vectordb-bench 1.0.4__py3-none-any.whl → 1.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vectordb_bench/__init__.py +1 -0
- vectordb_bench/backend/cases.py +45 -1
- vectordb_bench/backend/clients/__init__.py +47 -0
- vectordb_bench/backend/clients/api.py +2 -0
- vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py +104 -40
- vectordb_bench/backend/clients/aws_opensearch/cli.py +52 -15
- vectordb_bench/backend/clients/aws_opensearch/config.py +27 -7
- vectordb_bench/backend/clients/hologres/cli.py +50 -0
- vectordb_bench/backend/clients/hologres/config.py +121 -0
- vectordb_bench/backend/clients/hologres/hologres.py +365 -0
- vectordb_bench/backend/clients/lancedb/lancedb.py +1 -0
- vectordb_bench/backend/clients/milvus/cli.py +29 -9
- vectordb_bench/backend/clients/milvus/config.py +2 -0
- vectordb_bench/backend/clients/milvus/milvus.py +1 -1
- vectordb_bench/backend/clients/oceanbase/cli.py +1 -0
- vectordb_bench/backend/clients/oceanbase/config.py +3 -1
- vectordb_bench/backend/clients/oceanbase/oceanbase.py +20 -4
- vectordb_bench/backend/clients/oss_opensearch/cli.py +155 -0
- vectordb_bench/backend/clients/oss_opensearch/config.py +157 -0
- vectordb_bench/backend/clients/oss_opensearch/oss_opensearch.py +582 -0
- vectordb_bench/backend/clients/oss_opensearch/run.py +166 -0
- vectordb_bench/backend/clients/pgdiskann/cli.py +45 -0
- vectordb_bench/backend/clients/pgdiskann/config.py +16 -0
- vectordb_bench/backend/clients/pgdiskann/pgdiskann.py +94 -26
- vectordb_bench/backend/clients/s3_vectors/config.py +41 -0
- vectordb_bench/backend/clients/s3_vectors/s3_vectors.py +171 -0
- vectordb_bench/backend/clients/tidb/cli.py +0 -4
- vectordb_bench/backend/clients/tidb/config.py +22 -2
- vectordb_bench/backend/clients/zilliz_cloud/cli.py +14 -1
- vectordb_bench/backend/clients/zilliz_cloud/config.py +4 -1
- vectordb_bench/backend/dataset.py +70 -0
- vectordb_bench/backend/filter.py +17 -0
- vectordb_bench/backend/runner/mp_runner.py +4 -0
- vectordb_bench/backend/runner/rate_runner.py +23 -11
- vectordb_bench/backend/runner/read_write_runner.py +10 -9
- vectordb_bench/backend/runner/serial_runner.py +23 -7
- vectordb_bench/backend/task_runner.py +5 -4
- vectordb_bench/cli/cli.py +36 -0
- vectordb_bench/cli/vectordbbench.py +4 -0
- vectordb_bench/fig/custom_case_run_test.png +0 -0
- vectordb_bench/fig/custom_dataset.png +0 -0
- vectordb_bench/fig/homepage/bar-chart.png +0 -0
- vectordb_bench/fig/homepage/concurrent.png +0 -0
- vectordb_bench/fig/homepage/custom.png +0 -0
- vectordb_bench/fig/homepage/label_filter.png +0 -0
- vectordb_bench/fig/homepage/qp$.png +0 -0
- vectordb_bench/fig/homepage/run_test.png +0 -0
- vectordb_bench/fig/homepage/streaming.png +0 -0
- vectordb_bench/fig/homepage/table.png +0 -0
- vectordb_bench/fig/run_test_select_case.png +0 -0
- vectordb_bench/fig/run_test_select_db.png +0 -0
- vectordb_bench/fig/run_test_submit.png +0 -0
- vectordb_bench/frontend/components/check_results/filters.py +1 -4
- vectordb_bench/frontend/components/check_results/nav.py +2 -1
- vectordb_bench/frontend/components/concurrent/charts.py +5 -0
- vectordb_bench/frontend/components/int_filter/charts.py +60 -0
- vectordb_bench/frontend/components/streaming/data.py +7 -0
- vectordb_bench/frontend/components/welcome/welcomePrams.py +42 -4
- vectordb_bench/frontend/config/dbCaseConfigs.py +142 -16
- vectordb_bench/frontend/config/styles.py +4 -0
- vectordb_bench/frontend/pages/concurrent.py +1 -1
- vectordb_bench/frontend/pages/custom.py +1 -1
- vectordb_bench/frontend/pages/int_filter.py +56 -0
- vectordb_bench/frontend/pages/streaming.py +16 -3
- vectordb_bench/interface.py +5 -1
- vectordb_bench/metric.py +7 -0
- vectordb_bench/models.py +39 -4
- vectordb_bench/results/S3Vectors/result_20250722_standard_s3vectors.json +2509 -0
- vectordb_bench/results/getLeaderboardDataV2.py +23 -2
- vectordb_bench/results/leaderboard_v2.json +200 -0
- vectordb_bench/results/leaderboard_v2_streaming.json +128 -0
- {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/METADATA +40 -8
- {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/RECORD +77 -51
- {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/WHEEL +0 -0
- {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/entry_points.txt +0 -0
