vectordb-bench 0.0.30__py3-none-any.whl → 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vectordb_bench/__init__.py +14 -27
- vectordb_bench/__main__.py +1 -1
- vectordb_bench/backend/assembler.py +19 -6
- vectordb_bench/backend/cases.py +186 -23
- vectordb_bench/backend/clients/__init__.py +16 -0
- vectordb_bench/backend/clients/api.py +22 -1
- vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py +82 -41
- vectordb_bench/backend/clients/aws_opensearch/config.py +37 -4
- vectordb_bench/backend/clients/chroma/chroma.py +6 -2
- vectordb_bench/backend/clients/elastic_cloud/config.py +31 -1
- vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +133 -45
- vectordb_bench/backend/clients/milvus/config.py +1 -0
- vectordb_bench/backend/clients/milvus/milvus.py +75 -23
- vectordb_bench/backend/clients/oceanbase/cli.py +100 -0
- vectordb_bench/backend/clients/oceanbase/config.py +125 -0
- vectordb_bench/backend/clients/oceanbase/oceanbase.py +215 -0
- vectordb_bench/backend/clients/pinecone/pinecone.py +39 -25
- vectordb_bench/backend/clients/qdrant_cloud/config.py +73 -3
- vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +100 -33
- vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py +1 -1
- vectordb_bench/backend/dataset.py +146 -27
- vectordb_bench/backend/filter.py +76 -0
- vectordb_bench/backend/runner/__init__.py +3 -3
- vectordb_bench/backend/runner/mp_runner.py +52 -39
- vectordb_bench/backend/runner/rate_runner.py +68 -52
- vectordb_bench/backend/runner/read_write_runner.py +125 -68
- vectordb_bench/backend/runner/serial_runner.py +56 -23
- vectordb_bench/backend/task_runner.py +59 -20
- vectordb_bench/cli/cli.py +59 -1
- vectordb_bench/cli/vectordbbench.py +3 -0
- vectordb_bench/frontend/components/check_results/data.py +16 -11
- vectordb_bench/frontend/components/check_results/filters.py +53 -25
- vectordb_bench/frontend/components/check_results/headerIcon.py +18 -13
- vectordb_bench/frontend/components/check_results/nav.py +20 -0
- vectordb_bench/frontend/components/custom/displayCustomCase.py +43 -8
- vectordb_bench/frontend/components/custom/displaypPrams.py +10 -5
- vectordb_bench/frontend/components/custom/getCustomConfig.py +10 -0
- vectordb_bench/frontend/components/label_filter/charts.py +60 -0
- vectordb_bench/frontend/components/run_test/caseSelector.py +48 -52
- vectordb_bench/frontend/components/run_test/dbSelector.py +9 -5
- vectordb_bench/frontend/components/run_test/inputWidget.py +48 -0
- vectordb_bench/frontend/components/run_test/submitTask.py +3 -1
- vectordb_bench/frontend/components/streaming/charts.py +253 -0
- vectordb_bench/frontend/components/streaming/data.py +62 -0
- vectordb_bench/frontend/components/tables/data.py +1 -1
- vectordb_bench/frontend/components/welcome/explainPrams.py +66 -0
- vectordb_bench/frontend/components/welcome/pagestyle.py +106 -0
- vectordb_bench/frontend/components/welcome/welcomePrams.py +147 -0
- vectordb_bench/frontend/config/dbCaseConfigs.py +309 -42
- vectordb_bench/frontend/config/styles.py +34 -4
- vectordb_bench/frontend/pages/concurrent.py +5 -1
- vectordb_bench/frontend/pages/custom.py +4 -0
- vectordb_bench/frontend/pages/label_filter.py +56 -0
- vectordb_bench/frontend/pages/quries_per_dollar.py +5 -1
- vectordb_bench/frontend/{vdb_benchmark.py → pages/results.py} +10 -4
- vectordb_bench/frontend/pages/run_test.py +3 -3
- vectordb_bench/frontend/pages/streaming.py +135 -0
- vectordb_bench/frontend/pages/tables.py +4 -0
- vectordb_bench/frontend/vdbbench.py +31 -0
- vectordb_bench/interface.py +8 -3
- vectordb_bench/metric.py +15 -1
- vectordb_bench/models.py +31 -11
- vectordb_bench/results/ElasticCloud/result_20250318_standard_elasticcloud.json +5890 -0
- vectordb_bench/results/Milvus/result_20250509_standard_milvus.json +6138 -0
- vectordb_bench/results/OpenSearch/result_20250224_standard_opensearch.json +7319 -0
- vectordb_bench/results/Pinecone/result_20250124_standard_pinecone.json +2365 -0
- vectordb_bench/results/QdrantCloud/result_20250602_standard_qdrantcloud.json +3556 -0
- vectordb_bench/results/ZillizCloud/result_20250613_standard_zillizcloud.json +6290 -0
- vectordb_bench/results/dbPrices.json +12 -4
- vectordb_bench/results/getLeaderboardDataV2.py +59 -0
- vectordb_bench/results/leaderboard_v2.json +2662 -0
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/METADATA +93 -40
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/RECORD +77 -58
- vectordb_bench/results/ZillizCloud/result_20230727_standard_zillizcloud.json +0 -791
- vectordb_bench/results/ZillizCloud/result_20230808_standard_zillizcloud.json +0 -679
- vectordb_bench/results/ZillizCloud/result_20240105_standard_202401_zillizcloud.json +0 -1352
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/WHEEL +0 -0
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/entry_points.txt +0 -0
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/licenses/LICENSE +0 -0
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: vectordb-bench
|
3
|
-
Version:
|
3
|
+
Version: 1.0.1
|
4
4
|
Summary: VectorDBBench is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VectorDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
|
5
5
|
Author-email: XuanYang-cn <xuan.yang@zilliz.com>
|
6
6
|
Project-URL: repository, https://github.com/zilliztech/VectorDBBench
|
@@ -21,7 +21,7 @@ Requires-Dist: oss2
|
|
21
21
|
Requires-Dist: psutil
|
22
22
|
Requires-Dist: polars
|
23
23
|
Requires-Dist: plotly
|
24
|
-
Requires-Dist: environs
|
24
|
+
Requires-Dist: environs
|
25
25
|
Requires-Dist: pydantic<v2
|
26
26
|
Requires-Dist: scikit-learn
|
27
27
|
Requires-Dist: pymilvus
|
@@ -53,6 +53,7 @@ Requires-Dist: PyMySQL; extra == "all"
|
|
53
53
|
Requires-Dist: clickhouse-connect; extra == "all"
|
54
54
|
Requires-Dist: pyvespa; extra == "all"
|
55
55
|
Requires-Dist: lancedb; extra == "all"
|
56
|
+
Requires-Dist: mysql-connector-python; extra == "all"
|
56
57
|
Provides-Extra: qdrant
|
57
58
|
Requires-Dist: qdrant-client; extra == "qdrant"
|
58
59
|
Provides-Extra: pinecone
|
@@ -90,6 +91,8 @@ Provides-Extra: vespa
|
|
90
91
|
Requires-Dist: pyvespa; extra == "vespa"
|
91
92
|
Provides-Extra: lancedb
|
92
93
|
Requires-Dist: lancedb; extra == "lancedb"
|
94
|
+
Provides-Extra: oceanbase
|
95
|
+
Requires-Dist: mysql-connector-python; extra == "oceanbase"
|
93
96
|
Dynamic: license-file
|
94
97
|
|
95
98
|
# VectorDBBench(VDBBench): A Benchmark Tool for VectorDB
|
@@ -97,17 +100,17 @@ Dynamic: license-file
|
|
97
100
|
[](https://pypi.org/project/vectordb-bench/)
|
98
101
|
[](https://pepy.tech/project/vectordb-bench)
|
99
102
|
|
100
|
-
## What is
|
101
|
-
|
103
|
+
## What is VDBBench
|
104
|
+
VDBBench is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
|
102
105
|
|
103
106
|
Understanding the importance of user experience, we provide an intuitive visual interface. This not only empowers users to initiate benchmarks at ease, but also to view comparative result reports, thereby reproducing benchmark results effortlessly.
