/test_vec_scalar_ops.py +2099 -2099
  324. warp/tests/test_verify_fp.py +94 -94
  325. warp/tests/test_volume.py +737 -736
  326. warp/tests/test_volume_write.py +255 -265
  327. warp/tests/unittest_serial.py +37 -37
  328. warp/tests/unittest_suites.py +363 -359
  329. warp/tests/unittest_utils.py +603 -578
  330. warp/tests/unused_test_misc.py +71 -71
  331. warp/tests/walkthrough_debug.py +85 -85
  332. warp/thirdparty/appdirs.py +598 -598
  333. warp/thirdparty/dlpack.py +143 -143
  334. warp/thirdparty/unittest_parallel.py +566 -561
  335. warp/torch.py +321 -295
  336. warp/types.py +4504 -4450
  337. warp/utils.py +1008 -821
  338. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
  339. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
  340. warp_lang-1.1.0.dist-info/RECORD +352 -0
  341. warp/examples/assets/cube.usda +0 -42
  342. warp/examples/assets/sphere.usda +0 -56
  343. warp/examples/assets/torus.usda +0 -105
  344. warp_lang-1.0.2.dist-info/RECORD +0 -352
  345. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
warp/native/svd.h CHANGED
@@ -1,562 +1,562 @@
1
- /** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
2
- * NVIDIA CORPORATION and its licensors retain all intellectual property
3
- * and proprietary rights in and to this software, related documentation
4
- * and any modifications thereto. Any use, reproduction, disclosure or
5
- * distribution of this software and related documentation without an express
6
- * license agreement from NVIDIA CORPORATION is strictly prohibited.
7
- */
8
-
9
- // The MIT License (MIT)
10
-
11
- // Copyright (c) 2014 Eric V. Jang
12
-
13
- // Permission is hereby granted, free of charge, to any person obtaining a copy
14
- // of this software and associated documentation files (the "Software"), to deal
15
- // in the Software without restriction, including without limitation the rights
16
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
17
- // copies of the Software, and to permit persons to whom the Software is
18
- // furnished to do so, subject to the following conditions:
19
-
20
- // The above copyright notice and this permission notice shall be included in all
21
- // copies or substantial portions of the Software.
22
-
23
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
24
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
26
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
28
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29
- // SOFTWARE.
30
-
31
- // Source: https://github.com/ericjang/svd3/blob/master/svd3_cuda/svd3_cuda.h
32
-
33
-
34
- #pragma once
35
-
36
- #include "builtin.h"
37
-
38
- namespace wp
39
- {
40
-
41
- #define _gamma 5.828427124 // FOUR_GAMMA_SQUARED = sqrt(8)+3;
42
- #define _cstar 0.923879532 // cos(pi/8)
43
- #define _sstar 0.3826834323 // sin(p/8)
44
- #define _EPSILON 1e-6
45
-
46
- // TODO: replace sqrt with rsqrt
47
-
48
- template<typename Type>
49
- inline CUDA_CALLABLE
50
- Type accurateSqrt(Type x)
51
- {
52
- return x / sqrt(x);
53
- }
54
-
55
- template<typename Type>
56
- inline CUDA_CALLABLE
57
- void condSwap(bool c, Type &X, Type &Y)
58
- {
59
- // used in step 2
60
- Type Z = X;
61
- X = c ? Y : X;
62
- Y = c ? Z : Y;
63
- }
64
-
65
- template<typename Type>
66
- inline CUDA_CALLABLE
67
- void condNegSwap(bool c, Type &X, Type &Y)
68
- {
69
- // used in step 2 and 3
70
- Type Z = -X;
71
- X = c ? Y : X;
72
- Y = c ? Z : Y;
73
- }
74
-
75
- // matrix multiplication M = A * B
76
- template<typename Type>
77
- inline CUDA_CALLABLE
78
- void multAB(Type a11, Type a12, Type a13,
79
- Type a21, Type a22, Type a23,
80
- Type a31, Type a32, Type a33,
81
- //
82
- Type b11, Type b12, Type b13,
83
- Type b21, Type b22, Type b23,
84
- Type b31, Type b32, Type b33,
85
- //
86
- Type &m11, Type &m12, Type &m13,
87
- Type &m21, Type &m22, Type &m23,
88
- Type &m31, Type &m32, Type &m33)
89
- {
90
-
91
- m11=a11*b11 + a12*b21 + a13*b31; m12=a11*b12 + a12*b22 + a13*b32; m13=a11*b13 + a12*b23 + a13*b33;
92
- m21=a21*b11 + a22*b21 + a23*b31; m22=a21*b12 + a22*b22 + a23*b32; m23=a21*b13 + a22*b23 + a23*b33;
93
- m31=a31*b11 + a32*b21 + a33*b31; m32=a31*b12 + a32*b22 + a33*b32; m33=a31*b13 + a32*b23 + a33*b33;
94
- }
95
-
96
- // matrix multiplication M = Transpose[A] * B
97
- template<typename Type>
98
- inline CUDA_CALLABLE
99
- void multAtB(Type a11, Type a12, Type a13,
100
- Type a21, Type a22, Type a23,
101
- Type a31, Type a32, Type a33,
102
- //
103
- Type b11, Type b12, Type b13,
104
- Type b21, Type b22, Type b23,
105
- Type b31, Type b32, Type b33,
106
- //
107
- Type &m11, Type &m12, Type &m13,
108
- Type &m21, Type &m22, Type &m23,
109
- Type &m31, Type &m32, Type &m33)
110
- {
111
- m11=a11*b11 + a21*b21 + a31*b31; m12=a11*b12 + a21*b22 + a31*b32; m13=a11*b13 + a21*b23 + a31*b33;
112
- m21=a12*b11 + a22*b21 + a32*b31; m22=a12*b12 + a22*b22 + a32*b32; m23=a12*b13 + a22*b23 + a32*b33;
113
- m31=a13*b11 + a23*b21 + a33*b31; m32=a13*b12 + a23*b22 + a33*b32; m33=a13*b13 + a23*b23 + a33*b33;
114
- }
115
-
116
- template<typename Type>
117
- inline CUDA_CALLABLE
118
- void quatToMat3(const Type * qV,
119
- Type &m11, Type &m12, Type &m13,
120
- Type &m21, Type &m22, Type &m23,
121
- Type &m31, Type &m32, Type &m33
122
- )
123
- {
124
- Type w = qV[3];
125
- Type x = qV[0];
126
- Type y = qV[1];
127
- Type z = qV[2];
128
-
129
- Type qxx = x*x;
130
- Type qyy = y*y;
131
- Type qzz = z*z;
132
- Type qxz = x*z;
133
- Type qxy = x*y;
134
- Type qyz = y*z;
135
- Type qwx = w*x;
136
- Type qwy = w*y;
137
- Type qwz = w*z;
138
-
139
- m11=Type(1) - Type(2)*(qyy + qzz); m12=Type(2)*(qxy - qwz); m13=Type(2)*(qxz + qwy);
140
- m21=Type(2)*(qxy + qwz); m22=Type(1) - Type(2)*(qxx + qzz); m23=Type(2)*(qyz - qwx);
141
- m31=Type(2)*(qxz - qwy); m32=Type(2)*(qyz + qwx); m33=Type(1) - Type(2)*(qxx + qyy);
142
- }
143
-
144
- template<typename Type>
145
- inline CUDA_CALLABLE
146
- void approximateGivensQuaternion(Type a11, Type a12, Type a22, Type &ch, Type &sh)
147
- {
148
- /*
149
- * Given givens angle computed by approximateGivensAngles,
150
- * compute the corresponding rotation quaternion.