- {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/licenses/LICENSE +0 -0
- {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,60 @@
|
|
1
|
+
import plotly.express as px
|
2
|
+
from vectordb_bench.metric import metric_unit_map
|
3
|
+
|
4
|
+
|
5
|
+
def drawCharts(st, allData, **kwargs):
|
6
|
+
dataset_names = list(set([data["dataset_name"] for data in allData]))
|
7
|
+
dataset_names.sort()
|
8
|
+
for dataset_name in dataset_names:
|
9
|
+
container = st.container()
|
10
|
+
container.subheader(dataset_name)
|
11
|
+
data = [d for d in allData if d["dataset_name"] == dataset_name]
|
12
|
+
drawChartByMetric(container, data, **kwargs)
|
13
|
+
|
14
|
+
|
15
|
+
def drawChartByMetric(st, data, metrics=("qps", "recall"), **kwargs):
|
16
|
+
columns = st.columns(len(metrics))
|
17
|
+
for i, metric in enumerate(metrics):
|
18
|
+
container = columns[i]
|
19
|
+
container.markdown(f"#### {metric}")
|
20
|
+
drawChart(container, data, metric)
|
21
|
+
|
22
|
+
|
23
|
+
def getRange(metric, data, padding_multipliers):
|
24
|
+
minV = min([d.get(metric, 0) for d in data])
|
25
|
+
maxV = max([d.get(metric, 0) for d in data])
|
26
|
+
padding = maxV - minV
|
27
|
+
rangeV = [
|
28
|
+
minV - padding * padding_multipliers[0],
|
29
|
+
maxV + padding * padding_multipliers[1],
|
30
|
+
]
|
31
|
+
return rangeV
|
32
|
+
|
33
|
+
|
34
|
+
def drawChart(st, data: list[object], metric):
|
35
|
+
unit = metric_unit_map.get(metric, "")
|
36
|
+
x = "filter_rate"
|
37
|
+
xrange = getRange(x, data, [0.05, 0.1])
|
38
|
+
|
39
|
+
y = metric
|
40
|
+
yrange = getRange(y, data, [0.2, 0.1])
|
41
|
+
|
42
|
+
data.sort(key=lambda a: a[x])
|
43
|
+
|
44
|
+
fig = px.line(
|
45
|
+
data,
|
46
|
+
x=x,
|
47
|
+
y=y,
|
48
|
+
color="db_name",
|
49
|
+
line_group="db_name",
|
50
|
+
text=metric,
|
51
|
+
markers=True,
|
52
|
+
)
|
53
|
+
fig.update_xaxes(range=xrange)
|
54
|
+
fig.update_yaxes(range=yrange)
|
55
|
+
fig.update_traces(textposition="bottom right", texttemplate="%{y:,.4~r}" + unit)
|
56
|
+
fig.update_layout(
|
57
|
+
margin=dict(l=0, r=0, t=40, b=0, pad=8),
|
58
|
+
legend=dict(orientation="h", yanchor="bottom", y=1, xanchor="right", x=1, title=""),
|
59
|
+
)
|
60
|
+
st.plotly_chart(fig, use_container_width=True)
|
@@ -13,6 +13,7 @@ class DisplayedMetric(StrEnum):
|
|
13
13
|
adjusted_recall = "adjusted_recall"
|
14
14
|
adjusted_ndcg = "adjusted_ndcg"
|
15
15
|
latency_p99 = "latency_p99"
|
16
|
+
latency_p95 = "latency_p95"
|
16
17
|
# st_ideal_insert_duration = "st_ideal_insert_duration"
|
17
18
|
# st_search_time_list = "st_search_time_list"
|
18
19
|
insert_duration = "insert_duration"
|
@@ -31,6 +32,7 @@ class StreamingData:
|
|
31
32
|
adjusted_recall: float
|
32
33
|
adjusted_ndcg: float
|
33
34
|
latency_p99: float
|
35
|
+
latency_p95: float
|
34
36
|
ideal_insert_duration: int
|
35
37
|
insert_duration: float
|
36
38
|
optimize_duration: float
|
@@ -53,6 +55,11 @@ def get_streaming_data(data) -> list[StreamingData]:
|
|
53
55
|
adjusted_recall=round(d["st_recall_list"][i] / min(search_stage, 100) * 100, 4),
|
54
56
|
adjusted_ndcg=round(d["st_ndcg_list"][i] / min(search_stage, 100) * 100, 4),
|
55
57
|
latency_p99=round(d["st_serial_latency_p99_list"][i] * 1000, 2),
|
58
|
+
latency_p95=(
|
59
|
+
round(d["st_serial_latency_p95_list"][i] * 1000, 2)
|
60
|
+
if "st_serial_latency_p95_list" in d and i < len(d["st_serial_latency_p95_list"])
|
61
|
+
else 0.0
|
62
|
+
),
|
56
63
|
ideal_insert_duration=d["st_ideal_insert_duration"],
|
57
64
|
insert_duration=d["insert_duration"],
|
58
65
|
optimize_duration=d["optimize_duration"],
|
@@ -2,6 +2,8 @@ import base64
|
|
2
2
|
from PIL import Image
|
3
3
|
from io import BytesIO
|
4
4
|
import os
|
5
|
+
from pathlib import Path
|
6
|
+
from importlib import resources
|
5
7
|
|
6
8
|
from vectordb_bench.frontend.components.welcome.pagestyle import pagestyle
|
7
9
|
|
@@ -11,12 +13,38 @@ def get_image_as_base64(image_path):
|
|
11
13
|
if image_path.startswith("http"):
|
12
14
|
return image_path
|
13
15
|
|
16
|
+
# Try to load from package resources first (for pip installed package)
|
17
|
+
if image_path.startswith("fig/homepage/"):
|
18
|
+
try:
|
19
|
+
# Convert fig/homepage/xxx.png to vectordb_bench.fig.homepage
|
20