|
104
107
|
To add more relevance and practicality, we provide cost-effectiveness reports particularly for cloud services. This allows for a more realistic and applicable benchmarking process.
|
105
108
|
|
106
109
|
Closely mimicking real-world production environments, we've set up diverse testing scenarios including insertion, searching, and filtered searching. To provide you with credible and reliable data, we've included public datasets from actual production scenarios, such as [SIFT](http://corpus-texmex.irisa.fr/), [GIST](http://corpus-texmex.irisa.fr/), [Cohere](https://huggingface.co/datasets/Cohere/wikipedia-22-12/tree/main/en), and a dataset generated by OpenAI from an opensource [raw dataset](https://huggingface.co/datasets/allenai/c4). It's fascinating to discover how a relatively unknown open-source database might excel in certain circumstances!
|
107
110
|
|
108
|
-
Prepare to delve into the world of
|
111
|
+
Prepare to delve into the world of VDBBench, and let it guide you in uncovering your perfect vector database match.
|
109
112
|
|
110
|
-
|
113
|
+
VDBBench is sponsered by Zilliz,the leading opensource vectorDB company behind Milvus. Choose smarter with VDBBench - start your free test on [zilliz cloud](https://zilliz.com/) today!
|
111
114
|
|
112
115
|
**Leaderboard:** https://zilliz.com/benchmark
|
113
116
|
## Quick Start
|
@@ -151,6 +154,7 @@ All the database client supported
|
|
151
154
|
| mongodb | `pip install vectordb-bench[mongodb]` |
|
152
155
|
| tidb | `pip install vectordb-bench[tidb]` |
|
153
156
|
| vespa | `pip install vectordb-bench[vespa]` |
|
157
|
+
| oceanbase | `pip install vectordb-bench[oceanbase]` |
|
154
158
|
|
155
159
|
### Run
|
156
160
|
|
@@ -303,6 +307,72 @@ Options:
|
|
303
307
|
--quantization-type TEXT which type of quantization to use valid values [fp32, fp16]
|
304
308
|
--help Show this message and exit.
|
305
309
|
```
|
310
|
+
### Run OceanBase from command line
|
311
|
+
|
312
|
+
Execute tests for the index types: HNSW, HNSW_SQ, or HNSW_BQ.
|
313
|
+
|
314
|
+
```shell
|
315
|
+
vectordbbench oceanbasehnsw --host xxx --port xxx --user root@mysql_tenant --database test \
|
316
|
+
--m 16 --ef-construction 200 --case-type Performance1536D50K \
|
317
|
+
--index-type HNSW --ef-search 100
|
318
|
+
```
|
319
|
+
|
320
|
+
To list the options for oceanbase, execute `vectordbbench oceanbasehnsw --help`, The following are some OceanBase-specific command-line options.
|
321
|
+
|
322
|
+
```text
|
323
|
+
$ vectordbbench oceanbasehnsw --help
|
324
|
+
Usage: vectordbbench oceanbasehnsw [OPTIONS]
|
325
|
+
|
326
|
+
Options:
|
327
|
+
[...]
|
328
|
+
--host TEXT OceanBase host
|
329
|
+
--user TEXT OceanBase username [required]
|
330
|
+
--password TEXT OceanBase database password
|
331
|
+
--database TEXT DataBase name [required]
|
332
|
+
--port INTEGER OceanBase port [required]
|
333
|
+
--m INTEGER hnsw m [required]
|
334
|
+
--ef-construction INTEGER hnsw ef-construction [required]
|
335
|
+
--ef-search INTEGER hnsw ef-search [required]
|
336
|
+
--index-type [HNSW|HNSW_SQ|HNSW_BQ]
|
337
|
+
Type of index to use. Supported values:
|
338
|
+
HNSW, HNSW_SQ, HNSW_BQ [required]
|
339
|
+
--help Show this message and exit.
|
340
|
+
```
|
341
|
+
|
342
|
+
Execute tests for the index types: IVF_FLAT, IVF_SQ8, or IVF_PQ.
|
343
|
+
|
344
|
+
```shell
|
345
|
+
vectordbbench oceanbaseivf --host xxx --port xxx --user root@mysql_tenant --database test \
|
346
|
+
--nlist 1000 --sample_per_nlist 256 --case-type Performance768D1M \
|
347
|
+
--index-type IVF_FLAT --ivf_nprobes 100
|
348
|
+
```
|
349
|
+
|
350
|
+
To list the options for oceanbase, execute `vectordbbench oceanbaseivf --help`, The following are some OceanBase-specific command-line options.
|
351
|
+
|
352
|
+
```text
|
353
|
+
$ vectordbbench oceanbaseivf --help
|
354
|
+
Usage: vectordbbench oceanbaseivf [OPTIONS]
|
355
|
+
|
356
|
+
Options:
|
357
|
+
[...]
|
358
|
+
--host TEXT OceanBase host
|
359
|
+
--user TEXT OceanBase username [required]
|
360
|
+
--password TEXT OceanBase database password
|
361
|
+
--database TEXT DataBase name [required]
|
362
|
+
--port INTEGER OceanBase port [required]
|
363
|
+
--index-type [IVF_FLAT|IVF_SQ8|IVF_PQ]
|
364
|
+
Type of index to use. Supported values:
|
365
|
+
IVF_FLAT, IVF_SQ8, IVF_PQ [required]
|
366
|
+
--nlist INTEGER Number of cluster centers [required]
|
367
|
+
--sample_per_nlist INTEGER The cluster centers are calculated by total
|
368
|
+
sampling sample_per_nlist * nlist vectors
|
369
|
+
[required]
|
370
|
+
--ivf_nprobes TEXT How many clustering centers to search during
|
371
|
+
the query [required]
|
372
|
+
--m INTEGER The number of sub-vectors that each data
|
373
|
+
vector is divided into during IVF-PQ
|
374
|
+
--help Show this message and exit. Show this message and exit.
|
375
|
+
```
|
306
376
|
|
307
377
|
#### Using a configuration file.
|
308
378
|
|
@@ -447,58 +517,41 @@ make format
|
|
447
517
|
## How does it work?
|
448
518
|
### Result Page
|
449
519
|

|
450
|
-
This is the main page of
|
520
|
+
This is the main page of VDBBench, which displays the standard benchmark results we provide. Additionally, results of all tests performed by users themselves will also be shown here. We also offer the ability to select and compare results from multiple tests simultaneously.