151
- */
152
- ch = Type(2)*(a11-a22);
153
- sh = a12;
154
- bool b = _gamma*sh*sh < ch*ch;
155
- Type w = Type(1) / sqrt(ch*ch+sh*sh);
156
- ch=b?w*ch:Type(_cstar);
157
- sh=b?w*sh:Type(_sstar);
158
- }
159
-
160
- template<typename Type>
161
- inline CUDA_CALLABLE
162
- void jacobiConjugation( const int x, const int y, const int z,
163
- Type &s11,
164
- Type &s21, Type &s22,
165
- Type &s31, Type &s32, Type &s33,
166
- Type * qV)
167
- {
168
- Type ch,sh;
169
- approximateGivensQuaternion(s11,s21,s22,ch,sh);
170
-
171
- Type scale = ch*ch+sh*sh;
172
- Type a = (ch*ch-sh*sh)/scale;
173
- Type b = (Type(2)*sh*ch)/scale;
174
-
175
- // make temp copy of S
176
- Type _s11 = s11;
177
- Type _s21 = s21; Type _s22 = s22;
178
- Type _s31 = s31; Type _s32 = s32; Type _s33 = s33;
179
-
180
- // perform conjugation S = Q'*S*Q
181
- // Q already implicitly solved from a, b
182
- s11 =a*(a*_s11 + b*_s21) + b*(a*_s21 + b*_s22);
183
- s21 =a*(-b*_s11 + a*_s21) + b*(-b*_s21 + a*_s22); s22=-b*(-b*_s11 + a*_s21) + a*(-b*_s21 + a*_s22);
184
- s31 =a*_s31 + b*_s32; s32=-b*_s31 + a*_s32; s33=_s33;
185
-
186
- // update cumulative rotation qV
187
- Type tmp[3];
188
- tmp[0]=qV[0]*sh;
189
- tmp[1]=qV[1]*sh;
190
- tmp[2]=qV[2]*sh;
191
- sh *= qV[3];
192
-
193
- qV[0] *= ch;
194
- qV[1] *= ch;
195
- qV[2] *= ch;
196
- qV[3] *= ch;
197
-
198
- // (x,y,z) corresponds to ((0,1,2),(1,2,0),(2,0,1))
199
- // for (p,q) = ((0,1),(1,2),(0,2))
200
- qV[z] += sh;
201
- qV[3] -= tmp[z]; // w
202
- qV[x] += tmp[y];
203
- qV[y] -= tmp[x];
204
-
205
- // re-arrange matrix for next iteration
206
- _s11 = s22;
207
- _s21 = s32; _s22 = s33;
208
- _s31 = s21; _s32 = s31; _s33 = s11;
209
- s11 = _s11;
210
- s21 = _s21; s22 = _s22;
211
- s31 = _s31; s32 = _s32; s33 = _s33;
212
-
213
- }
214
-
215
- template<typename Type>
216
- inline CUDA_CALLABLE
217
- Type dist2(Type x, Type y, Type z)
218
- {
219
- return x*x+y*y+z*z;
220
- }
221
-
222
- // finds transformation that diagonalizes a symmetric matrix
223
- template<typename Type>
224
- inline CUDA_CALLABLE
225
- void jacobiEigenanlysis( // symmetric matrix
226
- Type &s11,
227
- Type &s21, Type &s22,
228
- Type &s31, Type &s32, Type &s33,
229
- // quaternion representation of V
230
- Type * qV)
231
- {
232
- qV[3]=1; qV[0]=0;qV[1]=0;qV[2]=0; // follow same indexing convention as GLM
233
- for (int i=0;i<4;i++)
234
- {
235
- // we wish to eliminate the maximum off-diagonal element
236
- // on every iteration, but cycling over all 3 possible rotations
237
- // in fixed order (p,q) = (1,2) , (2,3), (1,3) still retains
238
- // asymptotic convergence
239
- jacobiConjugation(0,1,2,s11,s21,s22,s31,s32,s33,qV); // p,q = 0,1
240
- jacobiConjugation(1,2,0,s11,s21,s22,s31,s32,s33,qV); // p,q = 1,2
241
- jacobiConjugation(2,0,1,s11,s21,s22,s31,s32,s33,qV); // p,q = 0,2
242
- }
243
- }
244
-
245
- template<typename Type>
246
- inline CUDA_CALLABLE
247
- void sortSingularValues(// matrix that we want to decompose
248
- Type &b11, Type &b12, Type &b13,
249
- Type &b21, Type &b22, Type &b23,
250
- Type &b31, Type &b32, Type &b33,
251
- // sort V simultaneously
252
- Type &v11, Type &v12, Type &v13,
253
- Type &v21, Type &v22, Type &v23,
254
- Type &v31, Type &v32, Type &v33)
255
- {
256
- Type rho1 = dist2(b11,b21,b31);
257
- Type rho2 = dist2(b12,b22,b32);
258
- Type rho3 = dist2(b13,b23,b33);
259
- bool c;
260
- c = rho1 < rho2;
261
- condNegSwap(c,b11,b12); condNegSwap(c,v11,v12);
262
- condNegSwap(c,b21,b22); condNegSwap(c,v21,v22);
263
- condNegSwap(c,b31,b32); condNegSwap(c,v31,v32);
264
- condSwap(c,rho1,rho2);
265
- c = rho1 < rho3;
266
- condNegSwap(c,b11,b13); condNegSwap(c,v11,v13);
267
- condNegSwap(c,b21,b23); condNegSwap(c,v21,v23);
268
- condNegSwap(c,b31,b33); condNegSwap(c,v31,v33);
269
- condSwap(c,rho1,rho3);
270
- c = rho2 < rho3;
271
- condNegSwap(c,b12,b13); condNegSwap(c,v12,v13);
272
- condNegSwap(c,b22,b23); condNegSwap(c,v22,v23);
273
- condNegSwap(c,b32,b33); condNegSwap(c,v32,v33);
274
- }
275
-
276
- template<typename Type>
277
- inline CUDA_CALLABLE
278
- void QRGivensQuaternion(Type a1, Type a2, Type &ch, Type &sh)
279
- {
280
- // a1 = pivot point on diagonal
281
- // a2 = lower triangular entry we want to annihilate
282
- Type epsilon = _EPSILON;
283
- Type rho = accurateSqrt(a1*a1 + a2*a2);
284
-
285
- sh = rho > epsilon ? a2 : Type(0);
286
- ch = abs(a1) + max(rho,epsilon);
287
- bool b = a1 < Type(0);
288
- condSwap(b,sh,ch);
289
- Type w = Type(1) / sqrt(ch*ch+sh*sh);
290
- ch *= w;
291
- sh *= w;
292
- }
293
-
294
- template<typename Type>
295
- inline CUDA_CALLABLE
296
- void QRDecomposition(// matrix that we want to decompose
297
- Type b11, Type b12, Type b13,
298
- Type b21, Type b22, Type b23,
299
- Type b31, Type b32, Type b33,
300
- // output Q
301
- Type &q11, Type &q12, Type &q13,
302
- Type &q21, Type &q22, Type &q23,
303
- Type &q31, Type &q32, Type &q33,
304
- // output R
305
- Type &r11, Type &r12, Type &r13,
306
- Type &r21, Type &r22, Type &r23,
307
- Type &r31, Type &r32, Type &r33)
308
- {
309
- Type ch1,sh1,ch2,sh2,ch3,sh3;
310
- Type a,b;
311
-
312
- // first givens rotation (ch,0,0,sh)
313
- QRGivensQuaternion(b11,b21,ch1,sh1);
314
- a=Type(1)-Type(2)*sh1*sh1;
315
- b=Type(2)*ch1*sh1;
316
- // apply B = Q' * B
317
- r11=a*b11+b*b21; r12=a*b12+b*b22; r13=a*b13+b*b23;
318
- r21=-b*b11+a*b21; r22=-b*b12+a*b22; r23=-b*b13+a*b23;
319
- r31=b31; r32=b32; r33=b33;
320
-
321
- // second givens rotation (ch,0,-sh,0)
322
- QRGivensQuaternion(r11,r31,ch2,sh2);
323
- a=Type(1)-Type(2)*sh2*sh2;
324
- b=Type(2)*ch2*sh2;
325
- // apply B = Q' * B;
326
- b11=a*r11+b*r31; b12=a*r12+b*r32; b13=a*r13+b*r33;
327
- b21=r21; b22=r22; b23=r23;
328
- b31=-b*r11+a*r31; b32=-b*r12+a*r32; b33=-b*r13+a*r33;
329
-
330
- // third givens rotation (ch,sh,0,0)
331
- QRGivensQuaternion(b22,b32,ch3,sh3);
332
- a=Type(1)-Type(2)*sh3*sh3;
333
- b=Type(2)*ch3*sh3;
334
- // R is now set to desired value
335
- r11=b11; r12=b12; r13=b13;
336
- r21=a*b21+b*b31; r22=a*b22+b*b32; r23=a*b23+b*b33;
337
- r31=-b*b21+a*b31; r32=-b*b22+a*b32; r33=-b*b23+a*b33;
338
-
339
- // construct the cumulative rotation Q=Q1 * Q2 * Q3
340
- // the number of floating point operations for three quaternion multiplications
341
- // is more or less comparable to the explicit form of the joined matrix.
