vectordb-bench 1.0.4__py3-none-any.whl → 1.0.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. vectordb_bench/__init__.py +1 -0
  2. vectordb_bench/backend/cases.py +45 -1
  3. vectordb_bench/backend/clients/__init__.py +47 -0
  4. vectordb_bench/backend/clients/api.py +2 -0
  5. vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py +104 -40
  6. vectordb_bench/backend/clients/aws_opensearch/cli.py +52 -15
  7. vectordb_bench/backend/clients/aws_opensearch/config.py +27 -7
  8. vectordb_bench/backend/clients/hologres/cli.py +50 -0
  9. vectordb_bench/backend/clients/hologres/config.py +121 -0
  10. vectordb_bench/backend/clients/hologres/hologres.py +365 -0
  11. vectordb_bench/backend/clients/lancedb/lancedb.py +1 -0
  12. vectordb_bench/backend/clients/milvus/cli.py +29 -9
  13. vectordb_bench/backend/clients/milvus/config.py +2 -0
  14. vectordb_bench/backend/clients/milvus/milvus.py +1 -1
  15. vectordb_bench/backend/clients/oceanbase/cli.py +1 -0
  16. vectordb_bench/backend/clients/oceanbase/config.py +3 -1
  17. vectordb_bench/backend/clients/oceanbase/oceanbase.py +20 -4
  18. vectordb_bench/backend/clients/oss_opensearch/cli.py +155 -0
  19. vectordb_bench/backend/clients/oss_opensearch/config.py +157 -0
  20. vectordb_bench/backend/clients/oss_opensearch/oss_opensearch.py +582 -0
  21. vectordb_bench/backend/clients/oss_opensearch/run.py +166 -0
  22. vectordb_bench/backend/clients/pgdiskann/cli.py +45 -0
  23. vectordb_bench/backend/clients/pgdiskann/config.py +16 -0
  24. vectordb_bench/backend/clients/pgdiskann/pgdiskann.py +94 -26
  25. vectordb_bench/backend/clients/s3_vectors/config.py +41 -0
  26. vectordb_bench/backend/clients/s3_vectors/s3_vectors.py +171 -0
  27. vectordb_bench/backend/clients/tidb/cli.py +0 -4
  28. vectordb_bench/backend/clients/tidb/config.py +22 -2
  29. vectordb_bench/backend/clients/zilliz_cloud/cli.py +14 -1
  30. vectordb_bench/backend/clients/zilliz_cloud/config.py +4 -1
  31. vectordb_bench/backend/dataset.py +70 -0
  32. vectordb_bench/backend/filter.py +17 -0
  33. vectordb_bench/backend/runner/mp_runner.py +4 -0
  34. vectordb_bench/backend/runner/rate_runner.py +23 -11
  35. vectordb_bench/backend/runner/read_write_runner.py +10 -9
  36. vectordb_bench/backend/runner/serial_runner.py +23 -7
  37. vectordb_bench/backend/task_runner.py +5 -4
  38. vectordb_bench/cli/cli.py +36 -0
  39. vectordb_bench/cli/vectordbbench.py +4 -0
  40. vectordb_bench/fig/custom_case_run_test.png +0 -0
  41. vectordb_bench/fig/custom_dataset.png +0 -0
  42. vectordb_bench/fig/homepage/bar-chart.png +0 -0
  43. vectordb_bench/fig/homepage/concurrent.png +0 -0
  44. vectordb_bench/fig/homepage/custom.png +0 -0
  45. vectordb_bench/fig/homepage/label_filter.png +0 -0
  46. vectordb_bench/fig/homepage/qp$.png +0 -0
  47. vectordb_bench/fig/homepage/run_test.png +0 -0
  48. vectordb_bench/fig/homepage/streaming.png +0 -0
  49. vectordb_bench/fig/homepage/table.png +0 -0
  50. vectordb_bench/fig/run_test_select_case.png +0 -0
  51. vectordb_bench/fig/run_test_select_db.png +0 -0
  52. vectordb_bench/fig/run_test_submit.png +0 -0
  53. vectordb_bench/frontend/components/check_results/filters.py +1 -4
  54. vectordb_bench/frontend/components/check_results/nav.py +2 -1
  55. vectordb_bench/frontend/components/concurrent/charts.py +5 -0
  56. vectordb_bench/frontend/components/int_filter/charts.py +60 -0
  57. vectordb_bench/frontend/components/streaming/data.py +7 -0
  58. vectordb_bench/frontend/components/welcome/welcomePrams.py +42 -4
  59. vectordb_bench/frontend/config/dbCaseConfigs.py +142 -16
  60. vectordb_bench/frontend/config/styles.py +4 -0
  61. vectordb_bench/frontend/pages/concurrent.py +1 -1
  62. vectordb_bench/frontend/pages/custom.py +1 -1
  63. vectordb_bench/frontend/pages/int_filter.py +56 -0
  64. vectordb_bench/frontend/pages/streaming.py +16 -3
  65. vectordb_bench/interface.py +5 -1
  66. vectordb_bench/metric.py +7 -0
  67. vectordb_bench/models.py +39 -4
  68. vectordb_bench/results/S3Vectors/result_20250722_standard_s3vectors.json +2509 -0
  69. vectordb_bench/results/getLeaderboardDataV2.py +23 -2
  70. vectordb_bench/results/leaderboard_v2.json +200 -0
  71. vectordb_bench/results/leaderboard_v2_streaming.json +128 -0
  72. {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/METADATA +40 -8
  73. {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/RECORD +77 -51
  74. {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/WHEEL +0 -0
  75. {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/entry_points.txt +0 -0
  76. {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/licenses/LICENSE +0 -0
  77. {vectordb_bench-1.0.4.dist-info → vectordb_bench-1.0.7.dist-info}/top_level.txt +0 -0
@@ -2,10 +2,11 @@ import json
2
2
  import logging
3
3
 