|
451
521
|
|
452
522
|
The standard benchmark results displayed here include all 15 cases that we currently support for 6 of our clients (Milvus, Zilliz Cloud, Elastic Search, Qdrant Cloud, Weaviate Cloud and PgVector). However, as some systems may not be able to complete all the tests successfully due to issues like Out of Memory (OOM) or timeouts, not all clients are included in every case.
|
453
523
|
|
454
524
|
All standard benchmark results are generated by a client running on an 8 core, 32 GB host, which is located in the same region as the server being tested. The client host is equipped with an `Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz` processor. Also all the servers for the open-source systems tested in our benchmarks run on hosts with the same type of processor.
|
455
525
|
### Run Test Page
|
456
|
-

|
457
|
-
This is the page to run a test:
|
458
526
|
1. Initially, you select the systems to be tested - multiple selections are allowed. Once selected, corresponding forms will pop up to gather necessary information for using the chosen databases. The db_label is used to differentiate different instances of the same system. We recommend filling in the host size or instance type here (as we do in our standard results).
|
459
527
|
2. The next step is to select the test cases you want to perform. You can select multiple cases at once, and a form to collect corresponding parameters will appear.
|
460
528
|
3. Finally, you'll need to provide a task label to distinguish different test results. Using the same label for different tests will result in the previous results being overwritten.
|
461
529
|
Now we can only run one task at the same time.
|
530
|
+

|
531
|
+

|
532
|
+

|
533
|
+
|
462
534
|
|
463
535
|
## Module
|
464
536
|
### Code Structure
|
465
537
|

|
466
538
|
### Client
|
467
|
-
Our client module is designed with flexibility and extensibility in mind, aiming to integrate APIs from different systems seamlessly. As of now, it supports Milvus, Zilliz Cloud, Elastic Search, Pinecone, Qdrant Cloud, Weaviate Cloud, PgVector, Redis,
|
539
|
+
Our client module is designed with flexibility and extensibility in mind, aiming to integrate APIs from different systems seamlessly. As of now, it supports Milvus, Zilliz Cloud, Elastic Search, Pinecone, Qdrant Cloud, Weaviate Cloud, PgVector, Redis, Chroma, etc. Stay tuned for more options, as we are consistently working on extending our reach to other systems.
|
468
540
|
### Benchmark Cases
|
469
|
-
We've developed
|
541
|
+
We've developed lots of comprehensive benchmark cases to test vector databases' various capabilities, each designed to give you a different piece of the puzzle. These cases are categorized into four main types:
|
470
542
|
#### Capacity Case
|
471
543
|
- **Large Dim:** Tests the database's loading capacity by inserting large-dimension vectors (GIST 100K vectors, 960 dimensions) until fully loaded. The final number of inserted vectors is reported.
|
472
544
|
- **Small Dim:** Similar to the Large Dim case but uses small-dimension vectors (SIFT 500K vectors, 128 dimensions).
|
473
545
|
#### Search Performance Case
|
474
546
|
- **XLarge Dataset:** Measures search performance with a massive dataset (LAION 100M vectors, 768 dimensions) at varying parallel levels. The results include index building time, recall, latency, and maximum QPS.
|
475
|
-
- **Large Dataset:** Similar to the XLarge Dataset case, but uses a slightly smaller dataset (10M-768dim, 5M-1536dim).
|
476
|
-
- **Medium Dataset:** A case using a medium dataset (1M-768dim, 500K-1536dim).
|
547
|
+
- **Large Dataset:** Similar to the XLarge Dataset case, but uses a slightly smaller dataset (10M-1024dim, 10M-768dim, 5M-1536dim).
|
548
|
+
- **Medium Dataset:** A case using a medium dataset (1M-1024dim, 1M-768dim, 500K-1536dim).
|
549
|
+
- **Small Dataset:** For development (100K-768dim, 50K-1536dim).
|
477
550
|
#### Filtering Search Performance Case
|
478
|
-
- **
|
479
|
-
- **
|
480
|
-
|
481
|
-
- **
|
482
|
-
For a quick reference, here is a table summarizing the key aspects of each case:
|
483
|
-
|
484
|
-
Case No. | Case Type | Dataset Size | Filtering Rate | Results |
|
485
|
-
|----------|-----------|--------------|----------------|---------|
|
486
|
-
1 | Capacity Case | SIFT 500K vectors, 128 dimensions | N/A | Number of inserted vectors |
|
487
|
-
2 | Capacity Case | GIST 100K vectors, 960 dimensions | N/A | Number of inserted vectors |
|
488
|
-
3 | Search Performance Case | LAION 100M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
|
489
|
-
4 | Search Performance Case | Cohere 10M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
|
490
|
-
5 | Search Performance Case | Cohere 1M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
|
491
|
-
6 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
|
492
|
-
7 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
|
493
|
-
8 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
|
494
|
-
9 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
|
495
|
-
10 | Search Performance Case | OpenAI generated 500K vectors, 1536 dimensions | N/A | Index building time, recall, latency, maximum QPS |
|
496
|
-
11 | Search Performance Case | OpenAI generated 5M vectors, 1536 dimensions | N/A | Index building time, recall, latency, maximum QPS |
|
497
|
-
12 | Filtering Search Performance Case | OpenAI generated 500K vectors, 1536 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
|
498
|
-
13 | Filtering Search Performance Case | OpenAI generated 5M vectors, 1536 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
|
499
|
-
14 | Filtering Search Performance Case | OpenAI generated 500K vectors, 1536 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
|
500
|
-
15 | Filtering Search Performance Case | OpenAI generated 5M vectors, 1536 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
|
501
|
-
|
551
|
+
- **Int-Filter Cases:** Evaluates search performance with int-based filter expression (e.g. "id >= 2,000").
|
552
|
+
- **Label-Filter Cases:** Evaluates search performance with label-based filter expressions (e.g., "color == 'red'"). The test includes randomly generated labels to simulate real-world filtering scenarios.
|
553
|
+
#### Streaming Cases
|
554
|
+
- **Insertion-Under-Load Case:** Evaluates search performance while maintaining a constant insertion workload. VDBBench applies a steady stream of insert requests at a fixed rate to simulate real-world scenarios where search operations must perform reliably under continuous data ingestion.
|
502
555
|
|
503
556
|
Each case provides an in-depth examination of a vector database's abilities, providing you a comprehensive view of the database's performance.
|
504
557
|
|
@@ -524,15 +577,15 @@ We have strict requirements for the data set format, please follow them.
|
|
524
577
|
|
525
578
|
- `Train File Count` - If the vector file is too large, you can consider splitting it into multiple files. The naming format for the split files should be `train-[index]-of-[file_count].parquet`. For example, `train-01-of-10.parquet` represents the second file (0-indexed) among 10 split files.
|
526
579
|
|
527
|
-
- `Use Shuffled Data` - If you check this option, the vector data files need to be modified.
|
580
|
+
- `Use Shuffled Data` - If you check this option, the vector data files need to be modified. VDBBench will load the data labeled with `shuffle`. For example, use `shuffle_train.parquet` instead of `train.parquet` and `shuffle_train-04-of-10.parquet` instead of `train-04-of-10.parquet`. The `id` column in the shuffled data can be in any order.