|
+
package_parts = ["vectordb_bench"] + image_path.split("/")[:-1]
|
21
|
+
package_name = ".".join(package_parts)
|
22
|
+
file_name = os.path.basename(image_path)
|
23
|
+
|
24
|
+
# Get the resource content using importlib.resources
|
25
|
+
files = resources.files(package_name)
|
26
|
+
img_data = (files / file_name).read_bytes()
|
27
|
+
|
28
|
+
img = Image.open(BytesIO(img_data))
|
29
|
+
buffered = BytesIO()
|
30
|
+
img.save(buffered, format="PNG")
|
31
|
+
return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
|
32
|
+
except Exception:
|
33
|
+
# If package resource fails, try the original path
|
34
|
+
pass
|
35
|
+
|
36
|
+
# Fallback to file system path (for development)
|
14
37
|
path = os.path.expanduser(image_path)
|
38
|
+
if not os.path.isabs(path):
|
39
|
+
# Try relative to the vectordb_bench package directory
|
40
|
+
package_dir = Path(__file__).parent.parent.parent
|
41
|
+
path = package_dir / path
|
42
|
+
|
15
43
|
img = Image.open(path)
|
16
44
|
buffered = BytesIO()
|
17
45
|
img.save(buffered, format="PNG")
|
18
46
|
return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
|
19
|
-
except Exception
|
47
|
+
except Exception:
|
20
48
|
return None
|
21
49
|
|
22
50
|
|
@@ -66,12 +94,22 @@ def welcomePrams(st):
|
|
66
94
|
"title": "Label Filter Performance",
|
67
95
|
"description": (
|
68
96
|
"<span style='font-size: 17px;'>"
|
69
|
-
"To view the perfomance of datasets under different filter ratios "
|
97
|
+
"To view the perfomance of datasets under different label filter ratios "
|
70
98
|
"</span>"
|
71
99
|
),
|
72
100
|
"image": "fig/homepage/label_filter.png",
|
73
101
|
"link": "label_filter",
|
74
102
|
},
|
103
|
+
{
|
104
|
+
"title": "Int Filter Performance",
|
105
|
+
"description": (
|
106
|
+
"<span style='font-size: 17px;'>"
|
107
|
+
"To view the perfomance of datasets under different int filter ratios "
|
108
|
+
"</span>"
|
109
|
+
),
|
110
|
+
"image": "fig/homepage/label_filter.png",
|
111
|
+
"link": "int_filter",
|
112
|
+
},
|
75
113
|
{
|
76
114
|
"title": "Streaming Performance",
|
77
115
|
"description": (
|
@@ -110,7 +148,7 @@ def welcomePrams(st):
|
|
110
148
|
for option in options:
|
111
149
|
option["image"] = get_image_as_base64(option["image"])
|
112
150
|
|
113
|
-
for
|
151
|
+
for option in options[:7]:
|
114
152
|
html_content += f"""
|
115
153
|
<a href="/{option['link']}" target="_self" style="text-decoration: none;">
|
116
154
|
<div class="section-card">
|
@@ -129,7 +167,7 @@ def welcomePrams(st):
|
|
129
167
|
<div class="last-row">
|
130
168
|
"""
|
131
169
|
|
132
|
-
for option in options[
|
170
|
+
for option in options[7:9]:
|
133
171
|
html_content += f"""
|
134
172
|
<a href="/{option['link']}" target="_self" style="text-decoration: none;">
|
135
173
|
<div class="section-card">
|
@@ -219,6 +219,17 @@ def generate_label_filter_cases(dataset_with_size_type: DatasetWithSizeType) ->
|
|
219
219
|
]
|
220
220
|
|
221
221
|
|
222
|
+
def generate_int_filter_cases(dataset_with_size_type: DatasetWithSizeType) -> list[CaseConfig]:
|
223
|
+
filter_rates = dataset_with_size_type.get_manager().data.scalar_int_rates
|
224
|
+
return [
|
225
|
+
CaseConfig(
|
226
|
+
case_id=CaseType.NewIntFilterPerformanceCase,
|
227
|
+
custom_case=dict(dataset_with_size_type=dataset_with_size_type, filter_rate=filter_rate),
|
228
|
+
)
|
229
|
+
for filter_rate in filter_rates
|
230
|
+
]
|
231
|
+
|
232
|
+
|
222
233
|
UI_CASE_CLUSTERS: list[UICaseItemCluster] = [
|
223
234
|
UICaseItemCluster(
|
224
235
|
label="Search Performance Test",
|
@@ -249,6 +260,29 @@ UI_CASE_CLUSTERS: list[UICaseItemCluster] = [
|
|
249
260
|
UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D500K99P)),
|
250
261
|
],
|
251
262
|
),
|
263
|
+
UICaseItemCluster(
|
264
|
+
label="New-Int-Filter Search Performance Test",
|
265
|
+
uiCaseItems=[
|
266
|
+
UICaseItem(
|
267
|
+
label=f"Int-Filter Search Performance Test - {dataset_with_size_type.value}",
|
268
|
+
description=(
|
269
|
+
f"[Batch Cases]These cases test the search performance of a vector database "
|
270
|
+
f"with dataset {dataset_with_size_type.value}"
|
271
|
+
f"under filtering rates of {dataset_with_size_type.get_manager().data.scalar_int_rates}, at varying parallel levels."