4
4
 
5
- from vectordb_bench.backend.cases import CaseType
5
+ from vectordb_bench.backend.cases import CaseType, StreamingPerformanceCase
6
6
  from vectordb_bench.backend.clients import DB
7
7
  from vectordb_bench.models import CaseResult
8
8
  from vectordb_bench import config
9
+ import numpy as np
9
10
 
10
11
  logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
11
12
 
@@ -29,9 +30,11 @@ def save_to_json(data: list[dict], file_name: str):
29
30
  def main():
30
31
  standard_2025_case_results = get_standard_2025_results()
31
32
  data = []
33
+ streaming_data = []
32
34
  for case_result in standard_2025_case_results:
33
35
  db = case_result.task_config.db
34
36
  label = case_result.task_config.db_config.db_label
37
+ db_name = f"{db.value}{f'-{label}' if label else ''}"
35
38
  metrics = case_result.metrics
36
39
  qps = metrics.qps
37
40
  latency = metrics.serial_latency_p99
@@ -45,14 +48,32 @@ def main():
45
48
  "dataset": dataset,
46
49
  "db": db.value,
47
50
  "label": label,
48
- "db_name": f"{db.value}-{label}",
51
+ "db_name": db_name,
49
52
  "qps": round(qps, 4),
50
53
  "latency": round(latency, 4),
51
54
  "recall": round(recall, 4),
52
55
  "filter_ratio": round(filter_ratio, 3),
53
56
  }
54
57
  )
58
+ else:
59
+ case: StreamingPerformanceCase = case
60
+ # use 90p search stage results to represent streaming performance
61
+ qps_90p = metrics.st_max_qps_list_list[metrics.st_search_stage_list.index(90)]
62
+ latency_90p = metrics.st_serial_latency_p99_list[metrics.st_search_stage_list.index(90)]
63
+ insert_rate = case.insert_rate
64
+ streaming_data.append(
65
+ {
66
+ "dataset": dataset,
67
+ "db": db.value,
68
+ "label": label,
69
+ "db_name": db_name,
70
+ "insert_rate": insert_rate,
71
+ "streaming_qps": round(qps_90p, 4),
72
+ "streaming_latency": round(latency_90p, 4),
73
+ }
74
+ )
55
75
  save_to_json(data, config.RESULTS_LOCAL_DIR / "leaderboard_v2.json")
76
+ save_to_json(streaming_data, config.RESULTS_LOCAL_DIR / "leaderboard_v2_streaming.json")
56
77
 