|
528
581
|
|
529
582
|
|
530
583
|
## Goals
|
531
584
|
Our goals of this benchmark are:
|
532
585
|
### Reproducibility & Usability
|
533
|
-
One of the primary goals of
|
586
|
+
One of the primary goals of VDBBench is to enable users to reproduce benchmark results swiftly and easily, or to test their customized scenarios. We believe that lowering the barriers to entry for conducting these tests will enhance the community's understanding and improvement of vector databases. We aim to create an environment where any user, regardless of their technical expertise, can quickly set up and run benchmarks, and view and analyze results in an intuitive manner.
|
534
587
|
### Representability & Realism
|
535
|
-
|
588
|
+
VDBBench aims to provide a more comprehensive, multi-faceted testing environment that accurately represents the complexity of vector databases. By moving beyond a simple speed test for algorithms, we hope to contribute to a better understanding of vector databases in real-world scenarios. By incorporating as many complex scenarios as possible, including a variety of test cases and datasets, we aim to reflect realistic conditions and offer tangible significance to our community. Our goal is to deliver benchmarking results that can drive tangible improvements in the development and usage of vector databases.
|
536
589
|
|
537
590
|
## Contribution
|
538
591
|
### General Guidelines
|
@@ -1,20 +1,21 @@
|
|
1
|
-
vectordb_bench/__init__.py,sha256=
|
2
|
-
vectordb_bench/__main__.py,sha256=
|
1
|
+
vectordb_bench/__init__.py,sha256=tNYi1E35lvYGeSgTPnhbJfV2zL5pGcO60vbwY8TSHYc,2497
|
2
|
+
vectordb_bench/__main__.py,sha256=2zZQJ9tg7gVCWWq9HaoJ8_hTR-3AXZgFHfJK4l88DFA,853
|
3
3
|
vectordb_bench/base.py,sha256=AgavIF0P9ku_RmCRk1KKziba-wI4ZpA2aJvjJzNhRSs,129
|
4
|
-
vectordb_bench/interface.py,sha256=
|
4
|
+
vectordb_bench/interface.py,sha256=4rw7poQ_s4MfsSHgBtGE136hDooe3bZmWD7rG8jvbDw,9997
|
5
5
|
vectordb_bench/log_util.py,sha256=wDNaU_JBBOfKi_Z4vq7LDa0kOlLjoNNzDX3VZQn_Dxo,3239
|
6
|
-
vectordb_bench/metric.py,sha256=
|
7
|
-
vectordb_bench/models.py,sha256=
|
6
|
+
vectordb_bench/metric.py,sha256=p7vf7H8MBP7YQmIwy2wPYJPwMBalCy7rblshoD1R3kY,2693
|
7
|
+
vectordb_bench/models.py,sha256=ul3zoNj1btO_FClTw0wEGBUMGA2JreWIO-1hQ77Ek4o,13246
|
8
8
|
vectordb_bench/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9
|
-
vectordb_bench/backend/assembler.py,sha256=
|
10
|
-
vectordb_bench/backend/cases.py,sha256=
|
9
|
+
vectordb_bench/backend/assembler.py,sha256=MdAOXVhCrRGT76Q21xBusCmDc4mXS7yMrhSYAlKPQVA,2785
|
10
|
+
vectordb_bench/backend/cases.py,sha256=TdILp-UBrogsx0xYTkq6P4NLo-zx1SsdbE_hud1k9-A,23368
|
11
11
|
vectordb_bench/backend/data_source.py,sha256=bfa_Zg4O9fRP2ENmVZ_2-NISKozoFN-TocyxOlw1JtE,5524
|
12
|
-
vectordb_bench/backend/dataset.py,sha256=
|
12
|
+
vectordb_bench/backend/dataset.py,sha256=jFPV6wuQwfLi61EAgbTkT-VtXT04y9PffEd1atYH31A,13978
|
13
|
+
vectordb_bench/backend/filter.py,sha256=fDaq8SUab6KfwfGlkIQNGjE0k1gRjyXovQaTKzsUo4U,1922
|
13
14
|
vectordb_bench/backend/result_collector.py,sha256=mpROVdZ-HChKBVyMV5TZ5v7YGRb69bvfT7Gezn5F5sY,819
|
14
|
-
vectordb_bench/backend/task_runner.py,sha256=
|
15
|
+
vectordb_bench/backend/task_runner.py,sha256=9idq-tS-wOL3XuN0Cdz_6LMw9MpuVAH_Hc8r9OtPTbI,13039
|
15
16
|
vectordb_bench/backend/utils.py,sha256=R6THuJdZhiQYSSJTqv0Uegl2B20taV_QjwvFrun2yxE,1949
|
16
|
-
vectordb_bench/backend/clients/__init__.py,sha256=
|
17
|
-
vectordb_bench/backend/clients/api.py,sha256=
|
17
|
+
vectordb_bench/backend/clients/__init__.py,sha256=VTbkRw9HpLowKDRp_FxRwobZmIe6uRJatm4rH9zVfPI,11429
|
18
|
+
vectordb_bench/backend/clients/api.py,sha256=BnVzFdvlj3cQYUx6DCbQZ08Tae2cJA5ZKuep9H-5X80,7368
|
18
19
|
vectordb_bench/backend/clients/aliyun_elasticsearch/aliyun_elasticsearch.py,sha256=7yPYaWoHeHNxDMtpReGXsdEPFD1e4vQblFor7TmLq5o,770
|
19
20
|
vectordb_bench/backend/clients/aliyun_elasticsearch/config.py,sha256=d9RCgfCgauKvy6z9ig_wBormgwiGtkh8POyoHloHnJA,505
|
20
21
|
vectordb_bench/backend/clients/aliyun_opensearch/aliyun_opensearch.py,sha256=rwa4rtbbP2Kaczh7Bf0bc_lE_sGG5w9PhtfdFu7rQNs,13237
|
@@ -22,17 +23,17 @@ vectordb_bench/backend/clients/aliyun_opensearch/config.py,sha256=KSiuRu-p7oL2PE
|
|
22
23
|
vectordb_bench/backend/clients/alloydb/alloydb.py,sha256=E24hxCUgpBCRiScdcS_iBk8n0wngUgVg8qujOWiUhw0,13009
|
23
24
|
vectordb_bench/backend/clients/alloydb/cli.py,sha256=G6Q0WApoDXDG_pqmK2lEKFIvKB8qAsZFPM8TfsURydE,5086
|
24
25
|
vectordb_bench/backend/clients/alloydb/config.py,sha256=PJs2wIJqwcG6UJ3T8R7Pi3xTMBfxTZiNkcWyhtHv5dc,5313
|
25
|
-
vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py,sha256=
|
26
|
+
vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py,sha256=TfdJZ_oVrxT4eldIYz5z8SQJbhm5my1xM8M_kfdfWtE,18852
|
26
27
|
vectordb_bench/backend/clients/aws_opensearch/cli.py,sha256=YV07EwgCLEyWXifr_PpcroQpNEHVpl5wX7OBSsyo4gQ,4951
|
27
|
-
vectordb_bench/backend/clients/aws_opensearch/config.py,sha256=
|
28
|
+
vectordb_bench/backend/clients/aws_opensearch/config.py,sha256=DDa1dK053TwhudSaibHpX0N-JhcO25H4GDr3Yv6Xemg,4403
|
28
29
|
vectordb_bench/backend/clients/aws_opensearch/run.py,sha256=Ry5aAlielWjq0hx7LnbdShfOwzZhz3Gq9WYu5U43x9s,5001
|
29
|
-
vectordb_bench/backend/clients/chroma/chroma.py,sha256=
|
30
|
+
vectordb_bench/backend/clients/chroma/chroma.py,sha256=ifoEgo7jSkJ6pPixiUd2zuV75FvgvODCfZTfC8fK0ak,3759
|
30
31
|
vectordb_bench/backend/clients/chroma/config.py,sha256=8nXpPdecQ5HrNqcsQwAVgacSz6uLgI-BI7v4tB8CeDk,347
|
31
32
|
vectordb_bench/backend/clients/clickhouse/cli.py,sha256=6I0AwUOrqfjQbN_3aSTJHUYE-PAAMAQ4AIZC_8GqoEw,2054
|
32
33
|
vectordb_bench/backend/clients/clickhouse/clickhouse.py,sha256=1i-64mzluloJ3fXT7J3_HXzkUtJ4re7HwuRwiqtGOck,8956
|
33
34
|
vectordb_bench/backend/clients/clickhouse/config.py,sha256=-waHUHrT9WwuSNjHYE7T5j8s8RTsHNTDFuzmqT4nQWI,2649
|
34
|
-
vectordb_bench/backend/clients/elastic_cloud/config.py,sha256=
|
35
|
-
vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py,sha256=
|
35
|
+
vectordb_bench/backend/clients/elastic_cloud/config.py,sha256=Xq1zcWamswuFkrcjmIKCkSADlmk01MVsCfWFK4cWh1E,2466
|
36
|
+
vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py,sha256=ZdQaR3rbfiGk_ul93H31kvITtcXAuzU6jX5kQ5s8fSg,8888
|
36
37
|
vectordb_bench/backend/clients/lancedb/cli.py,sha256=BxTkyNtOPXEogSoqBKrK9m_RF_WTXDvHg8HBFLNa1uw,4429
|
37
38
|
vectordb_bench/backend/clients/lancedb/config.py,sha256=NshH3VrJjy78aYBI-di33x4ko5xkTr16mkZ1liNu550,3233
|
38
39
|
vectordb_bench/backend/clients/lancedb/lancedb.py,sha256=bmwixs9KO9EObSYTRhM-wCug-jRxvkwrDl3hkXliG2k,4109
|
@@ -43,10 +44,13 @@ vectordb_bench/backend/clients/memorydb/cli.py,sha256=mUpBN0VoE6M55AAEwyd20uEtPk
|
|
43
44
|
vectordb_bench/backend/clients/memorydb/config.py,sha256=D2Q-HkDwnmz98ek1e_iNu4o9CIRB14pOQWSZgRvd6oY,1500
|
44
45
|
vectordb_bench/backend/clients/memorydb/memorydb.py,sha256=5PPOSdFLQes6Gq5H3Yfi_q2m32eErMfNVO86qIjlnoc,10219
|
45
46
|
vectordb_bench/backend/clients/milvus/cli.py,sha256=Mtrp8mQF6z0PCnBV8hndkO2Rfj5n9qTGbUL1BoVoems,11043
|
46
|
-
vectordb_bench/backend/clients/milvus/config.py,sha256=
|
47
|
-
vectordb_bench/backend/clients/milvus/milvus.py,sha256=
|
47
|
+
vectordb_bench/backend/clients/milvus/config.py,sha256=072nqR0EdlGWAM5e_TqyNCBrQXLcGNWpPMcUBz9mCus,12852
|
48
|
+
vectordb_bench/backend/clients/milvus/milvus.py,sha256=MuejQnFr0f8HmaZtHQiaHQ6bRBtiAXBX1oTWvsluxgc,9275
|
48
49
|
vectordb_bench/backend/clients/mongodb/config.py,sha256=7DZCh0bjPiqJW2luPypfpNeGfvKxVC4mdHLqgcjF1hA,1745
|
49
50
|
vectordb_bench/backend/clients/mongodb/mongodb.py,sha256=ts2gpAzUTarpkfMFnM5ANi6T-xvcjS8kc4-apPt9jug,7225
|
51
|
+
vectordb_bench/backend/clients/oceanbase/cli.py,sha256=4wD9_lFH5p0mZaErfcxS71xP33jZH3RjU7B0GA_ZHhs,3199
|
52
|
+
vectordb_bench/backend/clients/oceanbase/config.py,sha256=SbpztM07T6K3arKC8TIEtgazuIzfUEGGMm3FKiqgQbA,3660
|
53
|
+
vectordb_bench/backend/clients/oceanbase/oceanbase.py,sha256=1h8fQQTMUHkNMscjzlTcbpXv7lCrwfNhAGm9UCGw4GY,7368
|
50
54
|
vectordb_bench/backend/clients/pgdiskann/cli.py,sha256=o5ddAp1Be2TOnm8Wh9IyIWUxdnw5N6v92Ms1s6CEwBo,3135
|
51
55
|
vectordb_bench/backend/clients/pgdiskann/config.py,sha256=DBsVgLn4edl-irSlP_GV7KW-8jFemns_ujR_CuVnQtE,4412
|
52
56
|
vectordb_bench/backend/clients/pgdiskann/pgdiskann.py,sha256=Z8K74Y6uMi6q8gnnD68doBxc5pWBSpRnNLDhlifseH4,12299
|
@@ -60,10 +64,10 @@ vectordb_bench/backend/clients/pgvectorscale/cli.py,sha256=3XL2NdBXh9ug8SyUwPD6f
|
|
60
64
|
vectordb_bench/backend/clients/pgvectorscale/config.py,sha256=ZMcRQPyCMzMJLXw56zODUGJmqOP-sOMA1entNsfE-Ck,3122
|
61
65
|
vectordb_bench/backend/clients/pgvectorscale/pgvectorscale.py,sha256=NONFdcE-b-mt6GsRTru6UbMMu8iqX8PfRF43fY_AODw,10136
|
62
66
|
vectordb_bench/backend/clients/pinecone/config.py,sha256=hzPX1lxDpYI9IdpNs7RYB1vAn2uMlCw9NH4FonQEmfQ,294
|
63
|
-
vectordb_bench/backend/clients/pinecone/pinecone.py,sha256=
|
67
|
+
vectordb_bench/backend/clients/pinecone/pinecone.py,sha256=1FuEWCaA9Pco5Qi-NGbUEBzS2BY-troLymECsvay9xY,4231
|
64
68
|
vectordb_bench/backend/clients/qdrant_cloud/cli.py,sha256=QoJ8t76mJmXrj-VJYn6-Atc1EryFhAApvtWUxei0wuo,1095
|
65
|
-
vectordb_bench/backend/clients/qdrant_cloud/config.py,sha256=
