vectordb-bench 0.0.30__py3-none-any.whl → 1.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (80) hide show
  1. vectordb_bench/__init__.py +14 -27
  2. vectordb_bench/__main__.py +1 -1
  3. vectordb_bench/backend/assembler.py +19 -6
  4. vectordb_bench/backend/cases.py +186 -23
  5. vectordb_bench/backend/clients/__init__.py +16 -0
  6. vectordb_bench/backend/clients/api.py +22 -1
  7. vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py +82 -41
  8. vectordb_bench/backend/clients/aws_opensearch/config.py +37 -4
  9. vectordb_bench/backend/clients/chroma/chroma.py +6 -2
  10. vectordb_bench/backend/clients/elastic_cloud/config.py +31 -1
  11. vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +133 -45
  12. vectordb_bench/backend/clients/milvus/config.py +1 -0
  13. vectordb_bench/backend/clients/milvus/milvus.py +75 -23
  14. vectordb_bench/backend/clients/oceanbase/cli.py +100 -0
  15. vectordb_bench/backend/clients/oceanbase/config.py +125 -0
  16. vectordb_bench/backend/clients/oceanbase/oceanbase.py +215 -0
  17. vectordb_bench/backend/clients/pinecone/pinecone.py +39 -25
  18. vectordb_bench/backend/clients/qdrant_cloud/config.py +73 -3
  19. vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +100 -33
  20. vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py +1 -1
  21. vectordb_bench/backend/dataset.py +146 -27
  22. vectordb_bench/backend/filter.py +76 -0
  23. vectordb_bench/backend/runner/__init__.py +3 -3
  24. vectordb_bench/backend/runner/mp_runner.py +52 -39
  25. vectordb_bench/backend/runner/rate_runner.py +68 -52
  26. vectordb_bench/backend/runner/read_write_runner.py +125 -68
  27. vectordb_bench/backend/runner/serial_runner.py +56 -23
  28. vectordb_bench/backend/task_runner.py +59 -20
  29. vectordb_bench/cli/cli.py +59 -1
  30. vectordb_bench/cli/vectordbbench.py +3 -0
  31. vectordb_bench/frontend/components/check_results/data.py +16 -11
  32. vectordb_bench/frontend/components/check_results/filters.py +53 -25
  33. vectordb_bench/frontend/components/check_results/headerIcon.py +18 -13
  34. vectordb_bench/frontend/components/check_results/nav.py +20 -0
  35. vectordb_bench/frontend/components/custom/displayCustomCase.py +43 -8
  36. vectordb_bench/frontend/components/custom/displaypPrams.py +10 -5
  37. vectordb_bench/frontend/components/custom/getCustomConfig.py +10 -0
  38. vectordb_bench/frontend/components/label_filter/charts.py +60 -0
  39. vectordb_bench/frontend/components/run_test/caseSelector.py +48 -52
  40. vectordb_bench/frontend/components/run_test/dbSelector.py +9 -5
  41. vectordb_bench/frontend/components/run_test/inputWidget.py +48 -0
  42. vectordb_bench/frontend/components/run_test/submitTask.py +3 -1
  43. vectordb_bench/frontend/components/streaming/charts.py +253 -0
  44. vectordb_bench/frontend/components/streaming/data.py +62 -0
  45. vectordb_bench/frontend/components/tables/data.py +1 -1
  46. vectordb_bench/frontend/components/welcome/explainPrams.py +66 -0
  47. vectordb_bench/frontend/components/welcome/pagestyle.py +106 -0
  48. vectordb_bench/frontend/components/welcome/welcomePrams.py +147 -0
  49. vectordb_bench/frontend/config/dbCaseConfigs.py +309 -42
  50. vectordb_bench/frontend/config/styles.py +34 -4
  51. vectordb_bench/frontend/pages/concurrent.py +5 -1
  52. vectordb_bench/frontend/pages/custom.py +4 -0
  53. vectordb_bench/frontend/pages/label_filter.py +56 -0
  54. vectordb_bench/frontend/pages/quries_per_dollar.py +5 -1
  55. vectordb_bench/frontend/{vdb_benchmark.py → pages/results.py} +10 -4
  56. vectordb_bench/frontend/pages/run_test.py +3 -3
  57. vectordb_bench/frontend/pages/streaming.py +135 -0
  58. vectordb_bench/frontend/pages/tables.py +4 -0
  59. vectordb_bench/frontend/vdbbench.py +31 -0
  60. vectordb_bench/interface.py +8 -3
  61. vectordb_bench/metric.py +15 -1
  62. vectordb_bench/models.py +31 -11
  63. vectordb_bench/results/ElasticCloud/result_20250318_standard_elasticcloud.json +5890 -0
  64. vectordb_bench/results/Milvus/result_20250509_standard_milvus.json +6138 -0
  65. vectordb_bench/results/OpenSearch/result_20250224_standard_opensearch.json +7319 -0
  66. vectordb_bench/results/Pinecone/result_20250124_standard_pinecone.json +2365 -0
  67. vectordb_bench/results/QdrantCloud/result_20250602_standard_qdrantcloud.json +3556 -0
  68. vectordb_bench/results/ZillizCloud/result_20250613_standard_zillizcloud.json +6290 -0
  69. vectordb_bench/results/dbPrices.json +12 -4
  70. vectordb_bench/results/getLeaderboardDataV2.py +59 -0
  71. vectordb_bench/results/leaderboard_v2.json +2662 -0
  72. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/METADATA +93 -40
  73. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/RECORD +77 -58
  74. vectordb_bench/results/ZillizCloud/result_20230727_standard_zillizcloud.json +0 -791
  75. vectordb_bench/results/ZillizCloud/result_20230808_standard_zillizcloud.json +0 -679
  76. vectordb_bench/results/ZillizCloud/result_20240105_standard_202401_zillizcloud.json +0 -1352
  77. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/WHEEL +0 -0
  78. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/entry_points.txt +0 -0
  79. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/licenses/LICENSE +0 -0
  80. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vectordb-bench
3
- Version: 0.0.30
3
+ Version: 1.0.1
4
4
  Summary: VectorDBBench is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VectorDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
5
5
  Author-email: XuanYang-cn <xuan.yang@zilliz.com>
6
6
  Project-URL: repository, https://github.com/zilliztech/VectorDBBench
@@ -21,7 +21,7 @@ Requires-Dist: oss2
21
21
  Requires-Dist: psutil
22
22
  Requires-Dist: polars
23
23
  Requires-Dist: plotly
24
- Requires-Dist: environs<14.1.0
24
+ Requires-Dist: environs
25
25
  Requires-Dist: pydantic<v2
26
26
  Requires-Dist: scikit-learn
27
27
  Requires-Dist: pymilvus
@@ -53,6 +53,7 @@ Requires-Dist: PyMySQL; extra == "all"
53
53
  Requires-Dist: clickhouse-connect; extra == "all"
54
54
  Requires-Dist: pyvespa; extra == "all"
55
55
  Requires-Dist: lancedb; extra == "all"
56
+ Requires-Dist: mysql-connector-python; extra == "all"
56
57
  Provides-Extra: qdrant
57
58
  Requires-Dist: qdrant-client; extra == "qdrant"
58
59
  Provides-Extra: pinecone
@@ -90,6 +91,8 @@ Provides-Extra: vespa
90
91
  Requires-Dist: pyvespa; extra == "vespa"
91
92
  Provides-Extra: lancedb
92
93
  Requires-Dist: lancedb; extra == "lancedb"
94
+ Provides-Extra: oceanbase
95
+ Requires-Dist: mysql-connector-python; extra == "oceanbase"
93
96
  Dynamic: license-file
94
97
 
95
98
  # VectorDBBench(VDBBench): A Benchmark Tool for VectorDB
@@ -97,17 +100,17 @@ Dynamic: license-file
97
100
  [![version](https://img.shields.io/pypi/v/vectordb-bench.svg?color=blue)](https://pypi.org/project/vectordb-bench/)
98
101
  [![Downloads](https://pepy.tech/badge/vectordb-bench)](https://pepy.tech/project/vectordb-bench)
99
102
 
100
- ## What is VectorDBBench
101
- VectorDBBench(VDBBench) is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VectorDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
103
+ ## What is VDBBench
104
+ VDBBench is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
102
105
 
103
106
  Understanding the importance of user experience, we provide an intuitive visual interface. This not only empowers users to initiate benchmarks at ease, but also to view comparative result reports, thereby reproducing benchmark results effortlessly.