|
272
|
+
f"Results will show index building time, recall, and maximum QPS."
|
273
|
+
),
|
274
|
+
cases=generate_int_filter_cases(dataset_with_size_type),
|
275
|
+
)
|
276
|
+
for dataset_with_size_type in [
|
277
|
+
DatasetWithSizeType.CohereMedium,
|
278
|
+
DatasetWithSizeType.CohereLarge,
|
279
|
+
DatasetWithSizeType.OpenAIMedium,
|
280
|
+
DatasetWithSizeType.OpenAILarge,
|
281
|
+
DatasetWithSizeType.BioasqMedium,
|
282
|
+
DatasetWithSizeType.BioasqLarge,
|
283
|
+
]
|
284
|
+
],
|
285
|
+
),
|
252
286
|
UICaseItemCluster(
|
253
287
|
label="Label-Filter Search Performance Test",
|
254
288
|
uiCaseItems=[
|
@@ -389,8 +423,58 @@ CaseConfigParamInput_storage_layout = CaseConfigInput(
|
|
389
423
|
},
|
390
424
|
)
|
391
425
|
|
392
|
-
|
426
|
+
CaseConfigParamInput_reranking_PgDiskANN = CaseConfigInput(
|
427
|
+
label=CaseConfigParamType.reranking,
|
428
|
+
inputType=InputType.Bool,
|
429
|
+
displayLabel="Enable Reranking",
|
430
|
+
inputHelp="Enable if you want to use reranking while performing \
|
431
|
+
similarity search with PQ",
|
432
|
+
inputConfig={
|
433
|
+
"value": False,
|
434
|
+
},
|
435
|
+
)
|
436
|
+
|
437
|
+
CaseConfigParamInput_quantized_fetch_limit_PgDiskANN = CaseConfigInput(
|
438
|
+
label=CaseConfigParamType.quantized_fetch_limit,
|
439
|
+
displayLabel="Quantized Fetch Limit",
|
440
|
+
inputHelp="Limit top-k vectors using the quantized vector comparison",
|
441
|
+
inputType=InputType.Number,
|
442
|
+
inputConfig={
|
443
|
+
"min": 20,
|
444
|
+
"max": 1000,
|
445
|
+
"value": 200,
|
446
|
+
},
|
447
|
+
isDisplayed=lambda config: config.get(CaseConfigParamType.reranking, False),
|
448
|
+
)
|
449
|
+
|
450
|
+
CaseConfigParamInput_pq_param_num_chunks_PgDiskANN = CaseConfigInput(
|
451
|
+
label=CaseConfigParamType.pq_param_num_chunks,
|
452
|
+
displayLabel="pq_param_num_chunks",
|
453
|
+
inputHelp="Number of chunks for product quantization (Defaults to 0). 0 means it is determined automatically, based on embedding dimensions.",
|
454
|
+
inputType=InputType.Number,
|
455
|
+
inputConfig={
|
456
|
+
"min": 0,
|
457
|
+
"max": 1028,
|
458
|
+
"value": 0,
|
459
|
+
},
|
460
|
+
isDisplayed=lambda config: config.get(CaseConfigParamType.reranking, False),
|
461
|
+
)
|
462
|
+
|
463
|
+
|
464
|
+
CaseConfigParamInput_reranking_metric_PgDiskANN = CaseConfigInput(
|
465
|
+
label=CaseConfigParamType.reranking_metric,
|
466
|
+
displayLabel="Reranking Metric",
|
467
|
+
inputType=InputType.Option,
|
468
|
+
inputConfig={
|
469
|
+
"options": [metric.value for metric in MetricType if metric.value not in ["HAMMING", "JACCARD", "DP"]],
|
470
|
+
},
|
471
|
+
isDisplayed=lambda config: config.get(CaseConfigParamType.reranking, False),
|
472
|
+
)
|
473
|
+
|
474
|
+
|
475
|
+
CaseConfigParamInput_max_neighbors_PgDiskANN = CaseConfigInput(
|
393
476
|
label=CaseConfigParamType.max_neighbors,
|
477
|
+
displayLabel="max_neighbors",
|
394
478
|
inputType=InputType.Number,
|
395
479
|
inputConfig={
|
396
480
|
"min": 10,
|
@@ -422,6 +506,29 @@ CaseConfigParamInput_l_value_is = CaseConfigInput(
|
|
422
506
|
isDisplayed=lambda config: config.get(CaseConfigParamType.IndexType, None) == IndexType.DISKANN.value,
|
423
507
|
)
|
424
508
|
|
509
|
+
CaseConfigParamInput_maintenance_work_mem_PgDiskANN = CaseConfigInput(
|
510
|
+
label=CaseConfigParamType.maintenance_work_mem,
|
511
|
+
inputHelp="Memory to use during index builds. Not to exceed the available free memory."