|
66
|
-
vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py,sha256=
|
69
|
+
vectordb_bench/backend/clients/qdrant_cloud/config.py,sha256=SysnGMmzWJadF3MIY9L9J8awCmI72feYxwUJfctJdhc,3325
|
70
|
+
vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py,sha256=RA9NGPlhlxwx48_qEXRLuehttUqLFYXvbCAoOUFj5x0,8425
|
67
71
|
vectordb_bench/backend/clients/qdrant_local/cli.py,sha256=V-3zYC7gNEJjCAktJ0JQZ4xuyMfnC1ESey7t95XVnsA,1698
|
68
72
|
vectordb_bench/backend/clients/qdrant_local/config.py,sha256=nw14pVVYtFmtm6Wr01m9Pt8Vn4J9twVJ2QwnTKOlbcE,1111
|
69
73
|
vectordb_bench/backend/clients/qdrant_local/qdrant_local.py,sha256=V2AAIrMuMoX_Ne-Y5-EpVldGON_OBTo4CSihAgNY1CQ,7891
|
@@ -85,75 +89,90 @@ vectordb_bench/backend/clients/weaviate_cloud/config.py,sha256=v7s0RCkg4R6Iw451J
|
|
85
89
|
vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py,sha256=HEzhkGHgEz2YyEV-6qV_JYx1cbvvol9nuOtSzZU6OxM,5347
|
86
90
|
vectordb_bench/backend/clients/zilliz_cloud/cli.py,sha256=3_eD3ZG-FeTw1cenhbBFniPnVLgT_UQwdIuGmGDroJw,1551
|
87
91
|
vectordb_bench/backend/clients/zilliz_cloud/config.py,sha256=-Qb50m-Hcz86OcMURU21n61Rz-RpFqKfUsmjna85OR8,909
|
88
|
-
vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py,sha256=
|
89
|
-
vectordb_bench/backend/runner/__init__.py,sha256=
|
90
|
-
vectordb_bench/backend/runner/mp_runner.py,sha256=
|
91
|
-
vectordb_bench/backend/runner/rate_runner.py,sha256=
|
92
|
-
vectordb_bench/backend/runner/read_write_runner.py,sha256=
|
93
|
-
vectordb_bench/backend/runner/serial_runner.py,sha256=
|
92
|
+
vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py,sha256=l6udLfkCHusTvyRK8bvdWKo-AZ91WZOfi7ZciEECpHs,676
|
93
|
+
vectordb_bench/backend/runner/__init__.py,sha256=lkk-naYS2ai3kQLwNaqSsnudL9SVl0OYy1uCstgUAtM,289
|
94
|
+
vectordb_bench/backend/runner/mp_runner.py,sha256=uoPb2LqQ1YVIB_cuNYDwwYtFZV-Uqp3NPPuCFI44EWw,10988
|
95
|
+
vectordb_bench/backend/runner/rate_runner.py,sha256=pmRjjKQYVeHNIOxSopZ_Kv68l4Y-PzcyduNIRFFxXxk,5120
|
96
|
+
vectordb_bench/backend/runner/read_write_runner.py,sha256=y5CXE1CdYTl_qrlfTpQsHTwZU-hiaSSwZuRxiK62iLk,11216
|
97
|
+
vectordb_bench/backend/runner/serial_runner.py,sha256=E4oBlwaG72O4XtrO9oj7h9_g-JjfduQFMI3EjJG5d0k,12119
|
94
98
|
vectordb_bench/backend/runner/util.py,sha256=tjTFUxth6hNnVrlU82TqkHhfeZo4ymj7WlyK4zFyPTg,522
|
95
99
|
vectordb_bench/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
96
100
|
vectordb_bench/cli/batch_cli.py,sha256=lnVrIP1rweoqfFkrdTLzxnLzy713xP2AnW6xmhd4bu0,3658
|
97
|
-
vectordb_bench/cli/cli.py,sha256=
|
98
|
-
vectordb_bench/cli/vectordbbench.py,sha256=
|
101
|
+
vectordb_bench/cli/cli.py,sha256=T4EAqd5dcPSCyxcEPyT6nnpEMGODwSlYEIItsOQak5s,17773
|
102
|
+
vectordb_bench/cli/vectordbbench.py,sha256=MkI1_Lk1Y6o6BPUrGrp6KR-kODTzmv02Xjkkpl7CpgA,1883
|
99
103
|
vectordb_bench/config-files/batch_sample_config.yml,sha256=3n0SfLgVWeboAZZcO8j_UP4A9CExHGPE8tOmtVPPFiA,370
|
100
104
|
vectordb_bench/config-files/sample_config.yml,sha256=yw9ZgHczNi9PedNuTVxZKiOTI6AVoQS1h8INNgoDjPk,340
|
101
105
|
vectordb_bench/custom/custom_case.json,sha256=uKo7NJgXDPPLtf_V6y1uc5w1aIcjLp-GCJEYOCty1As,475
|
102
106
|
vectordb_bench/frontend/utils.py,sha256=8eb4I9F0cQdnPQiFX0gMEk1e2fdgultgTKzzY5zS0Q0,489
|
103
|
-
vectordb_bench/frontend/
|
107
|
+
vectordb_bench/frontend/vdbbench.py,sha256=3AcdU8ik5ncvbLwv3JrJQzR7UorRW1qYxDtGEmsB6Ig,770
|
104
108
|
vectordb_bench/frontend/components/check_results/charts.py,sha256=TBX89xFrWwWZRjIarVzX_Wctye6JNrMtwI8ih4s_bM8,5108
|
105
|
-
vectordb_bench/frontend/components/check_results/data.py,sha256=
|
109
|
+
vectordb_bench/frontend/components/check_results/data.py,sha256=M7AesJwuPn8AALSQ39xAsvdp0aTAbdp3OgXywraRvFU,3663
|
106
110
|
vectordb_bench/frontend/components/check_results/expanderStyle.py,sha256=XLnJlDai8A8TQhr2iYQpZXIB31YUrrjrmFvLFHT5uOg,1299
|
107
|
-
vectordb_bench/frontend/components/check_results/filters.py,sha256
|
111
|
+
vectordb_bench/frontend/components/check_results/filters.py,sha256=-6DEujUGnKQaHeYYQI8BboMYspZ2pEOkkWk9ii8eIeY,5669
|
108
112
|
vectordb_bench/frontend/components/check_results/footer.py,sha256=Nh1RzorDg-8R5ewp_UGFnUqWaAEZ7xZ1RpqHDew1mGY,395
|
109
|
-
vectordb_bench/frontend/components/check_results/headerIcon.py,sha256=
|
110
|
-
vectordb_bench/frontend/components/check_results/nav.py,sha256=
|
113
|
+
vectordb_bench/frontend/components/check_results/headerIcon.py,sha256=g_jY2f9aeowoLfyrQix6HmZ-gT0WsaJIOfoAwhiRSqI,636
|
114
|
+
vectordb_bench/frontend/components/check_results/nav.py,sha256=uYtxznvBGA-h4G3fJyo7c_1G89KQyBUEZ81R1WtEWH8,1471