342
- // certainly more memory-efficient!
343
- Type sh12=sh1*sh1;
344
- Type sh22=sh2*sh2;
345
- Type sh32=sh3*sh3;
346
-
347
- q11=(Type(-1)+Type(2)*sh12)*(Type(-1)+Type(2)*sh22);
348
- q12=Type(4)*ch2*ch3*(Type(-1)+Type(2)*sh12)*sh2*sh3+Type(2)*ch1*sh1*(Type(-1)+Type(2)*sh32);
349
- q13=Type(4)*ch1*ch3*sh1*sh3-Type(2)*ch2*(Type(-1)+Type(2)*sh12)*sh2*(Type(-1)+Type(2)*sh32);
350
-
351
- q21=Type(2)*ch1*sh1*(Type(1)-Type(2)*sh22);
352
- q22=Type(-8)*ch1*ch2*ch3*sh1*sh2*sh3+(Type(-1)+Type(2)*sh12)*(Type(-1)+Type(2)*sh32);
353
- q23=Type(-2)*ch3*sh3+Type(4)*sh1*(ch3*sh1*sh3+ch1*ch2*sh2*(Type(-1)+Type(2)*sh32));
354
-
355
- q31=Type(2)*ch2*sh2;
356
- q32=Type(2)*ch3*(Type(1)-Type(2)*sh22)*sh3;
357
- q33=(Type(-1)+Type(2)*sh22)*(Type(-1)+Type(2)*sh32);
358
- }
359
-
360
- template<typename Type>
361
- inline CUDA_CALLABLE
362
- void _svd(// input A
363
- Type a11, Type a12, Type a13,
364
- Type a21, Type a22, Type a23,
365
- Type a31, Type a32, Type a33,
366
- // output U
367
- Type &u11, Type &u12, Type &u13,
368
- Type &u21, Type &u22, Type &u23,
369
- Type &u31, Type &u32, Type &u33,
370
- // output S
371
- Type &s11, Type &s12, Type &s13,
372
- Type &s21, Type &s22, Type &s23,
373
- Type &s31, Type &s32, Type &s33,
374
- // output V
375
- Type &v11, Type &v12, Type &v13,
376
- Type &v21, Type &v22, Type &v23,
377
- Type &v31, Type &v32, Type &v33)
378
- {
379
- // normal equations matrix
380
- Type ATA11, ATA12, ATA13;
381
- Type ATA21, ATA22, ATA23;
382
- Type ATA31, ATA32, ATA33;
383
-
384
- multAtB(a11,a12,a13,a21,a22,a23,a31,a32,a33,
385
- a11,a12,a13,a21,a22,a23,a31,a32,a33,
386
- ATA11,ATA12,ATA13,ATA21,ATA22,ATA23,ATA31,ATA32,ATA33);
387
-
388
- // symmetric eigenalysis
389
- Type qV[4];
390
- jacobiEigenanlysis( ATA11,ATA21,ATA22, ATA31,ATA32,ATA33,qV);
391
- quatToMat3(qV,v11,v12,v13,v21,v22,v23,v31,v32,v33);
392
-
393
- Type b11, b12, b13;
394
- Type b21, b22, b23;
395
- Type b31, b32, b33;
396
- multAB(a11,a12,a13,a21,a22,a23,a31,a32,a33,
397
- v11,v12,v13,v21,v22,v23,v31,v32,v33,
398
- b11, b12, b13, b21, b22, b23, b31, b32, b33);
399
-
400
- // sort singular values and find V
401
- sortSingularValues(b11, b12, b13, b21, b22, b23, b31, b32, b33,
402
- v11,v12,v13,v21,v22,v23,v31,v32,v33);
403
-
404
- // QR decomposition
405
- QRDecomposition(b11, b12, b13, b21, b22, b23, b31, b32, b33,
406
- u11, u12, u13, u21, u22, u23, u31, u32, u33,
407
- s11, s12, s13, s21, s22, s23, s31, s32, s33
408
- );
409
- }
410
-
411
- template<typename Type>
412
- inline CUDA_CALLABLE void svd3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& U, vec_t<3,Type>& sigma, mat_t<3,3,Type>& V) {
413
- Type s12, s13, s21, s23, s31, s32;
414
- _svd(A.data[0][0], A.data[0][1], A.data[0][2],
415
- A.data[1][0], A.data[1][1], A.data[1][2],
416
- A.data[2][0], A.data[2][1], A.data[2][2],
417
-
418
- U.data[0][0], U.data[0][1], U.data[0][2],
419
- U.data[1][0], U.data[1][1], U.data[1][2],
420
- U.data[2][0], U.data[2][1], U.data[2][2],
421
-
422
- sigma[0], s12, s13,
423
- s21, sigma[1], s23,
424
- s31, s32, sigma[2],
425
-
426
- V.data[0][0], V.data[0][1], V.data[0][2],
427
- V.data[1][0], V.data[1][1], V.data[1][2],
428
- V.data[2][0], V.data[2][1], V.data[2][2]);
429
- }
430
-
431
- template<typename Type>
432
- inline CUDA_CALLABLE void adj_svd3(const mat_t<3,3,Type>& A,
433
- const mat_t<3,3,Type>& U,
434
- const vec_t<3,Type>& sigma,
435
- const mat_t<3,3,Type>& V,
436
- mat_t<3,3,Type>& adj_A,
437
- const mat_t<3,3,Type>& adj_U,
438
- const vec_t<3,Type>& adj_sigma,
439
- const mat_t<3,3,Type>& adj_V) {
440
- Type sx2 = sigma[0] * sigma[0];
441
- Type sy2 = sigma[1] * sigma[1];
442
- Type sz2 = sigma[2] * sigma[2];
443
-
444
- Type F01 = Type(1) / min(sy2 - sx2, Type(-1e-6f));
445
- Type F02 = Type(1) / min(sz2 - sx2, Type(-1e-6f));
446
- Type F12 = Type(1) / min(sz2 - sy2, Type(-1e-6f));
447
-
448
- mat_t<3,3,Type> F = mat_t<3,3,Type>(0, F01, F02,
449
- -F01, 0, F12,
450
- -F02, -F12, 0);
451
-
452
- mat_t<3,3,Type> adj_sigma_mat = mat_t<3,3,Type>(adj_sigma[0], 0, 0,
453
- 0, adj_sigma[1], 0,
454
- 0, 0, adj_sigma[2]);
455
- mat_t<3,3,Type> s_mat = mat_t<3,3,Type>(sigma[0], 0, 0,
456
- 0, sigma[1], 0,
457
- 0, 0, sigma[2]);
458
-
459
- // https://github.com/pytorch/pytorch/blob/d7ddae8e4fe66fa1330317673438d1eb5aa99ca4/torch/csrc/autograd/FunctionsManual.cpp
460
- mat_t<3,3,Type> UT = transpose(U);
461
- mat_t<3,3,Type> VT = transpose(V);
462
-
463
- mat_t<3,3,Type> sigma_term = mul(U, mul(adj_sigma_mat, VT));
464
-
465
- mat_t<3,3,Type> u_term = mul(mul(U, mul(cw_mul(F, (mul(UT, adj_U) - mul(transpose(adj_U), U))), s_mat)), VT);
466
- mat_t<3,3,Type> v_term = mul(U, mul(s_mat, mul(cw_mul(F, (mul(VT, adj_V) - mul(transpose(adj_V), V))), VT)));
467
-
468
- adj_A = adj_A + (u_term + v_term + sigma_term);
469
- }
470
-
471
-
472
- template<typename Type>
473
- inline CUDA_CALLABLE void qr3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& Q, mat_t<3,3,Type>& R) {