104
107
  To add more relevance and practicality, we provide cost-effectiveness reports particularly for cloud services. This allows for a more realistic and applicable benchmarking process.
105
108
 
106
109
  Closely mimicking real-world production environments, we've set up diverse testing scenarios including insertion, searching, and filtered searching. To provide you with credible and reliable data, we've included public datasets from actual production scenarios, such as [SIFT](http://corpus-texmex.irisa.fr/), [GIST](http://corpus-texmex.irisa.fr/), [Cohere](https://huggingface.co/datasets/Cohere/wikipedia-22-12/tree/main/en), and a dataset generated by OpenAI from an opensource [raw dataset](https://huggingface.co/datasets/allenai/c4). It's fascinating to discover how a relatively unknown open-source database might excel in certain circumstances!
107
110
 
108
- Prepare to delve into the world of VectorDBBench, and let it guide you in uncovering your perfect vector database match.
111
+ Prepare to delve into the world of VDBBench, and let it guide you in uncovering your perfect vector database match.
109
112
 
110
- VectorDBBench is sponsered by Zilliz,the leading opensource vectorDB company behind Milvus. Choose smarter with VectorDBBench- start your free test on [zilliz cloud](https://zilliz.com/) today!
113
+ VDBBench is sponsered by Zilliz,the leading opensource vectorDB company behind Milvus. Choose smarter with VDBBench - start your free test on [zilliz cloud](https://zilliz.com/) today!
111
114
 
112
115
  **Leaderboard:** https://zilliz.com/benchmark
113
116
  ## Quick Start
@@ -151,6 +154,7 @@ All the database client supported
151
154
  | mongodb | `pip install vectordb-bench[mongodb]` |
152
155
  | tidb | `pip install vectordb-bench[tidb]` |
153
156
  | vespa | `pip install vectordb-bench[vespa]` |
157
+ | oceanbase | `pip install vectordb-bench[oceanbase]` |
154
158
 
155
159
  ### Run
156
160
 
@@ -303,6 +307,72 @@ Options:
303
307
  --quantization-type TEXT which type of quantization to use valid values [fp32, fp16]
304
308
  --help Show this message and exit.
305
309
  ```
310
+ ### Run OceanBase from command line
311
+
312
+ Execute tests for the index types: HNSW, HNSW_SQ, or HNSW_BQ.
313
+
314
+ ```shell
315
+ vectordbbench oceanbasehnsw --host xxx --port xxx --user root@mysql_tenant --database test \
316
+ --m 16 --ef-construction 200 --case-type Performance1536D50K \
317
+ --index-type HNSW --ef-search 100
318
+ ```
319
+
320
+ To list the options for oceanbase, execute `vectordbbench oceanbasehnsw --help`, The following are some OceanBase-specific command-line options.
321
+
322
+ ```text
323
+ $ vectordbbench oceanbasehnsw --help
324
+ Usage: vectordbbench oceanbasehnsw [OPTIONS]
325
+
326
+ Options:
327
+ [...]
328
+ --host TEXT OceanBase host
329
+ --user TEXT OceanBase username [required]
330
+ --password TEXT OceanBase database password
331
+ --database TEXT DataBase name [required]
332
+ --port INTEGER OceanBase port [required]
333
+ --m INTEGER hnsw m [required]
334
+ --ef-construction INTEGER hnsw ef-construction [required]
335
+ --ef-search INTEGER hnsw ef-search [required]
336
+ --index-type [HNSW|HNSW_SQ|HNSW_BQ]
337
+ Type of index to use. Supported values:
338
+ HNSW, HNSW_SQ, HNSW_BQ [required]
339
+ --help Show this message and exit.
340
+ ```
341
+
342
+ Execute tests for the index types: IVF_FLAT, IVF_SQ8, or IVF_PQ.
343
+
344
+ ```shell
345
+ vectordbbench oceanbaseivf --host xxx --port xxx --user root@mysql_tenant --database test \
346
+ --nlist 1000 --sample_per_nlist 256 --case-type Performance768D1M \
347
+ --index-type IVF_FLAT --ivf_nprobes 100
348
+ ```
349
+
350
+ To list the options for oceanbase, execute `vectordbbench oceanbaseivf --help`, The following are some OceanBase-specific command-line options.
351
+
352
+ ```text
353
+ $ vectordbbench oceanbaseivf --help
354
+ Usage: vectordbbench oceanbaseivf [OPTIONS]
355
+
356
+ Options:
357
+ [...]
358
+ --host TEXT OceanBase host
359
+ --user TEXT OceanBase username [required]
360
+ --password TEXT OceanBase database password
361
+ --database TEXT DataBase name [required]
362
+ --port INTEGER OceanBase port [required]
363
+ --index-type [IVF_FLAT|IVF_SQ8|IVF_PQ]
364
+ Type of index to use. Supported values:
365
+ IVF_FLAT, IVF_SQ8, IVF_PQ [required]
366
+ --nlist INTEGER Number of cluster centers [required]
367
+ --sample_per_nlist INTEGER The cluster centers are calculated by total
368
+ sampling sample_per_nlist * nlist vectors
369
+ [required]
370
+ --ivf_nprobes TEXT How many clustering centers to search during
371
+ the query [required]
372
+ --m INTEGER The number of sub-vectors that each data
373
+ vector is divided into during IVF-PQ
374
+ --help Show this message and exit. Show this message and exit.
375
+ ```
306
376
 
307
377
  #### Using a configuration file.
308
378
 
@@ -447,58 +517,41 @@ make format
447
517
  ## How does it work?
448
518
  ### Result Page
449
519
  ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/8a981327-c1c6-4796-8a85-c86154cb5472)
450
- This is the main page of VectorDBBench, which displays the standard benchmark results we provide. Additionally, results of all tests performed by users themselves will also be shown here. We also offer the ability to select and compare results from multiple tests simultaneously.
520
+ This is the main page of VDBBench, which displays the standard benchmark results we provide. Additionally, results of all tests performed by users themselves will also be shown here. We also offer the ability to select and compare results from multiple tests simultaneously.
451
521
 
452
522
  The standard benchmark results displayed here include all 15 cases that we currently support for 6 of our clients (Milvus, Zilliz Cloud, Elastic Search, Qdrant Cloud, Weaviate Cloud and PgVector). However, as some systems may not be able to complete all the tests successfully due to issues like Out of Memory (OOM) or timeouts, not all clients are included in every case.