57
78
 
58
79
  if __name__ == "__main__":
@@ -2658,5 +2658,205 @@
2658
2658
  "latency": 3.3,
2659
2659
  "recall": 0.9147,
2660
2660
  "filter_ratio": 0.5
2661
+ },
2662
+ {
2663
+ "dataset": "Cohere (Medium)",
2664
+ "db": "S3Vectors",
2665
+ "label": "",
2666
+ "db_name": "S3Vectors",
2667
+ "qps": 199.4972,
2668
+ "latency": 337.1,
2669
+ "recall": 0.8717,
2670
+ "filter_ratio": 0.0
2671
+ },
2672
+ {
2673
+ "dataset": "Cohere (Medium)",
2674
+ "db": "S3Vectors",
2675
+ "label": "",
2676
+ "db_name": "S3Vectors",
2677
+ "qps": 192.1164,
2678
+ "latency": 345.6,
2679
+ "recall": 0.4276,
2680
+ "filter_ratio": 0.999
2681
+ },
2682
+ {
2683
+ "dataset": "Cohere (Medium)",
2684
+ "db": "S3Vectors",
2685
+ "label": "",
2686
+ "db_name": "S3Vectors",
2687
+ "qps": 197.4455,
2688
+ "latency": 349.3,
2689
+ "recall": 0.5314,
2690
+ "filter_ratio": 0.998
2691
+ },
2692
+ {
2693
+ "dataset": "Cohere (Medium)",
2694
+ "db": "S3Vectors",
2695
+ "label": "",
2696
+ "db_name": "S3Vectors",
2697
+ "qps": 196.9391,
2698
+ "latency": 263.4,
2699
+ "recall": 0.6549,
2700
+ "filter_ratio": 0.995
2701
+ },
2702
+ {
2703
+ "dataset": "Cohere (Medium)",
2704
+ "db": "S3Vectors",
2705
+ "label": "",
2706
+ "db_name": "S3Vectors",
2707
+ "qps": 201.5401,
2708
+ "latency": 282.4,
2709
+ "recall": 0.7086,
2710
+ "filter_ratio": 0.99
2711
+ },
2712
+ {
2713
+ "dataset": "Cohere (Medium)",
2714
+ "db": "S3Vectors",
2715
+ "label": "",
2716
+ "db_name": "S3Vectors",
2717
+ "qps": 202.2424,
2718
+ "latency": 301.7,
2719
+ "recall": 0.7592,
2720
+ "filter_ratio": 0.98
2721
+ },
2722
+ {
2723
+ "dataset": "Cohere (Medium)",
2724
+ "db": "S3Vectors",
2725
+ "label": "",
2726
+ "db_name": "S3Vectors",
2727
+ "qps": 198.599,
2728
+ "latency": 358.8,
2729
+ "recall": 0.8085,
2730
+ "filter_ratio": 0.95
2731
+ },
2732
+ {
2733
+ "dataset": "Cohere (Medium)",
2734
+ "db": "S3Vectors",
2735
+ "label": "",
2736
+ "db_name": "S3Vectors",
2737
+ "qps": 199.0349,
2738
+ "latency": 275.3,
2739
+ "recall": 0.8325,
2740
+ "filter_ratio": 0.9
2741
+ },
2742
+ {
2743
+ "dataset": "Cohere (Medium)",
2744
+ "db": "S3Vectors",
2745
+ "label": "",
2746
+ "db_name": "S3Vectors",
2747
+ "qps": 202.1405,
2748
+ "latency": 282.6,
2749
+ "recall": 0.8492,
2750
+ "filter_ratio": 0.8
2751
+ },
2752
+ {
2753
+ "dataset": "Cohere (Medium)",
2754
+ "db": "S3Vectors",
2755
+ "label": "",
2756
+ "db_name": "S3Vectors",
2757
+ "qps": 201.1282,
2758
+ "latency": 269.2,
2759
+ "recall": 0.8637,
2760
+ "filter_ratio": 0.5
2761
+ },
2762
+ {
2763
+ "dataset": "Cohere (Large)",
2764
+ "db": "S3Vectors",
2765
+ "label": "",
2766
+ "db_name": "S3Vectors",
2767
+ "qps": 194.8021,
2768
+ "latency": 559.8,
2769
+ "recall": 0.86,
2770
+ "filter_ratio": 0.0
2771
+ },
2772
+ {
2773
+ "dataset": "Cohere (Large)",
2774
+ "db": "S3Vectors",
2775
+ "label": "",
2776
+ "db_name": "S3Vectors",
2777
+ "qps": 187.4268,
2778
+ "latency": 453.7,
2779