474
- QRDecomposition(A.data[0][0], A.data[0][1], A.data[0][2],
475
- A.data[1][0], A.data[1][1], A.data[1][2],
476
- A.data[2][0], A.data[2][1], A.data[2][2],
477
-
478
- Q.data[0][0], Q.data[0][1], Q.data[0][2],
479
- Q.data[1][0], Q.data[1][1], Q.data[1][2],
480
- Q.data[2][0], Q.data[2][1], Q.data[2][2],
481
-
482
- R.data[0][0], R.data[0][1], R.data[0][2],
483
- R.data[1][0], R.data[1][1], R.data[1][2],
484
- R.data[2][0], R.data[2][1], R.data[2][2]);
485
- }
486
-
487
-
488
- template<typename Type>
489
- inline CUDA_CALLABLE void adj_qr3(const mat_t<3,3,Type>& A,
490
- const mat_t<3,3,Type>& Q,
491
- const mat_t<3,3,Type>& R,
492
- mat_t<3,3,Type>& adj_A,
493
- const mat_t<3,3,Type>& adj_Q,
494
- const mat_t<3,3,Type>& adj_R) {
495
- // Eq 3 of https://arxiv.org/pdf/2009.10071.pdf
496
- mat_t<3,3,Type> M = mul(R,transpose(adj_R)) - mul(transpose(adj_Q), Q);
497
- mat_t<3,3,Type> copyltuM = mat_t<3,3,Type>(M.data[0][0], M.data[1][0], M.data[2][0],
498
- M.data[1][0], M.data[1][1], M.data[2][1],
499
- M.data[2][0], M.data[2][1], M.data[2][2]);
500
- adj_A = adj_A + mul(adj_Q + mul(Q,copyltuM), inverse(transpose(R)));
501
- }
502
-
503
-
504
- template<typename Type>
505
- inline CUDA_CALLABLE void eig3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& Q, vec_t<3,Type>& d) {
506
- Type qV[4];
507
- Type s11 = A.data[0][0];
508
- Type s21 = A.data[1][0];
509
- Type s22 = A.data[1][1];
510
- Type s31 = A.data[2][0];
511
- Type s32 = A.data[2][1];
512
- Type s33 = A.data[2][2];
513
-
514
- jacobiEigenanlysis(s11, s21, s22, s31, s32, s33, qV);
515
- quatToMat3(qV, Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2]);
516
- mat_t<3,3,Type> t;
517
- multAtB(Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2],
518
- A.data[0][0], A.data[0][1], A.data[0][2], A.data[1][0], A.data[1][1], A.data[1][2], A.data[2][0], A.data[2][1], A.data[2][2],
519
- t.data[0][0], t.data[0][1], t.data[0][2], t.data[1][0], t.data[1][1], t.data[1][2], t.data[2][0], t.data[2][1], t.data[2][2]);
520
-
521
- mat_t<3,3,Type> u;
522
- multAB(t.data[0][0], t.data[0][1], t.data[0][2], t.data[1][0], t.data[1][1], t.data[1][2], t.data[2][0], t.data[2][1], t.data[2][2],
523
- Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2],
524
- u.data[0][0], u.data[0][1], u.data[0][2], u.data[1][0], u.data[1][1], u.data[1][2], u.data[2][0], u.data[2][1], u.data[2][2]
525
- );
526
- d = vec_t<3,Type>(u.data[0][0], u.data[1][1], u.data[2][2]);
527
- }
528
-
529
- template<typename Type>
530
- inline CUDA_CALLABLE void adj_eig3(const mat_t<3,3,Type>& A, const mat_t<3,3,Type>& Q, const vec_t<3,Type>& d,
531
- mat_t<3,3,Type>& adj_A, const mat_t<3,3,Type>& adj_Q, const vec_t<3,Type>& adj_d) {
532
- // Page 10 of https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
533
- mat_t<3,3,Type> D = mat_t<3,3,Type>(d[0], 0, 0,
534
- 0, d[1], 0,
535
- 0, 0, d[2]);
536
- mat_t<3,3,Type> D_bar = mat_t<3,3,Type>(adj_d[0], 0, 0,
537
- 0, adj_d[1], 0,
538
- 0, 0, adj_d[2]);
539
-
540
- Type dyx = d[1] - d[0];
541
- Type dzx = d[2] - d[0];
542
- Type dzy = d[2] - d[1];
543
-
544
- if ((dyx < Type(0)) && (dyx > Type(-1e-6))) dyx = -1e-6;
545
- if ((dyx > Type(0)) && (dyx < Type(1e-6))) dyx = 1e-6;
546
-
547
- if ((dzx < Type(0)) && (dzx > Type(-1e-6))) dzx = -1e-6;
548
- if ((dzx > Type(0)) && (dzx < Type(1e-6))) dzx = 1e-6;
549
-
550
- if ((dzy < Type(0)) && (dzy > Type(-1e-6))) dzy = -1e-6;
551
- if ((dzy > Type(0)) && (dzy < Type(1e-6))) dzy = 1e-6;
552
-
553
- Type F01 = Type(1) / dyx;
554
- Type F02 = Type(1) / dzx;
555
- Type F12 = Type(1) / dzy;
556
- mat_t<3,3,Type> F = mat_t<3,3,Type>(0, F01, F02,
557
- -F01, 0, F12,
558
- -F02, -F12, 0);
559
- mat_t<3,3,Type> QT = transpose(Q);
560
- adj_A = adj_A + mul(Q, mul(D_bar + cw_mul(F, mul(QT, adj_Q)), QT));
561
- }
562
- }
1
+ /** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
2
+ * NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ * and proprietary rights in and to this software, related documentation
4
+ * and any modifications thereto. Any use, reproduction, disclosure or
5
+ * distribution of this software and related documentation without an express
6
+ * license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+ */
8
+
9
+ // The MIT License (MIT)
10
+
11
+ // Copyright (c) 2014 Eric V. Jang
12
+
13
+ // Permission is hereby granted, free of charge, to any person obtaining a copy
14
+ // of this software and associated documentation files (the "Software"), to deal
15
+ // in the Software without restriction, including without limitation the rights
16
+ // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
17
+ // copies of the Software, and to permit persons to whom the Software is
18
+ // furnished to do so, subject to the following conditions:
19
+
20
+ // The above copyright notice and this permission notice shall be included in all
21
+ // copies or substantial portions of the Software.