453
523
 
454
524
  All standard benchmark results are generated by a client running on an 8 core, 32 GB host, which is located in the same region as the server being tested. The client host is equipped with an `Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz` processor. Also all the servers for the open-source systems tested in our benchmarks run on hosts with the same type of processor.
455
525
  ### Run Test Page
456
- ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/f3135a29-8f12-4aac-bbb3-f2f55e2a2ff0)
457
- This is the page to run a test:
458
526
  1. Initially, you select the systems to be tested - multiple selections are allowed. Once selected, corresponding forms will pop up to gather necessary information for using the chosen databases. The db_label is used to differentiate different instances of the same system. We recommend filling in the host size or instance type here (as we do in our standard results).
459
527
  2. The next step is to select the test cases you want to perform. You can select multiple cases at once, and a form to collect corresponding parameters will appear.
460
528
  3. Finally, you'll need to provide a task label to distinguish different test results. Using the same label for different tests will result in the previous results being overwritten.
461
529
  Now we can only run one task at the same time.
530
+ ![image](fig/run_test_select_db.png)
531
+ ![image](fig/run_test_select_case.png)
532
+ ![image](fig/run_test_submit.png)
533
+
462
534
 
463
535
  ## Module
464
536
  ### Code Structure
465
537
  ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/8c06512e-5419-4381-b084-9c93aed59639)
466
538
  ### Client
467
- Our client module is designed with flexibility and extensibility in mind, aiming to integrate APIs from different systems seamlessly. As of now, it supports Milvus, Zilliz Cloud, Elastic Search, Pinecone, Qdrant Cloud, Weaviate Cloud, PgVector, Redis, and Chroma. Stay tuned for more options, as we are consistently working on extending our reach to other systems.
539
+ Our client module is designed with flexibility and extensibility in mind, aiming to integrate APIs from different systems seamlessly. As of now, it supports Milvus, Zilliz Cloud, Elastic Search, Pinecone, Qdrant Cloud, Weaviate Cloud, PgVector, Redis, Chroma, etc. Stay tuned for more options, as we are consistently working on extending our reach to other systems.
468
540
  ### Benchmark Cases
469
- We've developed an array of 15 comprehensive benchmark cases to test vector databases' various capabilities, each designed to give you a different piece of the puzzle. These cases are categorized into three main types:
541
+ We've developed lots of comprehensive benchmark cases to test vector databases' various capabilities, each designed to give you a different piece of the puzzle. These cases are categorized into four main types:
470
542
  #### Capacity Case
471
543
  - **Large Dim:** Tests the database's loading capacity by inserting large-dimension vectors (GIST 100K vectors, 960 dimensions) until fully loaded. The final number of inserted vectors is reported.
472
544
  - **Small Dim:** Similar to the Large Dim case but uses small-dimension vectors (SIFT 500K vectors, 128 dimensions).
473
545
  #### Search Performance Case
474
546
  - **XLarge Dataset:** Measures search performance with a massive dataset (LAION 100M vectors, 768 dimensions) at varying parallel levels. The results include index building time, recall, latency, and maximum QPS.
475
- - **Large Dataset:** Similar to the XLarge Dataset case, but uses a slightly smaller dataset (10M-768dim, 5M-1536dim).
476
- - **Medium Dataset:** A case using a medium dataset (1M-768dim, 500K-1536dim).
547
+ - **Large Dataset:** Similar to the XLarge Dataset case, but uses a slightly smaller dataset (10M-1024dim, 10M-768dim, 5M-1536dim).
548
+ - **Medium Dataset:** A case using a medium dataset (1M-1024dim, 1M-768dim, 500K-1536dim).
549
+ - **Small Dataset:** For development (100K-768dim, 50K-1536dim).
477
550
  #### Filtering Search Performance Case
478
- - **Large Dataset, Low Filtering Rate:** Evaluates search performance with a large dataset (10M-768dim, 5M-1536dim) under a low filtering rate (1% vectors) at different parallel levels.
479
- - **Medium Dataset, Low Filtering Rate:** This case uses a medium dataset (1M-768dim, 500K-1536dim) with a similar low filtering rate.
480
- - **Large Dataset, High Filtering Rate:** It tests with a large dataset (10M-768dim, 5M-1536dim) but under a high filtering rate (99% vectors).
481
- - **Medium Dataset, High Filtering Rate:** This case uses a medium dataset (1M-768dim, 500K-1536dim) with a high filtering rate.
482
- For a quick reference, here is a table summarizing the key aspects of each case:
483
-
484
- Case No. | Case Type | Dataset Size | Filtering Rate | Results |
485
- |----------|-----------|--------------|----------------|---------|
486
- 1 | Capacity Case | SIFT 500K vectors, 128 dimensions | N/A | Number of inserted vectors |
487
- 2 | Capacity Case | GIST 100K vectors, 960 dimensions | N/A | Number of inserted vectors |
488
- 3 | Search Performance Case | LAION 100M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
489
- 4 | Search Performance Case | Cohere 10M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
490
- 5 | Search Performance Case | Cohere 1M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
491
- 6 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
492
- 7 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
493
- 8 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
494
- 9 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
495
- 10 | Search Performance Case | OpenAI generated 500K vectors, 1536 dimensions | N/A | Index building time, recall, latency, maximum QPS |
496
- 11 | Search Performance Case | OpenAI generated 5M vectors, 1536 dimensions | N/A | Index building time, recall, latency, maximum QPS |
497
- 12 | Filtering Search Performance Case | OpenAI generated 500K vectors, 1536 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
498
- 13 | Filtering Search Performance Case | OpenAI generated 5M vectors, 1536 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
499
- 14 | Filtering Search Performance Case | OpenAI generated 500K vectors, 1536 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
500
- 15 | Filtering Search Performance Case | OpenAI generated 5M vectors, 1536 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
501
-
551
+ - **Int-Filter Cases:** Evaluates search performance with int-based filter expression (e.g. "id >= 2,000").
552
+ - **Label-Filter Cases:** Evaluates search performance with label-based filter expressions (e.g., "color == 'red'"). The test includes randomly generated labels to simulate real-world filtering scenarios.
553
+ #### Streaming Cases
554
+ - **Insertion-Under-Load Case:** Evaluates search performance while maintaining a constant insertion workload. VDBBench applies a steady stream of insert requests at a fixed rate to simulate real-world scenarios where search operations must perform reliably under continuous data ingestion.
502
555
 
503
556
  Each case provides an in-depth examination of a vector database's abilities, providing you a comprehensive view of the database's performance.
504
557
 
@@ -524,15 +577,15 @@ We have strict requirements for the data set format, please follow them.
524
577
 
525
578
  - `Train File Count` - If the vector file is too large, you can consider splitting it into multiple files. The naming format for the split files should be `train-[index]-of-[file_count].parquet`. For example, `train-01-of-10.parquet` represents the second file (0-indexed) among 10 split files.
526
579
 
527
- - `Use Shuffled Data` - If you check this option, the vector data files need to be modified. VectorDBBench will load the data labeled with `shuffle`. For example, use `shuffle_train.parquet` instead of `train.parquet` and `shuffle_train-04-of-10.parquet` instead of `train-04-of-10.parquet`. The `id` column in the shuffled data can be in any order.
580
+ - `Use Shuffled Data` - If you check this option, the vector data files need to be modified. VDBBench will load the data labeled with `shuffle`. For example, use `shuffle_train.parquet` instead of `train.parquet` and `shuffle_train-04-of-10.parquet` instead of `train-04-of-10.parquet`. The `id` column in the shuffled data can be in any order.