+ "recall": 0.4692,
2780
+ "filter_ratio": 0.999
2781
+ },
2782
+ {
2783
+ "dataset": "Cohere (Large)",
2784
+ "db": "S3Vectors",
2785
+ "label": "",
2786
+ "db_name": "S3Vectors",
2787
+ "qps": 198.397,
2788
+ "latency": 506.9,
2789
+ "recall": 0.5409,
2790
+ "filter_ratio": 0.998
2791
+ },
2792
+ {
2793
+ "dataset": "Cohere (Large)",
2794
+ "db": "S3Vectors",
2795
+ "label": "",
2796
+ "db_name": "S3Vectors",
2797
+ "qps": 174.3549,
2798
+ "latency": 496.9,
2799
+ "recall": 0.6279,
2800
+ "filter_ratio": 0.995
2801
+ },
2802
+ {
2803
+ "dataset": "Cohere (Large)",
2804
+ "db": "S3Vectors",
2805
+ "label": "",
2806
+ "db_name": "S3Vectors",
2807
+ "qps": 172.95,
2808
+ "latency": 515.6,
2809
+ "recall": 0.7004,
2810
+ "filter_ratio": 0.99
2811
+ },
2812
+ {
2813
+ "dataset": "Cohere (Large)",
2814
+ "db": "S3Vectors",
2815
+ "label": "",
2816
+ "db_name": "S3Vectors",
2817
+ "qps": 190.9747,
2818
+ "latency": 517.4,
2819
+ "recall": 0.7398,
2820
+ "filter_ratio": 0.98
2821
+ },
2822
+ {
2823
+ "dataset": "Cohere (Large)",
2824
+ "db": "S3Vectors",
2825
+ "label": "",
2826
+ "db_name": "S3Vectors",
2827
+ "qps": 186.0237,
2828
+ "latency": 474.0,
2829
+ "recall": 0.7847,
2830
+ "filter_ratio": 0.95
2831
+ },
2832
+ {
2833
+ "dataset": "Cohere (Large)",
2834
+ "db": "S3Vectors",
2835
+ "label": "",
2836
+ "db_name": "S3Vectors",
2837
+ "qps": 192.1458,
2838
+ "latency": 480.5,
2839
+ "recall": 0.8103,
2840
+ "filter_ratio": 0.9
2841
+ },
2842
+ {
2843
+ "dataset": "Cohere (Large)",
2844
+ "db": "S3Vectors",
2845
+ "label": "",
2846
+ "db_name": "S3Vectors",
2847
+ "qps": 179.4203,
2848
+ "latency": 497.5,
2849
+ "recall": 0.8273,
2850
+ "filter_ratio": 0.8
2851
+ },
2852
+ {
2853
+ "dataset": "Cohere (Large)",
2854
+ "db": "S3Vectors",
2855
+ "label": "",
2856
+ "db_name": "S3Vectors",
2857
+ "qps": 199.5444,
2858
+ "latency": 463.9,
2859
+ "recall": 0.8478,
2860
+ "filter_ratio": 0.5
2661
2861
  }
2662
2862
  ]
@@ -0,0 +1,128 @@
1
+ [
2
+ {
3
+ "dataset": "Cohere (Large)",
4
+ "db": "ElasticCloud",
5
+ "label": "8c60g",
6
+ "db_name": "ElasticCloud-8c60g",
7
+ "insert_rate": 500,
8
+ "streaming_qps": 61.6708,
9
+ "streaming_latency": 0.0794
10
+ },
11
+ {
12
+ "dataset": "Cohere (Large)",
13
+ "db": "ElasticCloud",
14
+ "label": "8c60g",
15
+ "db_name": "ElasticCloud-8c60g",
16
+ "insert_rate": 1000,
17
+ "streaming_qps": 61.8172,
18
+ "streaming_latency": 0.2223
19
+ },
20
+ {
21
+ "dataset": "Cohere (Large)",
22
+ "db": "Milvus",
23
+ "label": "16c64g-sq8",
24
+ "db_name": "Milvus-16c64g-sq8",
25
+ "insert_rate": 500,
26
+ "streaming_qps": 305.9971,
27
+ "streaming_latency": 0.005
28
+ },
29
+ {
30
+ "dataset": "Cohere (Large)",
31
+ "db": "Milvus",
32
+ "label": "16c64g-sq8",
33
+ "db_name": "Milvus-16c64g-sq8",
34
+ "insert_rate": 1000,
35
+ "streaming_qps": 155.9613,
36
+ "streaming_latency": 0.0203
37
+ },
38
+ {
39
+ "dataset": "Cohere (Large)",
40