22
+
23
+ // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
24
+ // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25
+ // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
26
+ // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27
+ // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
28
+ // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29
+ // SOFTWARE.
30
+
31
+ // Source: https://github.com/ericjang/svd3/blob/master/svd3_cuda/svd3_cuda.h
32
+
33
+
34
+ #pragma once
35
+
36
+ #include "builtin.h"
37
+
38
+ namespace wp
39
+ {
40
+
41
+ #define _gamma 5.828427124 // FOUR_GAMMA_SQUARED = sqrt(8)+3;
42
+ #define _cstar 0.923879532 // cos(pi/8)
43
+ #define _sstar 0.3826834323 // sin(p/8)
44
+ #define _EPSILON 1e-6
45
+
46
+ // TODO: replace sqrt with rsqrt
47
+
48
+ template<typename Type>
49
+ inline CUDA_CALLABLE
50
+ Type accurateSqrt(Type x)
51
+ {
52
+ return x / sqrt(x);
53
+ }
54
+
55
+ template<typename Type>
56
+ inline CUDA_CALLABLE
57
+ void condSwap(bool c, Type &X, Type &Y)
58
+ {
59
+ // used in step 2
60
+ Type Z = X;
61
+ X = c ? Y : X;
62
+ Y = c ? Z : Y;
63
+ }
64
+
65
+ template<typename Type>
66
+ inline CUDA_CALLABLE
67
+ void condNegSwap(bool c, Type &X, Type &Y)
68
+ {
69
+ // used in step 2 and 3
70
+ Type Z = -X;
71
+ X = c ? Y : X;
72
+ Y = c ? Z : Y;
73
+ }
74
+
75
+ // matrix multiplication M = A * B
76
+ template<typename Type>
77
+ inline CUDA_CALLABLE
78
+ void multAB(Type a11, Type a12, Type a13,
79
+ Type a21, Type a22, Type a23,
80
+ Type a31, Type a32, Type a33,
81
+ //
82
+ Type b11, Type b12, Type b13,
83
+ Type b21, Type b22, Type b23,
84
+ Type b31, Type b32, Type b33,
85
+ //
86
+ Type &m11, Type &m12, Type &m13,
87
+ Type &m21, Type &m22, Type &m23,
88
+ Type &m31, Type &m32, Type &m33)
89
+ {
90
+
91
+ m11=a11*b11 + a12*b21 + a13*b31; m12=a11*b12 + a12*b22 + a13*b32; m13=a11*b13 + a12*b23 + a13*b33;
92
+ m21=a21*b11 + a22*b21 + a23*b31; m22=a21*b12 + a22*b22 + a23*b32; m23=a21*b13 + a22*b23 + a23*b33;
93
+ m31=a31*b11 + a32*b21 + a33*b31; m32=a31*b12 + a32*b22 + a33*b32; m33=a31*b13 + a32*b23 + a33*b33;
94
+ }
95
+
96
+ // matrix multiplication M = Transpose[A] * B
97
+ template<typename Type>
98
+ inline CUDA_CALLABLE
99
+ void multAtB(Type a11, Type a12, Type a13,
100
+ Type a21, Type a22, Type a23,
101
+ Type a31, Type a32, Type a33,
102
+ //
103
+ Type b11, Type b12, Type b13,
104
+ Type b21, Type b22, Type b23,
105
+ Type b31, Type b32, Type b33,
106
+ //
107
+ Type &m11, Type &m12, Type &m13,
108
+ Type &m21, Type &m22, Type &m23,
109
+ Type &m31, Type &m32, Type &m33)
110
+ {
111
+ m11=a11*b11 + a21*b21 + a31*b31; m12=a11*b12 + a21*b22 + a31*b32; m13=a11*b13 + a21*b23 + a31*b33;
112
+ m21=a12*b11 + a22*b21 + a32*b31; m22=a12*b12 + a22*b22 + a32*b32; m23=a12*b13 + a22*b23 + a32*b33;
113
+ m31=a13*b11 + a23*b21 + a33*b31; m32=a13*b12 + a23*b22 + a33*b32; m33=a13*b13 + a23*b23 + a33*b33;
114
+ }
115
+
116
+ template<typename Type>
117
+ inline CUDA_CALLABLE
118
+ void quatToMat3(const Type * qV,
119
+ Type &m11, Type &m12, Type &m13,
120
+ Type &m21, Type &m22, Type &m23,
121
+ Type &m31, Type &m32, Type &m33
122
+ )
123
+ {
124
+ Type w = qV[3];
125
+ Type x = qV[0];
126
+ Type y = qV[1];
127
+ Type z = qV[2];
128
+
129
+ Type qxx = x*x;
130
+ Type qyy = y*y;
131
+ Type qzz = z*z;
132
+ Type qxz = x*z;
133
+ Type qxy = x*y;
134
+ Type qyz = y*z;
135
+ Type qwx = w*x;
136
+ Type qwy = w*y;
137
+ Type qwz = w*z;
138
+
139
+ m11=Type(1) - Type(2)*(qyy + qzz); m12=Type(2)*(qxy - qwz); m13=Type(2)*(qxz + qwy);
140
+ m21=Type(2)*(qxy + qwz); m22=Type(1) - Type(2)*(qxx + qzz); m23=Type(2)*(qyz - qwx);
141
+ m31=Type(2)*(qxz - qwy); m32=Type(2)*(qyz + qwx); m33=Type(1) - Type(2)*(qxx + qyy);
142
+ }
143
+
144
+ template<typename Type>
145
+ inline CUDA_CALLABLE
146
+ void approximateGivensQuaternion(Type a11, Type a12, Type a22, Type &ch, Type &sh)
147
+ {
148
+ /*
149
+ * Given givens angle computed by approximateGivensAngles,
150
+ * compute the corresponding rotation quaternion.