|
512
|
+
"Specify in gigabytes. e.g. 8GB",
|
513
|
+
inputType=InputType.Text,
|
514
|
+
inputConfig={
|
515
|
+
"value": "8GB",
|
516
|
+
},
|
517
|
+
)
|
518
|
+
|
519
|
+
CaseConfigParamInput_max_parallel_workers_PgDiskANN = CaseConfigInput(
|
520
|
+
label=CaseConfigParamType.max_parallel_workers,
|
521
|
+
displayLabel="Max parallel workers",
|
522
|
+
inputHelp="Recommended value: (cpu cores - 1). This will set the parameters: max_parallel_maintenance_workers,"
|
523
|
+
" max_parallel_workers & table(parallel_workers)",
|
524
|
+
inputType=InputType.Number,
|
525
|
+
inputConfig={
|
526
|
+
"min": 0,
|
527
|
+
"max": 1024,
|
528
|
+
"value": 16,
|
529
|
+
},
|
530
|
+
)
|
531
|
+
|
425
532
|
CaseConfigParamInput_num_neighbors = CaseConfigInput(
|
426
533
|
label=CaseConfigParamType.num_neighbors,
|
427
534
|
inputType=InputType.Number,
|
@@ -632,6 +739,7 @@ CaseConfigParamInput_EFConstruction_ES = CaseConfigInput(
|
|
632
739
|
|
633
740
|
CaseConfigParamInput_EFConstruction_AWSOpensearch = CaseConfigInput(
|
634
741
|
label=CaseConfigParamType.EFConstruction,
|
742
|
+
displayLabel="EF Construction",
|
635
743
|
inputType=InputType.Number,
|
636
744
|
inputConfig={
|
637
745
|
"min": 100,
|
@@ -642,6 +750,7 @@ CaseConfigParamInput_EFConstruction_AWSOpensearch = CaseConfigInput(
|
|
642
750
|
|
643
751
|
CaseConfigParamInput_M_AWSOpensearch = CaseConfigInput(
|
644
752
|
label=CaseConfigParamType.M,
|
753
|
+
displayLabel="M",
|
645
754
|
inputType=InputType.Number,
|
646
755
|
inputConfig={
|
647
756
|
"min": 4,
|
@@ -652,6 +761,7 @@ CaseConfigParamInput_M_AWSOpensearch = CaseConfigInput(
|
|
652
761
|
|
653
762
|
CaseConfigParamInput_EF_SEARCH_AWSOpensearch = CaseConfigInput(
|
654
763
|
label=CaseConfigParamType.ef_search,
|
764
|
+
displayLabel="EF Search",
|
655
765
|
inputType=InputType.Number,
|
656
766
|
inputConfig={
|
657
767
|
"min": 1,
|
@@ -1177,7 +1287,7 @@ CaseConfigParamInput_ZillizLevel = CaseConfigInput(
|
|
1177
1287
|
inputType=InputType.Number,
|
1178
1288
|
inputConfig={
|
1179
1289
|
"min": 1,
|
1180
|
-
"max":
|
1290
|
+
"max": 10,
|
1181
1291
|
"value": 1,
|
1182
1292
|
},
|
1183
1293
|
)
|
@@ -1587,6 +1697,14 @@ CaseConfigParamInput_METRIC_TYPE_NAME_AWSOpensearch = CaseConfigInput(
|
|
1587
1697
|
},
|
1588
1698
|
)
|
1589
1699
|
|
1700
|
+
CaseConfigParamInput_REFRESH_INTERVAL_AWSOpensearch = CaseConfigInput(
|
1701
|
+
label=CaseConfigParamType.refresh_interval,
|
1702
|
+
displayLabel="Refresh Interval",
|
1703
|
+
inputHelp="How often to make new data searchable. (e.g., 30s, 1m).",
|
1704
|
+
inputType=InputType.Text,
|
1705
|
+
inputConfig={"value": "60s", "placeholder": "e.g. 30s, 1m"},
|
1706
|
+
)
|
1707
|
+
|
1590
1708
|
MilvusLoadConfig = [
|
1591
1709
|
CaseConfigParamInput_IndexType,
|
1592
1710
|
CaseConfigParamInput_M,
|
@@ -1751,15 +1869,21 @@ PgVectorScalePerformanceConfig = [
|
|
1751
1869
|
|
1752
1870
|
PgDiskANNLoadConfig = [
|
1753
1871
|
CaseConfigParamInput_IndexType_PgDiskANN,
|
1754
|
-
|
1872
|
+
CaseConfigParamInput_max_neighbors_PgDiskANN,
|
1755
1873
|
CaseConfigParamInput_l_value_ib,
|
1756
1874
|
]
|
1757
1875
|
|
1758
1876
|