+ "db": "Pinecone",
41
+ "label": "p2.x8-1node",
42
+ "db_name": "Pinecone-p2.x8-1node",
43
+ "insert_rate": 500,
44
+ "streaming_qps": 367.4299,
45
+ "streaming_latency": 1.8286
46
+ },
47
+ {
48
+ "dataset": "Cohere (Large)",
49
+ "db": "Pinecone",
50
+ "label": "p2.x8-1node",
51
+ "db_name": "Pinecone-p2.x8-1node",
52
+ "insert_rate": 1000,
53
+ "streaming_qps": 369.6771,
54
+ "streaming_latency": 5.992
55
+ },
56
+ {
57
+ "dataset": "Cohere (Large)",
58
+ "db": "QdrantCloud",
59
+ "label": "16c64g",
60
+ "db_name": "QdrantCloud-16c64g",
61
+ "insert_rate": 500,
62
+ "streaming_qps": 393.753,
63
+ "streaming_latency": 0.0162
64
+ },
65
+ {
66
+ "dataset": "Cohere (Large)",
67
+ "db": "QdrantCloud",
68
+ "label": "16c64g",
69
+ "db_name": "QdrantCloud-16c64g",
70
+ "insert_rate": 1000,
71
+ "streaming_qps": 347.5774,
72
+ "streaming_latency": 0.0118
73
+ },
74
+ {
75
+ "dataset": "Cohere (Large)",
76
+ "db": "OpenSearch",
77
+ "label": "16c128g",
78
+ "db_name": "OpenSearch-16c128g",
79
+ "insert_rate": 1000,
80
+ "streaming_qps": 149.7168,
81
+ "streaming_latency": 0.098
82
+ },
83
+ {
84
+ "dataset": "Cohere (Large)",
85
+ "db": "OpenSearch",
86
+ "label": "16c128g",
87
+ "db_name": "OpenSearch-16c128g",
88
+ "insert_rate": 500,
89
+ "streaming_qps": 161.6694,
90
+ "streaming_latency": 0.052
91
+ },
92
+ {
93
+ "dataset": "Cohere (Large)",
94
+ "db": "ZillizCloud",
95
+ "label": "8cu-perf",
96
+ "db_name": "ZillizCloud-8cu-perf",
97
+ "insert_rate": 500,
98
+ "streaming_qps": 2118.7516,
99
+ "streaming_latency": 0.0068
100
+ },
101
+ {
102
+ "dataset": "Cohere (Large)",
103
+ "db": "ZillizCloud",
104
+ "label": "8cu-perf",
105
+ "db_name": "ZillizCloud-8cu-perf",
106
+ "insert_rate": 1000,
107
+ "streaming_qps": 1860.2575,
108
+ "streaming_latency": 0.0101
109
+ },
110
+ {
111
+ "dataset": "Cohere (Large)",
112
+ "db": "S3Vectors",
113
+ "label": "",
114
+ "db_name": "S3Vectors",
115
+ "insert_rate": 500,
116
+ "streaming_qps": 180.9549,
117
+ "streaming_latency": 0.4204
118
+ },
119
+ {
120
+ "dataset": "Cohere (Large)",
121
+ "db": "S3Vectors",
122
+ "label": "",
123
+ "db_name": "S3Vectors",
124
+ "insert_rate": 1000,
125
+ "streaming_qps": 167.2689,
126
+ "streaming_latency": 0.5048
127
+ }
128
+ ]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vectordb-bench
3
- Version: 1.0.4
3
+ Version: 1.0.7
4
4
  Summary: VectorDBBench is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VectorDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
5
5
  Author-email: XuanYang-cn <xuan.yang@zilliz.com>
6
6
  Project-URL: repository, https://github.com/zilliztech/VectorDBBench
@@ -153,6 +153,7 @@ All the database client supported
153
153
  | tidb | `pip install vectordb-bench[tidb]` |
154
154
  | vespa | `pip install vectordb-bench[vespa]` |
155
155
  | oceanbase | `pip install vectordb-bench[oceanbase]` |
156
+ | hologres | `pip install vectordb-bench[hologres]` |
156
157
 