151
+ */
152
+ ch = Type(2)*(a11-a22);
153
+ sh = a12;
154
+ bool b = _gamma*sh*sh < ch*ch;
155
+ Type w = Type(1) / sqrt(ch*ch+sh*sh);
156
+ ch=b?w*ch:Type(_cstar);
157
+ sh=b?w*sh:Type(_sstar);
158
+ }
159
+
160
+ template<typename Type>
161
+ inline CUDA_CALLABLE
162
+ void jacobiConjugation( const int x, const int y, const int z,
163
+ Type &s11,
164
+ Type &s21, Type &s22,
165
+ Type &s31, Type &s32, Type &s33,
166
+ Type * qV)
167
+ {
168
+ Type ch,sh;
169
+ approximateGivensQuaternion(s11,s21,s22,ch,sh);
170
+
171
+ Type scale = ch*ch+sh*sh;
172
+ Type a = (ch*ch-sh*sh)/scale;
173
+ Type b = (Type(2)*sh*ch)/scale;
174
+
175
+ // make temp copy of S
176
+ Type _s11 = s11;
177
+ Type _s21 = s21; Type _s22 = s22;
178
+ Type _s31 = s31; Type _s32 = s32; Type _s33 = s33;
179
+
180
+ // perform conjugation S = Q'*S*Q
181
+ // Q already implicitly solved from a, b
182
+ s11 =a*(a*_s11 + b*_s21) + b*(a*_s21 + b*_s22);
183
+ s21 =a*(-b*_s11 + a*_s21) + b*(-b*_s21 + a*_s22); s22=-b*(-b*_s11 + a*_s21) + a*(-b*_s21 + a*_s22);
184
+ s31 =a*_s31 + b*_s32; s32=-b*_s31 + a*_s32; s33=_s33;
185
+
186
+ // update cumulative rotation qV
187
+ Type tmp[3];
188
+ tmp[0]=qV[0]*sh;
189
+ tmp[1]=qV[1]*sh;
190
+ tmp[2]=qV[2]*sh;
191
+ sh *= qV[3];
192
+
193
+ qV[0] *= ch;
194
+ qV[1] *= ch;
195
+ qV[2] *= ch;
196
+ qV[3] *= ch;
197
+
198
+ // (x,y,z) corresponds to ((0,1,2),(1,2,0),(2,0,1))
199
+ // for (p,q) = ((0,1),(1,2),(0,2))
200
+ qV[z] += sh;
201
+ qV[3] -= tmp[z]; // w
202
+ qV[x] += tmp[y];
203
+ qV[y] -= tmp[x];
204
+
205
+ // re-arrange matrix for next iteration
206
+ _s11 = s22;
207
+ _s21 = s32; _s22 = s33;
208
+ _s31 = s21; _s32 = s31; _s33 = s11;
209
+ s11 = _s11;
210
+ s21 = _s21; s22 = _s22;
211
+ s31 = _s31; s32 = _s32; s33 = _s33;
212
+
213
+ }
214
+
215
+ template<typename Type>
216
+ inline CUDA_CALLABLE
217
+ Type dist2(Type x, Type y, Type z)
218
+ {
219
+ return x*x+y*y+z*z;
220
+ }
221
+
222
+ // finds transformation that diagonalizes a symmetric matrix
223
+ template<typename Type>
224
+ inline CUDA_CALLABLE
225
+ void jacobiEigenanlysis( // symmetric matrix
226
+ Type &s11,
227
+ Type &s21, Type &s22,
228
+ Type &s31, Type &s32, Type &s33,
229
+ // quaternion representation of V
230
+ Type * qV)
231
+ {
232
+ qV[3]=1; qV[0]=0;qV[1]=0;qV[2]=0; // follow same indexing convention as GLM
233
+ for (int i=0;i<4;i++)
234
+ {
235
+ // we wish to eliminate the maximum off-diagonal element
236
+ // on every iteration, but cycling over all 3 possible rotations
237
+ // in fixed order (p,q) = (1,2) , (2,3), (1,3) still retains
238
+ // asymptotic convergence
239
+ jacobiConjugation(0,1,2,s11,s21,s22,s31,s32,s33,qV); // p,q = 0,1
240
+ jacobiConjugation(1,2,0,s11,s21,s22,s31,s32,s33,qV); // p,q = 1,2
241
+ jacobiConjugation(2,0,1,s11,s21,s22,s31,s32,s33,qV); // p,q = 0,2
242
+ }
243
+ }
244
+
245
+ template<typename Type>
246
+ inline CUDA_CALLABLE
247
+ void sortSingularValues(// matrix that we want to decompose
248
+ Type &b11, Type &b12, Type &b13,
249
+ Type &b21, Type &b22, Type &b23,
250
+ Type &b31, Type &b32, Type &b33,
251
+ // sort V simultaneously
252
+ Type &v11, Type &v12, Type &v13,
253
+ Type &v21, Type &v22, Type &v23,
254
+ Type &v31, Type &v32, Type &v33)
255
+ {
256
+ Type rho1 = dist2(b11,b21,b31);
257
+ Type rho2 = dist2(b12,b22,b32);
258
+ Type rho3 = dist2(b13,b23,b33);
259
+ bool c;
260
+ c = rho1 < rho2;
261
+ condNegSwap(c,b11,b12); condNegSwap(c,v11,v12);
262
+ condNegSwap(c,b21,b22); condNegSwap(c,v21,v22);
263
+ condNegSwap(c,b31,b32); condNegSwap(c,v31,v32);
264
+ condSwap(c,rho1,rho2);
265
+ c = rho1 < rho3;
266
+ condNegSwap(c,b11,b13); condNegSwap(c,v11,v13);
267
+ condNegSwap(c,b21,b23); condNegSwap(c,v21,v23);
268
+ condNegSwap(c,b31,b33); condNegSwap(c,v31,v33);
269
+ condSwap(c,rho1,rho3);
270
+ c = rho2 < rho3;
271
+ condNegSwap(c,b12,b13); condNegSwap(c,v12,v13);
272
+ condNegSwap(c,b22,b23); condNegSwap(c,v22,v23);
273
+ condNegSwap(c,b32,b33); condNegSwap(c,v32,v33);
274
+ }
275
+
276
+ template<typename Type>
277
+ inline CUDA_CALLABLE
278
+ void QRGivensQuaternion(Type a1, Type a2, Type &ch, Type &sh)
279
+ {
280
+ // a1 = pivot point on diagonal
281
+ // a2 = lower triangular entry we want to annihilate
282
+ Type epsilon = _EPSILON;
283
+ Type rho = accurateSqrt(a1*a1 + a2*a2);
284
+
285
+ sh = rho > epsilon ? a2 : Type(0);
286
+ ch = abs(a1) + max(rho,epsilon);
287
+ bool b = a1 < Type(0);
288
+ condSwap(b,sh,ch);
289
+ Type w = Type(1) / sqrt(ch*ch+sh*sh);
290
+ ch *= w;
291
+ sh *= w;
292
+ }
293
+
294
+ template<typename Type>
295
+ inline CUDA_CALLABLE
296
+ void QRDecomposition(// matrix that we want to decompose
297
+ Type b11, Type b12, Type b13,
298
+ Type b21, Type b22, Type b23,
299
+ Type b31, Type b32, Type b33,
300
+ // output Q
301
+ Type &q11, Type &q12, Type &q13,
302
+ Type &q21, Type &q22, Type &q23,
303
+ Type &q31, Type &q32, Type &q33,
304
+ // output R
305
+ Type &r11, Type &r12, Type &r13,
306
+ Type &r21, Type &r22, Type &r23,
307
+ Type &r31, Type &r32, Type &r33)
308
+ {
309
+ Type ch1,sh1,ch2,sh2,ch3,sh3;
310
+ Type a,b;
311
+
312
+ // first givens rotation (ch,0,0,sh)
313
+ QRGivensQuaternion(b11,b21,ch1,sh1);
314
+ a=Type(1)-Type(2)*sh1*sh1;
315
+ b=Type(2)*ch1*sh1;
316
+ // apply B = Q' * B
317
+ r11=a*b11+b*b21; r12=a*b12+b*b22; r13=a*b13+b*b23;
318
+ r21=-b*b11+a*b21; r22=-b*b12+a*b22; r23=-b*b13+a*b23;
319
+ r31=b31; r32=b32; r33=b33;
320
+
321
+ // second givens rotation (ch,0,-sh,0)
322
+ QRGivensQuaternion(r11,r31,ch2,sh2);
323
+ a=Type(1)-Type(2)*sh2*sh2;
324
+ b=Type(2)*ch2*sh2;
325
+ // apply B = Q' * B;
326
+ b11=a*r11+b*r31; b12=a*r12+b*r32; b13=a*r13+b*r33;
327
+ b21=r21; b22=r22; b23=r23;
328
+ b31=-b*r11+a*r31; b32=-b*r12+a*r32; b33=-b*r13+a*r33;
329
+
330
+ // third givens rotation (ch,sh,0,0)
331
+ QRGivensQuaternion(b22,b32,ch3,sh3);
332
+ a=Type(1)-Type(2)*sh3*sh3;
333
+ b=Type(2)*ch3*sh3;
334
+ // R is now set to desired value
335
+ r11=b11; r12=b12; r13=b13;
336
+ r21=a*b21+b*b31; r22=a*b22+b*b32; r23=a*b23+b*b33;
337
+ r31=-b*b21+a*b31; r32=-b*b22+a*b32; r33=-b*b23+a*b33;
338
+
339
+ // construct the cumulative rotation Q=Q1 * Q2 * Q3
340
+ // the number of floating point operations for three quaternion multiplications
341
+ // is more or less comparable to the explicit form of the joined matrix.