528
581
 
529
582
 
530
583
  ## Goals
531
584
  Our goals of this benchmark are:
532
585
  ### Reproducibility & Usability
533
- One of the primary goals of VectorDBBench is to enable users to reproduce benchmark results swiftly and easily, or to test their customized scenarios. We believe that lowering the barriers to entry for conducting these tests will enhance the community's understanding and improvement of vector databases. We aim to create an environment where any user, regardless of their technical expertise, can quickly set up and run benchmarks, and view and analyze results in an intuitive manner.
586
+ One of the primary goals of VDBBench is to enable users to reproduce benchmark results swiftly and easily, or to test their customized scenarios. We believe that lowering the barriers to entry for conducting these tests will enhance the community's understanding and improvement of vector databases. We aim to create an environment where any user, regardless of their technical expertise, can quickly set up and run benchmarks, and view and analyze results in an intuitive manner.
534
587
  ### Representability & Realism
535
- VectorDBBench aims to provide a more comprehensive, multi-faceted testing environment that accurately represents the complexity of vector databases. By moving beyond a simple speed test for algorithms, we hope to contribute to a better understanding of vector databases in real-world scenarios. By incorporating as many complex scenarios as possible, including a variety of test cases and datasets, we aim to reflect realistic conditions and offer tangible significance to our community. Our goal is to deliver benchmarking results that can drive tangible improvements in the development and usage of vector databases.
588
+ VDBBench aims to provide a more comprehensive, multi-faceted testing environment that accurately represents the complexity of vector databases. By moving beyond a simple speed test for algorithms, we hope to contribute to a better understanding of vector databases in real-world scenarios. By incorporating as many complex scenarios as possible, including a variety of test cases and datasets, we aim to reflect realistic conditions and offer tangible significance to our community. Our goal is to deliver benchmarking results that can drive tangible improvements in the development and usage of vector databases.
536
589
 
537
590
  ## Contribution
538
591
  ### General Guidelines
@@ -1,20 +1,21 @@
1
- vectordb_bench/__init__.py,sha256=PBGSIdgzof6UMeWbgjFUjTRgUcbu0Tg5njbGo0oU88g,2420
2
- vectordb_bench/__main__.py,sha256=cyYbVSU-zA1AgzneGKcRRuzR4ftRDr9sIi9Ei9NZnhI,858
1
+ vectordb_bench/__init__.py,sha256=tNYi1E35lvYGeSgTPnhbJfV2zL5pGcO60vbwY8TSHYc,2497
2
+ vectordb_bench/__main__.py,sha256=2zZQJ9tg7gVCWWq9HaoJ8_hTR-3AXZgFHfJK4l88DFA,853
3
3
  vectordb_bench/base.py,sha256=AgavIF0P9ku_RmCRk1KKziba-wI4ZpA2aJvjJzNhRSs,129
4
- vectordb_bench/interface.py,sha256=XaCjTgUeI17uVjsgOauPeVlkvnkuCyQOWyOaWhrgCt8,9811
4
+ vectordb_bench/interface.py,sha256=4rw7poQ_s4MfsSHgBtGE136hDooe3bZmWD7rG8jvbDw,9997
5
5
  vectordb_bench/log_util.py,sha256=wDNaU_JBBOfKi_Z4vq7LDa0kOlLjoNNzDX3VZQn_Dxo,3239
6
- vectordb_bench/metric.py,sha256=pj-AxQHyIRHTaJY-wTIkTbC6TqEqMzt3kcEmMWEv71w,2063
7
- vectordb_bench/models.py,sha256=OOx9-hJmJBjDeyzBM8s4rTkWBGxjdYymU2As7oZ_6H0,12567
6
+ vectordb_bench/metric.py,sha256=p7vf7H8MBP7YQmIwy2wPYJPwMBalCy7rblshoD1R3kY,2693
7
+ vectordb_bench/models.py,sha256=ul3zoNj1btO_FClTw0wEGBUMGA2JreWIO-1hQ77Ek4o,13246
8
8
  vectordb_bench/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- vectordb_bench/backend/assembler.py,sha256=6GInRT7yBgfTaIPmo-XMkYX4pA8PJQmjMQInynwaunE,2047
10
- vectordb_bench/backend/cases.py,sha256=obDdY6g3p9Z2fog7qDwLLDuRMwo3LGQKMHsP66QZd2M,16296
9
+ vectordb_bench/backend/assembler.py,sha256=MdAOXVhCrRGT76Q21xBusCmDc4mXS7yMrhSYAlKPQVA,2785
10
+ vectordb_bench/backend/cases.py,sha256=TdILp-UBrogsx0xYTkq6P4NLo-zx1SsdbE_hud1k9-A,23368
11
11
  vectordb_bench/backend/data_source.py,sha256=bfa_Zg4O9fRP2ENmVZ_2-NISKozoFN-TocyxOlw1JtE,5524
12
- vectordb_bench/backend/dataset.py,sha256=lH2Q01AEJxA-sYfZHzH2BM019mwuy9mB_i0VLhIgDJ8,9020
12
+ vectordb_bench/backend/dataset.py,sha256=jFPV6wuQwfLi61EAgbTkT-VtXT04y9PffEd1atYH31A,13978
13
+ vectordb_bench/backend/filter.py,sha256=fDaq8SUab6KfwfGlkIQNGjE0k1gRjyXovQaTKzsUo4U,1922
13
14
  vectordb_bench/backend/result_collector.py,sha256=mpROVdZ-HChKBVyMV5TZ5v7YGRb69bvfT7Gezn5F5sY,819
14
- vectordb_bench/backend/task_runner.py,sha256=HYZ5B9-qOKAKmrsk-nwVhmXEddf451o4P3xQuSiCTt8,11595
15
+ vectordb_bench/backend/task_runner.py,sha256=9idq-tS-wOL3XuN0Cdz_6LMw9MpuVAH_Hc8r9OtPTbI,13039
15
16
  vectordb_bench/backend/utils.py,sha256=R6THuJdZhiQYSSJTqv0Uegl2B20taV_QjwvFrun2yxE,1949
16