|
111
115
|
vectordb_bench/frontend/components/check_results/priceTable.py,sha256=K3NmlNKAb-5ncv488YpVy4i05GfZw5tezh9npO9R2wA,1295
|
112
116
|
vectordb_bench/frontend/components/check_results/stPageConfig.py,sha256=czkqr9NC3UQAxiz8KSCZC8cPmgSnFUhI2lOLHXfuMxo,432
|
113
117
|
vectordb_bench/frontend/components/concurrent/charts.py,sha256=00WI8wxIdHAhnpmFJLd03n5U3LbowmeY4swVbGNzyYg,2874
|
114
|
-
vectordb_bench/frontend/components/custom/displayCustomCase.py,sha256=
|
115
|
-
vectordb_bench/frontend/components/custom/displaypPrams.py,sha256=
|
116
|
-
vectordb_bench/frontend/components/custom/getCustomConfig.py,sha256=
|
118
|
+
vectordb_bench/frontend/components/custom/displayCustomCase.py,sha256=FM8nCbpq-hLoYVL1Slw5f6gSeE6EgFFN8-ZTy6AIc3Y,3219
|
119
|
+
vectordb_bench/frontend/components/custom/displaypPrams.py,sha256=oQa-YnN1BqP-qyj9jJpUGnuGA2HtcaKQhIxe7tbsYs4,2456
|
120
|
+
vectordb_bench/frontend/components/custom/getCustomConfig.py,sha256=YEfga7PTv5AjeRWECDA0UY_RLHI4v8IEhkKVT7p2bpk,1396
|
117
121
|
vectordb_bench/frontend/components/custom/initStyle.py,sha256=ortsoUNqH-vVq9ECiw80PnBEcIaUwxR1AQ65DSkBhGs,434
|
118
122
|
vectordb_bench/frontend/components/get_results/saveAsImage.py,sha256=POaFiwKoCGqrY-zhanWC7-tubE64bV_JjqI4lgIuMts,1459
|
123
|
+
vectordb_bench/frontend/components/label_filter/charts.py,sha256=l7ktw-ppuD9FCzpq712yKfIIbwc6CLFm1icxlRyIMNE,1836
|
119
124
|
vectordb_bench/frontend/components/run_test/autoRefresh.py,sha256=mjIa43VQQmNjYPkEbOtKNlJ1UfGPcqRKvc2Jh4kx8U0,289
|
120
|
-
vectordb_bench/frontend/components/run_test/caseSelector.py,sha256=
|
125
|
+
vectordb_bench/frontend/components/run_test/caseSelector.py,sha256=VZOZLRK94oDetIl9fuiHwxocDgrmAOZtT6hnTgtIJ-4,4422
|
121
126
|
vectordb_bench/frontend/components/run_test/dbConfigSetting.py,sha256=k0tGoJokTVvI3zofArNxH9NYUu9Hzo1uyobbZ_h9HfM,2895
|
122
|
-
vectordb_bench/frontend/components/run_test/dbSelector.py,sha256=
|
127
|
+
vectordb_bench/frontend/components/run_test/dbSelector.py,sha256=J49xus-LW6pOBUl8njGiVXP4czg9IRPqjC4eAN9CvXQ,1336
|
123
128
|
vectordb_bench/frontend/components/run_test/generateTasks.py,sha256=3y8NHtWJMNqoP2SvoWuR7kj84g0OEg68IULebimzz7E,741
|
124
129
|
vectordb_bench/frontend/components/run_test/hideSidebar.py,sha256=vb5kzIMmbMqWX67qFEHek21X4sGO_tPyn_uPqUEtp3Q,234
|
125
130
|
vectordb_bench/frontend/components/run_test/initStyle.py,sha256=osPUgfFfH7rRlVNHSMumvmZxvKWlLxmZiNqgnMiUJEU,723
|
126
|
-
vectordb_bench/frontend/components/run_test/
|
127
|
-
vectordb_bench/frontend/components/
|
128
|
-
vectordb_bench/frontend/
|
131
|
+
vectordb_bench/frontend/components/run_test/inputWidget.py,sha256=oWbBlICgvObWwsz_mXRONCaM9KNEw11tJvq6ULX-OLM,1913
|
132
|
+
vectordb_bench/frontend/components/run_test/submitTask.py,sha256=fBKUT1U9kN8I1rwYiOEdp0VXAZc9Tr8XNFxMdm5A8fE,4126
|
133
|
+
vectordb_bench/frontend/components/streaming/charts.py,sha256=PokoN1pnakhO-lK_NU95gJ6M9LnFktbigmgZrrgD1oQ,8059
|
134
|
+
vectordb_bench/frontend/components/streaming/data.py,sha256=ekp58eaxweHCfoPIySGJ35Np4sa1-EJ0s_mymct8EYs,1864
|
135
|
+
vectordb_bench/frontend/components/tables/data.py,sha256=Qc9joj8gBlIDebT4B5E5EFY3bwI0E8kTUxCKpJDOeGw,1219
|
136
|
+
vectordb_bench/frontend/components/welcome/explainPrams.py,sha256=fIcB3TVNrlpw-pFBUivs1qZ8vxtiRXjxSRFcyQeh78E,6291
|
137
|
+
vectordb_bench/frontend/components/welcome/pagestyle.py,sha256=PMqE0yhDdWKciMIiuF0zSPxHGLEJYj95cYDCN_Knoko,2381
|
138
|
+
vectordb_bench/frontend/components/welcome/welcomePrams.py,sha256=ohHbebdfBRefxXdEdFHAKR1EgWjyTXR0tlfopqZhiyo,4810
|
139
|
+
vectordb_bench/frontend/config/dbCaseConfigs.py,sha256=JStjZLSCKsXRopUkje-tJZD8iVDzTT0_PByBZCnpRe8,64919
|
129
140
|
vectordb_bench/frontend/config/dbPrices.py,sha256=10aBKjVcEg8y7TPSda28opmBM1KmXNrvbU9WM_BsZcE,176
|
130
|
-
vectordb_bench/frontend/config/styles.py,sha256=
|
131
|
-
vectordb_bench/frontend/pages/concurrent.py,sha256=
|
132
|
-
vectordb_bench/frontend/pages/custom.py,sha256=
|
133
|
-
vectordb_bench/frontend/pages/
|
134
|
-
vectordb_bench/frontend/pages/
|
135
|
-
vectordb_bench/frontend/pages/
|
136
|
-
vectordb_bench/
|
141
|
+
vectordb_bench/frontend/config/styles.py,sha256=jOi8zwJ5u4nyAZXFno6b_vUM9jEwB8OgLUn0rF-S-tc,52891
|
142
|
+
vectordb_bench/frontend/pages/concurrent.py,sha256=X1XbLYmKtS9jJCt7xbDyxoqO7N6PwaegtkTrXQG-Gno,2133
|
143
|
+
vectordb_bench/frontend/pages/custom.py,sha256=qDG3hr2EN5LYMSR1LkMalHsvBFmpcS6MU_e2DPh4zYM,2547
|
144
|
+
vectordb_bench/frontend/pages/label_filter.py,sha256=Pey31DVlHNtHC36Y7ijLIRE2cOI4RT5tCW44-c_pl-0,1526
|
145
|
+