342
+ // certainly more memory-efficient!
343
+ Type sh12=sh1*sh1;
344
+ Type sh22=sh2*sh2;
345
+ Type sh32=sh3*sh3;
346
+
347
+ q11=(Type(-1)+Type(2)*sh12)*(Type(-1)+Type(2)*sh22);
348
+ q12=Type(4)*ch2*ch3*(Type(-1)+Type(2)*sh12)*sh2*sh3+Type(2)*ch1*sh1*(Type(-1)+Type(2)*sh32);
349
+ q13=Type(4)*ch1*ch3*sh1*sh3-Type(2)*ch2*(Type(-1)+Type(2)*sh12)*sh2*(Type(-1)+Type(2)*sh32);
350
+
351
+ q21=Type(2)*ch1*sh1*(Type(1)-Type(2)*sh22);
352
+ q22=Type(-8)*ch1*ch2*ch3*sh1*sh2*sh3+(Type(-1)+Type(2)*sh12)*(Type(-1)+Type(2)*sh32);
353
+ q23=Type(-2)*ch3*sh3+Type(4)*sh1*(ch3*sh1*sh3+ch1*ch2*sh2*(Type(-1)+Type(2)*sh32));
354
+
355
+ q31=Type(2)*ch2*sh2;
356
+ q32=Type(2)*ch3*(Type(1)-Type(2)*sh22)*sh3;
357
+ q33=(Type(-1)+Type(2)*sh22)*(Type(-1)+Type(2)*sh32);
358
+ }
359
+
360
+ template<typename Type>
361
+ inline CUDA_CALLABLE
362
+ void _svd(// input A
363
+ Type a11, Type a12, Type a13,
364
+ Type a21, Type a22, Type a23,
365
+ Type a31, Type a32, Type a33,
366
+ // output U
367
+ Type &u11, Type &u12, Type &u13,
368
+ Type &u21, Type &u22, Type &u23,
369
+ Type &u31, Type &u32, Type &u33,
370
+ // output S
371
+ Type &s11, Type &s12, Type &s13,
372
+ Type &s21, Type &s22, Type &s23,
373
+ Type &s31, Type &s32, Type &s33,
374
+ // output V
375
+ Type &v11, Type &v12, Type &v13,
376
+ Type &v21, Type &v22, Type &v23,
377
+ Type &v31, Type &v32, Type &v33)
378
+ {
379
+ // normal equations matrix
380
+ Type ATA11, ATA12, ATA13;
381
+ Type ATA21, ATA22, ATA23;
382
+ Type ATA31, ATA32, ATA33;
383
+
384
+ multAtB(a11,a12,a13,a21,a22,a23,a31,a32,a33,
385
+ a11,a12,a13,a21,a22,a23,a31,a32,a33,
386
+ ATA11,ATA12,ATA13,ATA21,ATA22,ATA23,ATA31,ATA32,ATA33);
387
+
388
+ // symmetric eigenalysis
389
+ Type qV[4];
390
+ jacobiEigenanlysis( ATA11,ATA21,ATA22, ATA31,ATA32,ATA33,qV);
391
+ quatToMat3(qV,v11,v12,v13,v21,v22,v23,v31,v32,v33);
392
+
393
+ Type b11, b12, b13;
394
+ Type b21, b22, b23;
395
+ Type b31, b32, b33;
396
+ multAB(a11,a12,a13,a21,a22,a23,a31,a32,a33,
397
+ v11,v12,v13,v21,v22,v23,v31,v32,v33,
398
+ b11, b12, b13, b21, b22, b23, b31, b32, b33);
399
+
400
+ // sort singular values and find V
401
+ sortSingularValues(b11, b12, b13, b21, b22, b23, b31, b32, b33,
402
+ v11,v12,v13,v21,v22,v23,v31,v32,v33);
403
+
404
+ // QR decomposition
405
+ QRDecomposition(b11, b12, b13, b21, b22, b23, b31, b32, b33,
406
+ u11, u12, u13, u21, u22, u23, u31, u32, u33,
407
+ s11, s12, s13, s21, s22, s23, s31, s32, s33
408
+ );
409
+ }
410
+
411
+ template<typename Type>
412
+ inline CUDA_CALLABLE void svd3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& U, vec_t<3,Type>& sigma, mat_t<3,3,Type>& V) {
413
+ Type s12, s13, s21, s23, s31, s32;
414
+ _svd(A.data[0][0], A.data[0][1], A.data[0][2],
415
+ A.data[1][0], A.data[1][1], A.data[1][2],
416
+ A.data[2][0], A.data[2][1], A.data[2][2],
417
+
418
+ U.data[0][0], U.data[0][1], U.data[0][2],
419
+ U.data[1][0], U.data[1][1], U.data[1][2],
420
+ U.data[2][0], U.data[2][1], U.data[2][2],
421
+
422
+ sigma[0], s12, s13,
423
+ s21, sigma[1], s23,
424
+ s31, s32, sigma[2],
425
+
426
+ V.data[0][0], V.data[0][1], V.data[0][2],
427
+ V.data[1][0], V.data[1][1], V.data[1][2],
428
+ V.data[2][0], V.data[2][1], V.data[2][2]);
429
+ }
430
+
431
+ template<typename Type>
432
+ inline CUDA_CALLABLE void adj_svd3(const mat_t<3,3,Type>& A,
433
+ const mat_t<3,3,Type>& U,
434
+ const vec_t<3,Type>& sigma,
435
+ const mat_t<3,3,Type>& V,
436
+ mat_t<3,3,Type>& adj_A,
437
+ const mat_t<3,3,Type>& adj_U,
438
+ const vec_t<3,Type>& adj_sigma,
439
+ const mat_t<3,3,Type>& adj_V) {
440
+ Type sx2 = sigma[0] * sigma[0];
441
+ Type sy2 = sigma[1] * sigma[1];
442
+ Type sz2 = sigma[2] * sigma[2];
443
+
444
+ Type F01 = Type(1) / min(sy2 - sx2, Type(-1e-6f));
445
+ Type F02 = Type(1) / min(sz2 - sx2, Type(-1e-6f));
446
+ Type F12 = Type(1) / min(sz2 - sy2, Type(-1e-6f));
447
+
448
+ mat_t<3,3,Type> F = mat_t<3,3,Type>(0, F01, F02,
449
+ -F01, 0, F12,
450
+ -F02, -F12, 0);
451
+
452
+ mat_t<3,3,Type> adj_sigma_mat = mat_t<3,3,Type>(adj_sigma[0], 0, 0,
453
+ 0, adj_sigma[1], 0,
454
+ 0, 0, adj_sigma[2]);
455
+ mat_t<3,3,Type> s_mat = mat_t<3,3,Type>(sigma[0], 0, 0,
456
+ 0, sigma[1], 0,
457
+ 0, 0, sigma[2]);
458
+
459
+ // https://github.com/pytorch/pytorch/blob/d7ddae8e4fe66fa1330317673438d1eb5aa99ca4/torch/csrc/autograd/FunctionsManual.cpp
460
+ mat_t<3,3,Type> UT = transpose(U);