PgDiskANNPerformanceConfig = [
|
1759
1877
|
CaseConfigParamInput_IndexType_PgDiskANN,
|
1760
|
-
|
1878
|
+
CaseConfigParamInput_reranking_PgDiskANN,
|
1879
|
+
CaseConfigParamInput_max_neighbors_PgDiskANN,
|
1761
1880
|
CaseConfigParamInput_l_value_ib,
|
1762
1881
|
CaseConfigParamInput_l_value_is,
|
1882
|
+
CaseConfigParamInput_maintenance_work_mem_PgDiskANN,
|
1883
|
+
CaseConfigParamInput_max_parallel_workers_PgDiskANN,
|
1884
|
+
CaseConfigParamInput_pq_param_num_chunks_PgDiskANN,
|
1885
|
+
CaseConfigParamInput_quantized_fetch_limit_PgDiskANN,
|
1886
|
+
CaseConfigParamInput_reranking_metric_PgDiskANN,
|
1763
1887
|
]
|
1764
1888
|
|
1765
1889
|
|
@@ -1951,28 +2075,30 @@ LanceDBLoadConfig = [
|
|
1951
2075
|
LanceDBPerformanceConfig = LanceDBLoadConfig
|
1952
2076
|
|
1953
2077
|
AWSOpensearchLoadingConfig = [
|
1954
|
-
|
1955
|
-
CaseConfigParamInput_M_AWSOpensearch,
|
2078
|
+
CaseConfigParamInput_REFRESH_INTERVAL_AWSOpensearch,
|
1956
2079
|
CaseConfigParamInput_ENGINE_NAME_AWSOpensearch,
|
1957
2080
|
CaseConfigParamInput_METRIC_TYPE_NAME_AWSOpensearch,
|
1958
|
-
|
1959
|
-
|
2081
|
+
CaseConfigParamInput_M_AWSOpensearch,
|
2082
|
+
CaseConfigParamInput_EFConstruction_AWSOpensearch,
|
1960
2083
|
CaseConfigParamInput_NUMBER_OF_SHARDS_AWSOpensearch,
|
1961
2084
|
CaseConfigParamInput_NUMBER_OF_REPLICAS_AWSOpensearch,
|
2085
|
+
CaseConfigParamInput_NUMBER_OF_INDEXING_CLIENTS_AWSOpensearch,
|
1962
2086
|
CaseConfigParamInput_INDEX_THREAD_QTY_AWSOpensearch,
|
2087
|
+
CaseConfigParamInput_INDEX_THREAD_QTY_DURING_FORCE_MERGE_AWSOpensearch,
|
1963
2088
|
]
|
1964
2089
|
|
1965
2090
|
AWSOpenSearchPerformanceConfig = [
|
1966
|
-
|
1967
|
-
CaseConfigParamInput_M_AWSOpensearch,
|
2091
|
+
CaseConfigParamInput_REFRESH_INTERVAL_AWSOpensearch,
|
1968
2092
|
CaseConfigParamInput_EF_SEARCH_AWSOpensearch,
|
1969
2093
|
CaseConfigParamInput_ENGINE_NAME_AWSOpensearch,
|
1970
2094
|
CaseConfigParamInput_METRIC_TYPE_NAME_AWSOpensearch,
|
1971
|
-
|
1972
|
-
|
2095
|
+
CaseConfigParamInput_M_AWSOpensearch,
|
2096
|
+
CaseConfigParamInput_EFConstruction_AWSOpensearch,
|
1973
2097
|
CaseConfigParamInput_NUMBER_OF_SHARDS_AWSOpensearch,
|
1974
2098
|
CaseConfigParamInput_NUMBER_OF_REPLICAS_AWSOpensearch,
|
2099
|
+
CaseConfigParamInput_NUMBER_OF_INDEXING_CLIENTS_AWSOpensearch,
|
1975
2100
|
CaseConfigParamInput_INDEX_THREAD_QTY_AWSOpensearch,
|
2101
|
+
CaseConfigParamInput_INDEX_THREAD_QTY_DURING_FORCE_MERGE_AWSOpensearch,
|
1976
2102
|
]
|
1977
2103
|
|
1978
2104
|
# Map DB to config
|
@@ -1997,6 +2123,10 @@ CASE_CONFIG_MAP = {
|
|
1997
2123
|
CaseLabel.Load: AWSOpensearchLoadingConfig,
|
1998
2124
|
CaseLabel.Performance: AWSOpenSearchPerformanceConfig,
|
1999
2125
|
},
|
2126
|
+
DB.OSSOpenSearch: {
|
2127
|
+
CaseLabel.Load: AWSOpensearchLoadingConfig,
|
2128
|
+
CaseLabel.Performance: AWSOpenSearchPerformanceConfig,
|
2129
|
+
},
|
2000
2130
|
DB.PgVector: {
|
2001
2131
|
CaseLabel.Load: PgVectorLoadingConfig,
|
2002
2132
|
CaseLabel.Performance: PgVectorPerformanceConfig,
|
@@ -2041,10 +2171,6 @@ CASE_CONFIG_MAP = {
|
|
2041
2171
|
CaseLabel.Load: LanceDBLoadConfig,
|
2042
2172
|
CaseLabel.Performance: LanceDBPerformanceConfig,