- vectordb_bench/backend/clients/__init__.py,sha256=X0BGPg2a5jaRC1pRoOo_rCF95YDl93oWNeH-V61eQUY,10996
17
- vectordb_bench/backend/clients/api.py,sha256=3AfO-EPNzosaIBfYX3U9HeOMO7Uw0muOZ0x4cqqSH34,6534
17
+ vectordb_bench/backend/clients/__init__.py,sha256=VTbkRw9HpLowKDRp_FxRwobZmIe6uRJatm4rH9zVfPI,11429
18
+ vectordb_bench/backend/clients/api.py,sha256=BnVzFdvlj3cQYUx6DCbQZ08Tae2cJA5ZKuep9H-5X80,7368
18
19
  vectordb_bench/backend/clients/aliyun_elasticsearch/aliyun_elasticsearch.py,sha256=7yPYaWoHeHNxDMtpReGXsdEPFD1e4vQblFor7TmLq5o,770
19
20
  vectordb_bench/backend/clients/aliyun_elasticsearch/config.py,sha256=d9RCgfCgauKvy6z9ig_wBormgwiGtkh8POyoHloHnJA,505
20
21
  vectordb_bench/backend/clients/aliyun_opensearch/aliyun_opensearch.py,sha256=rwa4rtbbP2Kaczh7Bf0bc_lE_sGG5w9PhtfdFu7rQNs,13237
@@ -22,17 +23,17 @@ vectordb_bench/backend/clients/aliyun_opensearch/config.py,sha256=KSiuRu-p7oL2PE
22
23
  vectordb_bench/backend/clients/alloydb/alloydb.py,sha256=E24hxCUgpBCRiScdcS_iBk8n0wngUgVg8qujOWiUhw0,13009
23
24
  vectordb_bench/backend/clients/alloydb/cli.py,sha256=G6Q0WApoDXDG_pqmK2lEKFIvKB8qAsZFPM8TfsURydE,5086
24
25
  vectordb_bench/backend/clients/alloydb/config.py,sha256=PJs2wIJqwcG6UJ3T8R7Pi3xTMBfxTZiNkcWyhtHv5dc,5313
25
- vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py,sha256=q_8JLZO5aVDSnhBa9pGsMCb6Mibj9BfpsqCQxZoqkgs,17472
26
+ vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py,sha256=TfdJZ_oVrxT4eldIYz5z8SQJbhm5my1xM8M_kfdfWtE,18852
26
27
  vectordb_bench/backend/clients/aws_opensearch/cli.py,sha256=YV07EwgCLEyWXifr_PpcroQpNEHVpl5wX7OBSsyo4gQ,4951
27
- vectordb_bench/backend/clients/aws_opensearch/config.py,sha256=zJv_S8Q76hJWlBR11muECl0yz4YCvIsAMRYCIup9ZgQ,3284
28
+ vectordb_bench/backend/clients/aws_opensearch/config.py,sha256=DDa1dK053TwhudSaibHpX0N-JhcO25H4GDr3Yv6Xemg,4403
28
29
  vectordb_bench/backend/clients/aws_opensearch/run.py,sha256=Ry5aAlielWjq0hx7LnbdShfOwzZhz3Gq9WYu5U43x9s,5001
29
- vectordb_bench/backend/clients/chroma/chroma.py,sha256=Aqo6AlSWd0TG0SR4cr9AEoLzXtOJ5VNhbIucHnm8NxY,3619
30
+ vectordb_bench/backend/clients/chroma/chroma.py,sha256=ifoEgo7jSkJ6pPixiUd2zuV75FvgvODCfZTfC8fK0ak,3759
30
31
  vectordb_bench/backend/clients/chroma/config.py,sha256=8nXpPdecQ5HrNqcsQwAVgacSz6uLgI-BI7v4tB8CeDk,347
31
32
  vectordb_bench/backend/clients/clickhouse/cli.py,sha256=6I0AwUOrqfjQbN_3aSTJHUYE-PAAMAQ4AIZC_8GqoEw,2054
32
33
  vectordb_bench/backend/clients/clickhouse/clickhouse.py,sha256=1i-64mzluloJ3fXT7J3_HXzkUtJ4re7HwuRwiqtGOck,8956
33
34
  vectordb_bench/backend/clients/clickhouse/config.py,sha256=-waHUHrT9WwuSNjHYE7T5j8s8RTsHNTDFuzmqT4nQWI,2649
34
- vectordb_bench/backend/clients/elastic_cloud/config.py,sha256=_5Cz3__CbMU7zCizkhK1pGhH3TLJacn8efVueUZ0lnQ,1573
35
- vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py,sha256=FSslLDH2Yi9ZdUwaCbKC_IXxFbMvW-L1xB3YMU08MVI,5448
35
+ vectordb_bench/backend/clients/elastic_cloud/config.py,sha256=Xq1zcWamswuFkrcjmIKCkSADlmk01MVsCfWFK4cWh1E,2466
36
+ vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py,sha256=ZdQaR3rbfiGk_ul93H31kvITtcXAuzU6jX5kQ5s8fSg,8888
36
37
  vectordb_bench/backend/clients/lancedb/cli.py,sha256=BxTkyNtOPXEogSoqBKrK9m_RF_WTXDvHg8HBFLNa1uw,4429
37
38
  vectordb_bench/backend/clients/lancedb/config.py,sha256=NshH3VrJjy78aYBI-di33x4ko5xkTr16mkZ1liNu550,3233
38
39
  vectordb_bench/backend/clients/lancedb/lancedb.py,sha256=bmwixs9KO9EObSYTRhM-wCug-jRxvkwrDl3hkXliG2k,4109
@@ -43,10 +44,13 @@ vectordb_bench/backend/clients/memorydb/cli.py,sha256=mUpBN0VoE6M55AAEwyd20uEtPk
43
44
  vectordb_bench/backend/clients/memorydb/config.py,sha256=D2Q-HkDwnmz98ek1e_iNu4o9CIRB14pOQWSZgRvd6oY,1500
44
45
  vectordb_bench/backend/clients/memorydb/memorydb.py,sha256=5PPOSdFLQes6Gq5H3Yfi_q2m32eErMfNVO86qIjlnoc,10219
45
46
  vectordb_bench/backend/clients/milvus/cli.py,sha256=Mtrp8mQF6z0PCnBV8hndkO2Rfj5n9qTGbUL1BoVoems,11043
46
- vectordb_bench/backend/clients/milvus/config.py,sha256=2igb0O-G7shSWNLXYK9REY9IcaA6qsvuLOjhmNKq1-o,12797
47
- vectordb_bench/backend/clients/milvus/milvus.py,sha256=t9fqxrCdOcn60nbgAmzuqicNeOaD1fNjobL3gcvBQwY,7260
47
+ vectordb_bench/backend/clients/milvus/config.py,sha256=072nqR0EdlGWAM5e_TqyNCBrQXLcGNWpPMcUBz9mCus,12852
48
+ vectordb_bench/backend/clients/milvus/milvus.py,sha256=MuejQnFr0f8HmaZtHQiaHQ6bRBtiAXBX1oTWvsluxgc,9275
48
49
  vectordb_bench/backend/clients/mongodb/config.py,sha256=7DZCh0bjPiqJW2luPypfpNeGfvKxVC4mdHLqgcjF1hA,1745
49
50
  vectordb_bench/backend/clients/mongodb/mongodb.py,sha256=ts2gpAzUTarpkfMFnM5ANi6T-xvcjS8kc4-apPt9jug,7225
51
+ vectordb_bench/backend/clients/oceanbase/cli.py,sha256=4wD9_lFH5p0mZaErfcxS71xP33jZH3RjU7B0GA_ZHhs,3199
52
+ vectordb_bench/backend/clients/oceanbase/config.py,sha256=SbpztM07T6K3arKC8TIEtgazuIzfUEGGMm3FKiqgQbA,3660
53