461
+ mat_t<3,3,Type> VT = transpose(V);
462
+
463
+ mat_t<3,3,Type> sigma_term = mul(U, mul(adj_sigma_mat, VT));
464
+
465
+ mat_t<3,3,Type> u_term = mul(mul(U, mul(cw_mul(F, (mul(UT, adj_U) - mul(transpose(adj_U), U))), s_mat)), VT);
466
+ mat_t<3,3,Type> v_term = mul(U, mul(s_mat, mul(cw_mul(F, (mul(VT, adj_V) - mul(transpose(adj_V), V))), VT)));
467
+
468
+ adj_A = adj_A + (u_term + v_term + sigma_term);
469
+ }
470
+
471
+
472
+ template<typename Type>
473
+ inline CUDA_CALLABLE void qr3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& Q, mat_t<3,3,Type>& R) {
474
+ QRDecomposition(A.data[0][0], A.data[0][1], A.data[0][2],
475
+ A.data[1][0], A.data[1][1], A.data[1][2],
476
+ A.data[2][0], A.data[2][1], A.data[2][2],
477
+
478
+ Q.data[0][0], Q.data[0][1], Q.data[0][2],
479
+ Q.data[1][0], Q.data[1][1], Q.data[1][2],
480
+ Q.data[2][0], Q.data[2][1], Q.data[2][2],
481
+
482
+ R.data[0][0], R.data[0][1], R.data[0][2],
483
+ R.data[1][0], R.data[1][1], R.data[1][2],
484
+ R.data[2][0], R.data[2][1], R.data[2][2]);
485
+ }
486
+
487
+
488
+ template<typename Type>
489
+ inline CUDA_CALLABLE void adj_qr3(const mat_t<3,3,Type>& A,
490
+ const mat_t<3,3,Type>& Q,
491
+ const mat_t<3,3,Type>& R,
492
+ mat_t<3,3,Type>& adj_A,
493
+ const mat_t<3,3,Type>& adj_Q,
494
+ const mat_t<3,3,Type>& adj_R) {
495
+ // Eq 3 of https://arxiv.org/pdf/2009.10071.pdf
496
+ mat_t<3,3,Type> M = mul(R,transpose(adj_R)) - mul(transpose(adj_Q), Q);
497
+ mat_t<3,3,Type> copyltuM = mat_t<3,3,Type>(M.data[0][0], M.data[1][0], M.data[2][0],
498
+ M.data[1][0], M.data[1][1], M.data[2][1],
499
+ M.data[2][0], M.data[2][1], M.data[2][2]);
500
+ adj_A = adj_A + mul(adj_Q + mul(Q,copyltuM), inverse(transpose(R)));
501
+ }
502
+
503
+
504
+ template<typename Type>
505
+ inline CUDA_CALLABLE void eig3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& Q, vec_t<3,Type>& d) {
506
+ Type qV[4];
507
+ Type s11 = A.data[0][0];
508
+ Type s21 = A.data[1][0];
509
+ Type s22 = A.data[1][1];
510
+ Type s31 = A.data[2][0];
511
+ Type s32 = A.data[2][1];
512
+ Type s33 = A.data[2][2];
513
+
514
+ jacobiEigenanlysis(s11, s21, s22, s31, s32, s33, qV);
515
+ quatToMat3(qV, Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2]);
516
+ mat_t<3,3,Type> t;
517
+ multAtB(Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2],
518
+ A.data[0][0], A.data[0][1], A.data[0][2], A.data[1][0], A.data[1][1], A.data[1][2], A.data[2][0], A.data[2][1], A.data[2][2],
519
+ t.data[0][0], t.data[0][1], t.data[0][2], t.data[1][0], t.data[1][1], t.data[1][2], t.data[2][0], t.data[2][1], t.data[2][2]);
520
+
521
+ mat_t<3,3,Type> u;
522
+ multAB(t.data[0][0], t.data[0][1], t.data[0][2], t.data[1][0], t.data[1][1], t.data[1][2], t.data[2][0], t.data[2][1], t.data[2][2],
523
+ Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2],
524
+ u.data[0][0], u.data[0][1], u.data[0][2], u.data[1][0], u.data[1][1], u.data[1][2], u.data[2][0], u.data[2][1], u.data[2][2]
525
+ );
526
+ d = vec_t<3,Type>(u.data[0][0], u.data[1][1], u.data[2][2]);
527
+ }
528
+
529
+ template<typename Type>
530
+ inline CUDA_CALLABLE void adj_eig3(const mat_t<3,3,Type>& A, const mat_t<3,3,Type>& Q, const vec_t<3,Type>& d,
531
+ mat_t<3,3,Type>& adj_A, const mat_t<3,3,Type>& adj_Q, const vec_t<3,Type>& adj_d) {
532
+ // Page 10 of https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
533
+ mat_t<3,3,Type> D = mat_t<3,3,Type>(d[0], 0, 0,
534
+ 0, d[1], 0,
535
+ 0, 0, d[2]);
536
+ mat_t<3,3,Type> D_bar = mat_t<3,3,Type>(adj_d[0], 0, 0,
537
+ 0, adj_d[1], 0,
538
+ 0, 0, adj_d[2]);
539
+
540
+ Type dyx = d[1] - d[0];
541
+ Type dzx = d[2] - d[0];
542
+ Type dzy = d[2] - d[1];
543
+
544
+ if ((dyx < Type(0)) && (dyx > Type(-1e-6))) dyx = -1e-6;
545
+ if ((dyx > Type(0)) && (dyx < Type(1e-6))) dyx = 1e-6;
546
+
547
+ if ((dzx < Type(0)) && (dzx > Type(-1e-6))) dzx = -1e-6;
548
+ if ((dzx > Type(0)) && (dzx < Type(1e-6))) dzx = 1e-6;
549
+
550
+ if ((dzy < Type(0)) && (dzy > Type(-1e-6))) dzy = -1e-6;
551
+ if ((dzy > Type(0)) && (dzy < Type(1e-6))) dzy = 1e-6;
552
+
553
+ Type F01 = Type(1) / dyx;
554
+ Type F02 = Type(1) / dzx;
555
+ Type F12 = Type(1) / dzy;
556
+ mat_t<3,3,Type> F = mat_t<3,3,Type>(0, F01, F02,
557
+ -F01, 0, F12,
558
+ -F02, -F12, 0);
559
+ mat_t<3,3,Type> QT = transpose(Q);
560
+ adj_A = adj_A + mul(Q, mul(D_bar + cw_mul(F, mul(QT, adj_Q)), QT));
561
+ }
562
+ }