|
2043
2173
|
},
|
2044
|
-
DB.AWSOpenSearch: {
|
2045
|
-
CaseLabel.Load: AWSOpensearchLoadingConfig,
|
2046
|
-
CaseLabel.Performance: AWSOpenSearchPerformanceConfig,
|
2047
|
-
},
|
2048
2174
|
}
|
2049
2175
|
|
2050
2176
|
|
@@ -59,12 +59,15 @@ DB_TO_ICON = {
|
|
59
59
|
DB.Chroma: "https://assets.zilliz.com/chroma_ceb3f06ed7.png",
|
60
60
|
DB.AliyunOpenSearch: "",
|
61
61
|
DB.AWSOpenSearch: "https://assets.zilliz.com/opensearch_1eee37584e.jpeg",
|
62
|
+
DB.OSSOpenSearch: "https://images.seeklogo.com/logo-png/50/1/opensearch-icon-logo-png_seeklogo-500356.png",
|
62
63
|
DB.MongoDB: "",
|
63
64
|
DB.TiDB: "https://img2.pingcap.com/forms/3/d/3d7fd5f9767323d6f037795704211ac44b4923d6.png",
|
64
65
|
DB.Clickhouse: "",
|
65
66
|
DB.Vespa: "https://vespa.ai/vespa-content/uploads/2025/01/Vespa-symbol-green-rgb.png.webp",
|
66
67
|
DB.LanceDB: "",
|
67
68
|
DB.OceanBase: "",
|
69
|
+
DB.S3Vectors: "https://assets.zilliz.com/s3_vectors_daf370b4e5.png",
|
70
|
+
DB.Hologres: "https://img.alicdn.com/imgextra/i3/O1CN01d9qrry1i6lTNa2BRa_!!6000000004364-2-tps-218-200.png",
|
68
71
|
}
|
69
72
|
|
70
73
|
# RedisCloud color: #0D6EFD
|
@@ -79,6 +82,7 @@ COLOR_MAP = {
|
|
79
82
|
DB.PgVector.value: "#4C779A",
|
80
83
|
DB.Redis.value: "#0D6EFD",
|
81
84
|
DB.AWSOpenSearch.value: "#0DCAF0",
|
85
|
+
DB.OSSOpenSearch.value: "#0DCAF0",
|
82
86
|
DB.TiDB.value: "#0D6EFD",
|
83
87
|
DB.Vespa.value: "#61d790",
|
84
88
|
}
|
@@ -60,7 +60,7 @@ def main():
|
|
60
60
|
getResults(resultesContainer, "vectordb_bench_concurrent")
|
61
61
|
|
62
62
|
# main
|
63
|
-
latency_type = st.radio("Latency Type", options=["latency_p99", "latency_avg"])
|
63
|
+
latency_type = st.radio("Latency Type", options=["latency_p99", "latency_p95", "latency_avg"])
|
64
64
|
drawChartsByCase(shownData, showCaseNames, st.container(), latency_type=latency_type)
|
65
65
|
|
66
66
|
# footer
|
@@ -0,0 +1,56 @@
|
|
1
|
+
import streamlit as st
|
2
|
+
from vectordb_bench.backend.filter import FilterOp
|
3
|
+
from vectordb_bench.frontend.components.check_results.footer import footer
|
4
|
+
from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
|
5
|
+
from vectordb_bench.frontend.components.check_results.nav import (
|
6
|
+
NavToQuriesPerDollar,
|
7
|
+
NavToRunTest,
|
8
|
+
NavToPages,
|
9
|
+
)
|
10
|
+
from vectordb_bench.frontend.components.int_filter.charts import drawCharts
|
11
|
+
from vectordb_bench.frontend.components.check_results.filters import getshownData
|
12
|
+
from vectordb_bench.frontend.config.styles import FAVICON
|
13
|
+
from vectordb_bench.interface import benchmark_runner
|
14
|
+
|
15
|
+
|
16
|
+
def main():
|
17
|
+
# set page config
|
18
|
+
st.set_page_config(
|
19
|
+
page_title="Int Filter",
|
20
|
+
page_icon=FAVICON,
|
21
|
+
layout="wide",
|
22
|
+
# initial_sidebar_state="collapsed",
|
23
|
+
)
|
24
|
+
|
25
|
+
# header
|
26
|
+
drawHeaderIcon(st)
|
27
|
+
|
28
|
+
# navigate
|
29
|
+
NavToPages(st)
|
30
|
+
|
31
|
+
allResults = benchmark_runner.get_results()
|
32
|
+
|
33
|
+
st.title("Vector Database Benchmark (Int Filter)")
|
34
|
+
|
35
|
+
# results selector and filter
|
36
|
+