vectordb_bench/frontend/pages/quries_per_dollar.py,sha256=CXRqs28AwMMAa00HL8iqwfkowBuObxRn6PFuoBBsiDM,2512
|
146
|
+
vectordb_bench/frontend/pages/results.py,sha256=MGNg_WdV3UvxCzg6p5JX-HflNuG9u7lLyoYmzOYoS_A,2045
|
147
|
+
vectordb_bench/frontend/pages/run_test.py,sha256=CL0ZaB-uxeL31Tjl4Xplg4r_BhqOAw3DWl7DvTzPRII,2125
|
148
|
+
vectordb_bench/frontend/pages/streaming.py,sha256=dndTQhje1RpV8FOXpE4MVnht_-4rzPRjNzaFt9nhaLs,4817
|
149
|
+
vectordb_bench/frontend/pages/tables.py,sha256=ANJhrykG94ec3Vs7HJiymvzH5NbjLCei78Sf8nTTG_I,677
|
150
|
+
vectordb_bench/results/dbPrices.json,sha256=50y-RrqDN3oAdwiUW4irMKV1IRgzR1iFOQcl8lG7950,749
|
137
151
|
vectordb_bench/results/getLeaderboardData.py,sha256=fuNQmFuWEdm60McaQrXSGLApNOHRnfmvzn1soT3iGHE,2323
|
152
|
+
vectordb_bench/results/getLeaderboardDataV2.py,sha256=qNdk_Zcr4xn3qSou16HRA4xNP6P-ZDTcIvBRkD6kbgM,1939
|
138
153
|
vectordb_bench/results/leaderboard.json,sha256=OooOar8Pj0hG-HlpOU8N_hNjJS53PaMMRSoSUtqLJ-k,69276
|
154
|
+
vectordb_bench/results/leaderboard_v2.json,sha256=dDtPd8hoZAbc8rIbIvLUkg00jurloFegNeoGec8yM_Y,71042
|
139
155
|
vectordb_bench/results/ElasticCloud/result_20230727_standard_elasticcloud.json,sha256=IyJKjHGwTCcqKJAaBgfI_hhvMIGrXMl8S9Z2-19BvEE,5807
|
140
156
|
vectordb_bench/results/ElasticCloud/result_20230808_standard_elasticcloud.json,sha256=sx_B3lbWICcMrePiYqeoJ179pwHD2l78bMf2B880QI0,4431
|
157
|
+
vectordb_bench/results/ElasticCloud/result_20250318_standard_elasticcloud.json,sha256=d5cfP-4oEy1VsWFoaNLQ2iUXxqv27zQDEBG80b0QPw0,204853
|
141
158
|
vectordb_bench/results/Milvus/result_20230727_standard_milvus.json,sha256=UqwfO78qx2zRRWp29J-Egw8K8R5j-FFj9vX0iUrNRm8,17709
|
142
159
|
vectordb_bench/results/Milvus/result_20230808_standard_milvus.json,sha256=ck9loRNVUGHnjSyuHWN76lGNRRPtWMW7Cj0zf3uwXEo,16303
|
160
|
+
vectordb_bench/results/Milvus/result_20250509_standard_milvus.json,sha256=0v9-x488ikM2c_StMOOHCqqIh0iPxi1HJIUWTIQGSEQ,209904
|
161
|
+
vectordb_bench/results/OpenSearch/result_20250224_standard_opensearch.json,sha256=MpqQCo25tjuOwIoJIE2YwBomzI6Nyq8dF6L-i8lh7k4,258858
|
143
162
|
vectordb_bench/results/PgVector/result_20230727_standard_pgvector.json,sha256=gIc05u344PkZf78Dxi8zo0_sjPuKEw9PMXqAOVxzlOo,5686
|
144
163
|
vectordb_bench/results/PgVector/result_20230808_standard_pgvector.json,sha256=vy2wTympKzQae5_fFp7zZ4dsgo607P5phCjqu2lOm3E,4323
|
145
164
|
vectordb_bench/results/Pinecone/result_20230727_standard_pinecone.json,sha256=j9AgPgFwac9IPDnzgfsmiBOcbqM20c9J-OcaRJmf7wo,24938
|
146
165
|
vectordb_bench/results/Pinecone/result_20230808_standard_pinecone.json,sha256=ccQaH5nHcF8MbVb4wOmRtml5PlxRoEOQ-OLEVZ496c4,21387
|
166
|
+
vectordb_bench/results/Pinecone/result_20250124_standard_pinecone.json,sha256=-05PkyEt8ZAvwLrihmUsjyURRZ4vMcoc2WrEzURWETs,78862
|
147
167
|
vectordb_bench/results/QdrantCloud/result_20230727_standard_qdrantcloud.json,sha256=2GaPFRiufjLFxx2yekTqLqwJnsga5urNKa16zdZrQng,11187
|
148
168
|
vectordb_bench/results/QdrantCloud/result_20230808_standard_qdrantcloud.json,sha256=tZjJSku1w4IqU-5T0LvxFfDPjf_9e0yCzMG-coiSniM,10241
|
169
|
+
vectordb_bench/results/QdrantCloud/result_20250602_standard_qdrantcloud.json,sha256=40O8F99uM0cjxtMjj4e6uaLleCnZTO24MruQY866bxA,123327
|
149
170
|
vectordb_bench/results/WeaviateCloud/result_20230727_standard_weaviatecloud.json,sha256=WBlfjmbO3R4G6F4lDuneEigffUyTU7ti1SyWoff3oNI,15497
|
150
171
|
vectordb_bench/results/WeaviateCloud/result_20230808_standard_weaviatecloud.json,sha256=lXjudo-l-6H0EOIemoB5n4GddOOHJnwndrGwCJIH-EY,7865
|
151
|
-
vectordb_bench/results/ZillizCloud/
|
152
|
-
vectordb_bench/
|
153
|
-
vectordb_bench/
|
154
|
-
vectordb_bench-
|
155
|
-
vectordb_bench-
|
156
|
-
vectordb_bench-
|
157
|
-
vectordb_bench-
|
158
|
-
vectordb_bench-0.0.30.dist-info/top_level.txt,sha256=jnhZFZAuKX1J60yt-XOeBZ__ctiZMvoC_s0RFq29lpM,15
|
159
|
-
vectordb_bench-0.0.30.dist-info/RECORD,,
|
172
|
+
vectordb_bench/results/ZillizCloud/result_20250613_standard_zillizcloud.json,sha256=gZCnDanS5Yb6Uzvb0Q6wDxMl81UAoGzsZRHU8JwqNds,215610
|
173
|
+
vectordb_bench-1.0.1.dist-info/licenses/LICENSE,sha256=HXbxhrb5u5SegVzeLNF_voVgRsJMavcLaOmD1N0lZkM,1067
|
174
|
+
vectordb_bench-1.0.1.dist-info/METADATA,sha256=D11znOn8CK2UaA6Yzg21Klmw1Esl4RGvVb3jKIEfHv4,40753
|
175
|
+
vectordb_bench-1.0.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
176
|
+
vectordb_bench-1.0.1.dist-info/entry_points.txt,sha256=Qzw6gVx96ui8esG21H6yHsI6nboEohRmV424TYhQNrA,113
|
177
|
+
vectordb_bench-1.0.1.dist-info/top_level.txt,sha256=jnhZFZAuKX1J60yt-XOeBZ__ctiZMvoC_s0RFq29lpM,15
|
178
|
+
vectordb_bench-1.0.1.dist-info/RECORD,,
|