+ vectordb_bench/backend/clients/oceanbase/oceanbase.py,sha256=1h8fQQTMUHkNMscjzlTcbpXv7lCrwfNhAGm9UCGw4GY,7368
50
54
  vectordb_bench/backend/clients/pgdiskann/cli.py,sha256=o5ddAp1Be2TOnm8Wh9IyIWUxdnw5N6v92Ms1s6CEwBo,3135
51
55
  vectordb_bench/backend/clients/pgdiskann/config.py,sha256=DBsVgLn4edl-irSlP_GV7KW-8jFemns_ujR_CuVnQtE,4412
52
56
  vectordb_bench/backend/clients/pgdiskann/pgdiskann.py,sha256=Z8K74Y6uMi6q8gnnD68doBxc5pWBSpRnNLDhlifseH4,12299
@@ -60,10 +64,10 @@ vectordb_bench/backend/clients/pgvectorscale/cli.py,sha256=3XL2NdBXh9ug8SyUwPD6f
60
64
  vectordb_bench/backend/clients/pgvectorscale/config.py,sha256=ZMcRQPyCMzMJLXw56zODUGJmqOP-sOMA1entNsfE-Ck,3122
61
65
  vectordb_bench/backend/clients/pgvectorscale/pgvectorscale.py,sha256=NONFdcE-b-mt6GsRTru6UbMMu8iqX8PfRF43fY_AODw,10136
62
66
  vectordb_bench/backend/clients/pinecone/config.py,sha256=hzPX1lxDpYI9IdpNs7RYB1vAn2uMlCw9NH4FonQEmfQ,294
63
- vectordb_bench/backend/clients/pinecone/pinecone.py,sha256=SeJ-XnuIZxFDYhgO8FlRNYN65lPXDW2HEQuu5s5Na5Q,3591
67
+ vectordb_bench/backend/clients/pinecone/pinecone.py,sha256=1FuEWCaA9Pco5Qi-NGbUEBzS2BY-troLymECsvay9xY,4231
64
68
  vectordb_bench/backend/clients/qdrant_cloud/cli.py,sha256=QoJ8t76mJmXrj-VJYn6-Atc1EryFhAApvtWUxei0wuo,1095
65
- vectordb_bench/backend/clients/qdrant_cloud/config.py,sha256=UWFctRQ03suEyASlbSg76dEi0s58tp5ERE-d5A9LuLg,1098
66
- vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py,sha256=VvE96WlEqbXCytwUGxLGt8AbuRvu1psF1weydb8MW_4,5431
69
+ vectordb_bench/backend/clients/qdrant_cloud/config.py,sha256=SysnGMmzWJadF3MIY9L9J8awCmI72feYxwUJfctJdhc,3325
70
+ vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py,sha256=RA9NGPlhlxwx48_qEXRLuehttUqLFYXvbCAoOUFj5x0,8425
67
71
  vectordb_bench/backend/clients/qdrant_local/cli.py,sha256=V-3zYC7gNEJjCAktJ0JQZ4xuyMfnC1ESey7t95XVnsA,1698
68
72
  vectordb_bench/backend/clients/qdrant_local/config.py,sha256=nw14pVVYtFmtm6Wr01m9Pt8Vn4J9twVJ2QwnTKOlbcE,1111
69
73
  vectordb_bench/backend/clients/qdrant_local/qdrant_local.py,sha256=V2AAIrMuMoX_Ne-Y5-EpVldGON_OBTo4CSihAgNY1CQ,7891
@@ -85,75 +89,90 @@ vectordb_bench/backend/clients/weaviate_cloud/config.py,sha256=v7s0RCkg4R6Iw451J
85
89
  vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py,sha256=HEzhkGHgEz2YyEV-6qV_JYx1cbvvol9nuOtSzZU6OxM,5347
86
90
  vectordb_bench/backend/clients/zilliz_cloud/cli.py,sha256=3_eD3ZG-FeTw1cenhbBFniPnVLgT_UQwdIuGmGDroJw,1551
87
91
  vectordb_bench/backend/clients/zilliz_cloud/config.py,sha256=-Qb50m-Hcz86OcMURU21n61Rz-RpFqKfUsmjna85OR8,909
88
- vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py,sha256=B9EUDmK11oQ2GIslVkbRVAitHT-NbRGxQD_Weia-vhY,681
89
- vectordb_bench/backend/runner/__init__.py,sha256=mF8YnErTa7MVG37zZb0KFXBSrmMw_afttuiqWcwrVls,228
90
- vectordb_bench/backend/runner/mp_runner.py,sha256=n8IiRs7JUJGQVXwGlVMdvcpotikF9VsjXGFHMMylsS0,10119
91
- vectordb_bench/backend/runner/rate_runner.py,sha256=2coO7qalEh6ZbVKUkyFvip4JWjs1yJM-iiExSrjEp9c,4306
92
- vectordb_bench/backend/runner/read_write_runner.py,sha256=CXYBXEEkS1S7-NurdzN5Wh6N0Vx-rprM9Qehk1WKwl8,7822
93
- vectordb_bench/backend/runner/serial_runner.py,sha256=Y4Y2mSK8nU3hml7gliiF6BXUaW49sD-Ueci0xn62IL0,10290
92
+ vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py,sha256=l6udLfkCHusTvyRK8bvdWKo-AZ91WZOfi7ZciEECpHs,676
93
+ vectordb_bench/backend/runner/__init__.py,sha256=lkk-naYS2ai3kQLwNaqSsnudL9SVl0OYy1uCstgUAtM,289
94
+ vectordb_bench/backend/runner/mp_runner.py,sha256=uoPb2LqQ1YVIB_cuNYDwwYtFZV-Uqp3NPPuCFI44EWw,10988
95
+ vectordb_bench/backend/runner/rate_runner.py,sha256=pmRjjKQYVeHNIOxSopZ_Kv68l4Y-PzcyduNIRFFxXxk,5120
96
+ vectordb_bench/backend/runner/read_write_runner.py,sha256=y5CXE1CdYTl_qrlfTpQsHTwZU-hiaSSwZuRxiK62iLk,11216
97
+ vectordb_bench/backend/runner/serial_runner.py,sha256=E4oBlwaG72O4XtrO9oj7h9_g-JjfduQFMI3EjJG5d0k,12119
94
98
  vectordb_bench/backend/runner/util.py,sha256=tjTFUxth6hNnVrlU82TqkHhfeZo4ymj7WlyK4zFyPTg,522
95
99
  vectordb_bench/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
96
100
  vectordb_bench/cli/batch_cli.py,sha256=lnVrIP1rweoqfFkrdTLzxnLzy713xP2AnW6xmhd4bu0,3658
97
- vectordb_bench/cli/cli.py,sha256=1bZzK7uCwAi9ILtvlZiFAAMwJfwQec1HF3RRSpbqxKY,16000
98
- vectordb_bench/cli/vectordbbench.py,sha256=ZzDlcYwjUHrK2zvhTmNP3JHBUanQh2sEPhz70LR0lUw,1750
101
+ vectordb_bench/cli/cli.py,sha256=T4EAqd5dcPSCyxcEPyT6nnpEMGODwSlYEIItsOQak5s,17773
102
+ vectordb_bench/cli/vectordbbench.py,sha256=MkI1_Lk1Y6o6BPUrGrp6KR-kODTzmv02Xjkkpl7CpgA,1883
99
103
  vectordb_bench/config-files/batch_sample_config.yml,sha256=3n0SfLgVWeboAZZcO8j_UP4A9CExHGPE8tOmtVPPFiA,370
100
104
  vectordb_bench/config-files/sample_config.yml,sha256=yw9ZgHczNi9PedNuTVxZKiOTI6AVoQS1h8INNgoDjPk,340
101
105
  vectordb_bench/custom/custom_case.json,sha256=uKo7NJgXDPPLtf_V6y1uc5w1aIcjLp-GCJEYOCty1As,475