resultSelectorContainer = st.sidebar.container()
|
37
|
+
shownData, failedTasks, showCaseNames = getshownData(
|
38
|
+
resultSelectorContainer, allResults, filter_type=FilterOp.NumGE
|
39
|
+
)
|
40
|
+
|
41
|
+
resultSelectorContainer.divider()
|
42
|
+
|
43
|
+
# nav
|
44
|
+
navContainer = st.sidebar.container()
|
45
|
+
NavToRunTest(navContainer)
|
46
|
+
NavToQuriesPerDollar(navContainer)
|
47
|
+
|
48
|
+
# charts
|
49
|
+
drawCharts(st, shownData)
|
50
|
+
|
51
|
+
# footer
|
52
|
+
footer(st.container())
|
53
|
+
|
54
|
+
|
55
|
+
if __name__ == "__main__":
|
56
|
+
main()
|
@@ -71,7 +71,6 @@ def main():
|
|
71
71
|
getResults(resultesContainer, "vectordb_bench_streaming")
|
72
72
|
|
73
73
|
# # main
|
74
|
-
# latency_type = st.radio("Latency Type", options=["latency_p99", "latency_avg"])
|
75
74
|
st.markdown("Tests search performance with a **stable** and **fixed** insertion rate.")
|
76
75
|
control_panel = st.columns(3)
|
77
76
|
compared_with_optimized = control_panel[0].toggle(
|
@@ -84,6 +83,15 @@ def main():
|
|
84
83
|
value=False,
|
85
84
|
help="Since vdbbench inserts may be faster than vetordb can process them, the time it actually reaches search_stage may have different delays.",
|
86
85
|
)
|
86
|
+
|
87
|
+
# Latency type selection
|
88
|
+
latency_type = control_panel[2].radio(
|
89
|
+
"Latency Type",
|
90
|
+
options=["latency_p99", "latency_p95"],
|
91
|
+
index=0,
|
92
|
+
help="Choose between P99 (slowest 1%) or P95 (slowest 5%) latency metrics.",
|
93
|
+
)
|
94
|
+
|
87
95
|
accuracy_metric = DisplayedMetric.recall
|
88
96
|
show_ndcg = control_panel[1].toggle(
|
89
97
|
"Show **NDCG** instead of Recall.",
|
@@ -103,6 +111,11 @@ def main():
|
|
103
111
|
else:
|
104
112
|
if need_adjust:
|
105
113
|
accuracy_metric = DisplayedMetric.adjusted_recall
|
114
|
+
|
115
|
+
# Determine which latency metric to display
|
116
|
+
latency_metric = DisplayedMetric.latency_p99 if latency_type == "latency_p99" else DisplayedMetric.latency_p95
|
117
|
+
latency_desc = "serial lantency (p99)" if latency_type == "latency_p99" else "serial lantency (p95)"
|
118
|
+
|
106
119
|
line_chart_displayed_y_metrics: list[tuple[DisplayedMetric, str]] = [
|
107
120
|
(
|
108
121
|
DisplayedMetric.qps,
|
@@ -110,8 +123,8 @@ def main():
|
|
110
123
|
),
|
111
124
|
(accuracy_metric, "calculated in each search_stage."),
|
112
125
|
(
|
113
|
-
|
114
|
-
"
|
126
|
+
latency_metric,
|
127
|
+
f"{latency_desc} of **serial search** tests in each search stage.",
|
115
128
|
),
|
116
129
|
]
|
117
130
|
line_chart_displayed_x_metric = DisplayedMetric.search_stage
|
vectordb_bench/interface.py
CHANGED
@@ -43,7 +43,11 @@ class BenchMarkRunner:
|
|
43
43
|
self.running_task: TaskRunner | None = None
|
44
44
|
self.latest_error: str | None = None
|
45
45
|
self.drop_old: bool = True
|
46
|
-
|
46
|
+
# set default data source by ENV
|
47
|
+
if config.DATASET_SOURCE.upper() == "ALIYUNOSS":
|
48
|
+
self.dataset_source: DatasetSource = DatasetSource.AliyunOSS
|
49
|
+
else:
|
50
|
+
self.dataset_source: DatasetSource = DatasetSource.S3
|
47
51
|
|
48
52
|
def set_drop_old(self, drop_old: bool):
|
49
53
|
self.drop_old = drop_old
|