157
158
  ### Run
158
159
 
@@ -269,7 +270,7 @@ vectordbbench awsopensearch --db-label awsopensearch \
269
270
  --m 16 --ef-construction 256 \
270
271
  --host search-vector-db-prod-h4f6m4of6x7yp2rz7gdmots7w4.us-west-2.es.amazonaws.com --port 443 \
271
272
  --user vector --password '<password>' \
272
- --case-type Performance1536D5M --num-insert-workers 10 \
273
+ --case-type Performance1536D5M --number-of-indexing-clients 10 \
273
274
  --skip-load --num-concurrency 75
274
275
  ```
275
276
 
@@ -297,7 +298,7 @@ Options:
297
298
  --force-merge-enabled BOOLEAN Whether to perform force merge operation
298
299
  --flush-threshold-size TEXT Size threshold for flushing the transaction
299
300
  log
300
- --engine TEXT type of engine to use valid values [faiss, lucene]
301
+ --engine TEXT type of engine to use valid values [faiss, lucene, s3vector]
301
302
  # Memory Management
302
303
  --cb-threshold TEXT k-NN Memory circuit breaker threshold
303
304
 
@@ -372,6 +373,37 @@ Options:
372
373
  --help Show this message and exit. Show this message and exit.
373
374
  ```
374
375
 
376
+ ### Run Hologres from command line
377
+
378
+ Execute tests for the index types: HGraph.
379
+
380
+ ```shell
381
+ vectordbbench hologreshgraph --host xxx --port xxx --user ACCESS_ID --password ACCESS_KEY --database test \
382
+ --m 64 --ef-construction 400 --case-type Performance768D1M \
383
+ --index-type HGraph --ef-search 51 --k 10
384
+ ```
385
+
386
+ To list the options for Hologres, execute `vectordbbench hologreshgraph --help`, The following are some Hologres-specific command-line options.
387
+
388
+ ```text
389
+ $ vectordbbench hologreshgraph --help
390
+ Usage: vectordbbench hologreshgraph [OPTIONS]
391
+
392
+ Options:
393
+ [...]
394
+ --host TEXT Hologres host
395
+ --user TEXT Hologres username [required]
396
+ --password TEXT Hologres database password
397
+ --database TEXT Hologres database name [required]
398
+ --port INTEGER Hologres port [required]
399
+ --m INTEGER hnsw m [required]
400
+ --ef-construction INTEGER hnsw ef-construction [required]
401
+ --ef-search INTEGER hnsw ef-search [required]
402
+ --index-type [HGraph] Type of index to use. Supported values:
403
+ HGraph [required]
404
+ --help Show this message and exit.
405
+ ```
406
+
375
407
  #### Using a configuration file.
376
408
 
377
409
  The vectordbbench command can optionally read some or all the options from a yaml formatted configuration file.
@@ -525,9 +557,9 @@ All standard benchmark results are generated by a client running on an 8 core, 3
525
557
  2. The next step is to select the test cases you want to perform. You can select multiple cases at once, and a form to collect corresponding parameters will appear.
526
558
  3. Finally, you'll need to provide a task label to distinguish different test results. Using the same label for different tests will result in the previous results being overwritten.
527
559
  Now we can only run one task at the same time.
528
- ![image](fig/run_test_select_db.png)
529
- ![image](fig/run_test_select_case.png)
530
- ![image](fig/run_test_submit.png)
560
+ ![image](vectordb_bench/fig/run_test_select_db.png)
561
+ ![image](vectordb_bench/fig/run_test_select_case.png)
562
+ ![image](vectordb_bench/fig/run_test_submit.png)
531
563
 
532
564
 
533
565
  ## Module
@@ -557,8 +589,8 @@ Each case provides an in-depth examination of a vector database's abilities, pro
557
589
 
558
590
  Through the `/custom` page, users can customize their own performance case using local datasets. After saving, the corresponding case can be selected from the `/run_test` page to perform the test.
559
591
 
560
- ![image](fig/custom_dataset.png)
561
- ![image](fig/custom_case_run_test.png)
592
+ ![image](vectordb_bench/fig/custom_dataset.png)
593
+ ![image](vectordb_bench/fig/custom_case_run_test.png)
562
594
 
563
595
  We have strict requirements for the data set format, please follow them.
564
596
  - `Folder Path` - The path to the folder containing all the files. Please ensure that all files in the folder are in the `Parquet` format.