102
106
  vectordb_bench/frontend/utils.py,sha256=8eb4I9F0cQdnPQiFX0gMEk1e2fdgultgTKzzY5zS0Q0,489
103
- vectordb_bench/frontend/vdb_benchmark.py,sha256=SVSKCjVCDpp2ZSzPDwPiT9RhVOwTAEdtdYgYg5KIDMM,1728
107
+ vectordb_bench/frontend/vdbbench.py,sha256=3AcdU8ik5ncvbLwv3JrJQzR7UorRW1qYxDtGEmsB6Ig,770
104
108
  vectordb_bench/frontend/components/check_results/charts.py,sha256=TBX89xFrWwWZRjIarVzX_Wctye6JNrMtwI8ih4s_bM8,5108
105
- vectordb_bench/frontend/components/check_results/data.py,sha256=emdGWxW9-w4xPuvoT_y8rHaOZU3NIGG__wH5_njX6Fg,3376
109
+ vectordb_bench/frontend/components/check_results/data.py,sha256=M7AesJwuPn8AALSQ39xAsvdp0aTAbdp3OgXywraRvFU,3663
106
110
  vectordb_bench/frontend/components/check_results/expanderStyle.py,sha256=XLnJlDai8A8TQhr2iYQpZXIB31YUrrjrmFvLFHT5uOg,1299
107
- vectordb_bench/frontend/components/check_results/filters.py,sha256=M2YIWUlE9hYzJpNv30uCt1kUfzGbDfYWfcGlE8-V1fc,4391
111
+ vectordb_bench/frontend/components/check_results/filters.py,sha256=-6DEujUGnKQaHeYYQI8BboMYspZ2pEOkkWk9ii8eIeY,5669
108
112
  vectordb_bench/frontend/components/check_results/footer.py,sha256=Nh1RzorDg-8R5ewp_UGFnUqWaAEZ7xZ1RpqHDew1mGY,395
109
- vectordb_bench/frontend/components/check_results/headerIcon.py,sha256=0uvvSe-oroh58iKzyXeNch0z2Xh7n-plKIGRUmwYnH4,434
110
- vectordb_bench/frontend/components/check_results/nav.py,sha256=Gut3xguhdfYzx_GB95MaS3gU8KFP7OTRx3kIGOJikoQ,653
113
+ vectordb_bench/frontend/components/check_results/headerIcon.py,sha256=g_jY2f9aeowoLfyrQix6HmZ-gT0WsaJIOfoAwhiRSqI,636
114
+ vectordb_bench/frontend/components/check_results/nav.py,sha256=uYtxznvBGA-h4G3fJyo7c_1G89KQyBUEZ81R1WtEWH8,1471
111
115
  vectordb_bench/frontend/components/check_results/priceTable.py,sha256=K3NmlNKAb-5ncv488YpVy4i05GfZw5tezh9npO9R2wA,1295
112
116
  vectordb_bench/frontend/components/check_results/stPageConfig.py,sha256=czkqr9NC3UQAxiz8KSCZC8cPmgSnFUhI2lOLHXfuMxo,432
113
117
  vectordb_bench/frontend/components/concurrent/charts.py,sha256=00WI8wxIdHAhnpmFJLd03n5U3LbowmeY4swVbGNzyYg,2874
114
- vectordb_bench/frontend/components/custom/displayCustomCase.py,sha256=aIWKFm13-EPG2XlJ3PWc2znR6q8A5FR93D5ZkGGncrM,1641
115
- vectordb_bench/frontend/components/custom/displaypPrams.py,sha256=mwm74_86YYRbpJ1Hz2Dba0eKvyzkK0DM7uhjBDFoElU,1910
116
- vectordb_bench/frontend/components/custom/getCustomConfig.py,sha256=tSPI2DPJSNxlArLcO5Kf9nhpIBc0_YE2QD9-1cbaLus,1031
118
+ vectordb_bench/frontend/components/custom/displayCustomCase.py,sha256=FM8nCbpq-hLoYVL1Slw5f6gSeE6EgFFN8-ZTy6AIc3Y,3219
119
+ vectordb_bench/frontend/components/custom/displaypPrams.py,sha256=oQa-YnN1BqP-qyj9jJpUGnuGA2HtcaKQhIxe7tbsYs4,2456
120
+ vectordb_bench/frontend/components/custom/getCustomConfig.py,sha256=YEfga7PTv5AjeRWECDA0UY_RLHI4v8IEhkKVT7p2bpk,1396
117
121
  vectordb_bench/frontend/components/custom/initStyle.py,sha256=ortsoUNqH-vVq9ECiw80PnBEcIaUwxR1AQ65DSkBhGs,434
118
122
  vectordb_bench/frontend/components/get_results/saveAsImage.py,sha256=POaFiwKoCGqrY-zhanWC7-tubE64bV_JjqI4lgIuMts,1459
123
+ vectordb_bench/frontend/components/label_filter/charts.py,sha256=l7ktw-ppuD9FCzpq712yKfIIbwc6CLFm1icxlRyIMNE,1836
119
124
  vectordb_bench/frontend/components/run_test/autoRefresh.py,sha256=mjIa43VQQmNjYPkEbOtKNlJ1UfGPcqRKvc2Jh4kx8U0,289
120
- vectordb_bench/frontend/components/run_test/caseSelector.py,sha256=ea3u-NDtCX32Au9YkfqGA8mhF6K_Av9HZvp0Mem3C0o,5328
125
+ vectordb_bench/frontend/components/run_test/caseSelector.py,sha256=VZOZLRK94oDetIl9fuiHwxocDgrmAOZtT6hnTgtIJ-4,4422
121
126
  vectordb_bench/frontend/components/run_test/dbConfigSetting.py,sha256=k0tGoJokTVvI3zofArNxH9NYUu9Hzo1uyobbZ_h9HfM,2895
122
- vectordb_bench/frontend/components/run_test/dbSelector.py,sha256=hzMEIL1DzvpP8xkL6JhELTdcml0ysC70Gw-WLr8vW9A,1123
127
+ vectordb_bench/frontend/components/run_test/dbSelector.py,sha256=J49xus-LW6pOBUl8njGiVXP4czg9IRPqjC4eAN9CvXQ,1336
123
128
  vectordb_bench/frontend/components/run_test/generateTasks.py,sha256=3y8NHtWJMNqoP2SvoWuR7kj84g0OEg68IULebimzz7E,741
124
129
  vectordb_bench/frontend/components/run_test/hideSidebar.py,sha256=vb5kzIMmbMqWX67qFEHek21X4sGO_tPyn_uPqUEtp3Q,234
125
130
  vectordb_bench/frontend/components/run_test/initStyle.py,sha256=osPUgfFfH7rRlVNHSMumvmZxvKWlLxmZiNqgnMiUJEU,723
126
- vectordb_bench/frontend/components/run_test/submitTask.py,sha256=VZjkopkCBNhqLwGqsoM0hbPEeF6Q5UOQcdFUaegerxc,4094
127
- vectordb_bench/frontend/components/tables/data.py,sha256=5DdnC64BB7Aj2z9acht2atsPB4NabzQCZKALfIUnqtQ,1233
128
- vectordb_bench/frontend/config/dbCaseConfigs.py,sha256=Zi8ExIUMvDx5qFRLLEoPSxKLlPKi9UUPHkT5VxwDxbo,54798
131
+ vectordb_bench/frontend/components/run_test/inputWidget.py,sha256=oWbBlICgvObWwsz_mXRONCaM9KNEw11tJvq6ULX-OLM,1913
132
+ vectordb_bench/frontend/components/run_test/submitTask.py,sha256=fBKUT1U9kN8I1rwYiOEdp0VXAZc9Tr8XNFxMdm5A8fE,4126
133
+ vectordb_bench/frontend/components/streaming/charts.py,sha256=PokoN1pnakhO-lK_NU95gJ6M9LnFktbigmgZrrgD1oQ,8059
134
+ vectordb_bench/frontend/components/streaming/data.py,sha256=ekp58eaxweHCfoPIySGJ35Np4sa1-EJ0s_mymct8EYs,1864
135
+ vectordb_bench/frontend/components/tables/data.py,sha256=Qc9joj8gBlIDebT4B5E5EFY3bwI0E8kTUxCKpJDOeGw,1219
136
+ vectordb_bench/frontend/components/welcome/explainPrams.py,sha256=fIcB3TVNrlpw-pFBUivs1qZ8vxtiRXjxSRFcyQeh78E,6291
137
+ vectordb_bench/frontend/components/welcome/pagestyle.py,sha256=PMqE0yhDdWKciMIiuF0zSPxHGLEJYj95cYDCN_Knoko,2381
138
+ vectordb_bench/frontend/components/welcome/welcomePrams.py,sha256=ohHbebdfBRefxXdEdFHAKR1EgWjyTXR0tlfopqZhiyo,4810
139
+ vectordb_bench/frontend/config/dbCaseConfigs.py,sha256=JStjZLSCKsXRopUkje-tJZD8iVDzTT0_PByBZCnpRe8,64919
129
140
  vectordb_bench/frontend/config/dbPrices.py,sha256=10aBKjVcEg8y7TPSda28opmBM1KmXNrvbU9WM_BsZcE,176
130
- vectordb_bench/frontend/config/styles.py,sha256=y-vYXCF4_o0-88BNzbKNKvfhvVxmz8BSr4v_E_Qv37E,2643
131
- vectordb_bench/frontend/pages/concurrent.py,sha256=bvoSafRSIsRzBQkI3uBwwrdg8jnhRUQG-epZbrJhGiE,2082
132
- vectordb_bench/frontend/pages/custom.py,sha256=j7oJ2FHBv5O50D7YbzXTLRuIDgwkGt0iEd0FRHHkYLw,2436
133
- vectordb_bench/frontend/pages/quries_per_dollar.py,sha256=BDukiFwxyqQK_btCSsRR5D_a17PMu0yI8Muw3eRLz6Y,2461
134
- vectordb_bench/frontend/pages/run_test.py,sha256=izWTcNzXtEfV2zuR-0QPR5WXvsNp_Uqu2mepSwOmNrs,2121
135
- vectordb_bench/frontend/pages/tables.py,sha256=VfBzgrgHe68gbSh4MrmVx61l5bQSNOQNrq8xmPlG00c,566
136
- vectordb_bench/results/dbPrices.json,sha256=VoaOjqbWyTdEMLXuzerL5xR46QbxOWFmxCf2mPhjJV4,576
141
+ vectordb_bench/frontend/config/styles.py,sha256=jOi8zwJ5u4nyAZXFno6b_vUM9jEwB8OgLUn0rF-S-tc,52891
142
+ vectordb_bench/frontend/pages/concurrent.py,sha256=X1XbLYmKtS9jJCt7xbDyxoqO7N6PwaegtkTrXQG-Gno,2133
143
+ vectordb_bench/frontend/pages/custom.py,sha256=qDG3hr2EN5LYMSR1LkMalHsvBFmpcS6MU_e2DPh4zYM,2547
144
+ vectordb_bench/frontend/pages/label_filter.py,sha256=Pey31DVlHNtHC36Y7ijLIRE2cOI4RT5tCW44-c_pl-0,1526
145
+ vectordb_bench/frontend/pages/quries_per_dollar.py,sha256=CXRqs28AwMMAa00HL8iqwfkowBuObxRn6PFuoBBsiDM,2512
146
+ vectordb_bench/frontend/pages/results.py,sha256=MGNg_WdV3UvxCzg6p5JX-HflNuG9u7lLyoYmzOYoS_A,2045
147
+ vectordb_bench/frontend/pages/run_test.py,sha256=CL0ZaB-uxeL31Tjl4Xplg4r_BhqOAw3DWl7DvTzPRII,2125
148
+ vectordb_bench/frontend/pages/streaming.py,sha256=dndTQhje1RpV8FOXpE4MVnht_-4rzPRjNzaFt9nhaLs,4817
149
+ vectordb_bench/frontend/pages/tables.py,sha256=ANJhrykG94ec3Vs7HJiymvzH5NbjLCei78Sf8nTTG_I,677
150
+ vectordb_bench/results/dbPrices.json,sha256=50y-RrqDN3oAdwiUW4irMKV1IRgzR1iFOQcl8lG7950,749
137
151
  vectordb_bench/results/getLeaderboardData.py,sha256=fuNQmFuWEdm60McaQrXSGLApNOHRnfmvzn1soT3iGHE,2323
152
+ vectordb_bench/results/getLeaderboardDataV2.py,sha256=qNdk_Zcr4xn3qSou16HRA4xNP6P-ZDTcIvBRkD6kbgM,1939
138
153
  vectordb_bench/results/leaderboard.json,sha256=OooOar8Pj0hG-HlpOU8N_hNjJS53PaMMRSoSUtqLJ-k,69276
154
+ vectordb_bench/results/leaderboard_v2.json,sha256=dDtPd8hoZAbc8rIbIvLUkg00jurloFegNeoGec8yM_Y,71042
139
155
  vectordb_bench/results/ElasticCloud/result_20230727_standard_elasticcloud.json,sha256=IyJKjHGwTCcqKJAaBgfI_hhvMIGrXMl8S9Z2-19BvEE,5807
140
156
  vectordb_bench/results/ElasticCloud/result_20230808_standard_elasticcloud.json,sha256=sx_B3lbWICcMrePiYqeoJ179pwHD2l78bMf2B880QI0,4431
157
+ vectordb_bench/results/ElasticCloud/result_20250318_standard_elasticcloud.json,sha256=d5cfP-4oEy1VsWFoaNLQ2iUXxqv27zQDEBG80b0QPw0,204853
141
158
  vectordb_bench/results/Milvus/result_20230727_standard_milvus.json,sha256=UqwfO78qx2zRRWp29J-Egw8K8R5j-FFj9vX0iUrNRm8,17709
142
159
  vectordb_bench/results/Milvus/result_20230808_standard_milvus.json,sha256=ck9loRNVUGHnjSyuHWN76lGNRRPtWMW7Cj0zf3uwXEo,16303
160
+ vectordb_bench/results/Milvus/result_20250509_standard_milvus.json,sha256=0v9-x488ikM2c_StMOOHCqqIh0iPxi1HJIUWTIQGSEQ,209904
161
+ vectordb_bench/results/OpenSearch/result_20250224_standard_opensearch.json,sha256=MpqQCo25tjuOwIoJIE2YwBomzI6Nyq8dF6L-i8lh7k4,258858
143
162
  vectordb_bench/results/PgVector/result_20230727_standard_pgvector.json,sha256=gIc05u344PkZf78Dxi8zo0_sjPuKEw9PMXqAOVxzlOo,5686
144
163
  vectordb_bench/results/PgVector/result_20230808_standard_pgvector.json,sha256=vy2wTympKzQae5_fFp7zZ4dsgo607P5phCjqu2lOm3E,4323
145
164
  vectordb_bench/results/Pinecone/result_20230727_standard_pinecone.json,sha256=j9AgPgFwac9IPDnzgfsmiBOcbqM20c9J-OcaRJmf7wo,24938
146
165
  vectordb_bench/results/Pinecone/result_20230808_standard_pinecone.json,sha256=ccQaH5nHcF8MbVb4wOmRtml5PlxRoEOQ-OLEVZ496c4,21387
166
+ vectordb_bench/results/Pinecone/result_20250124_standard_pinecone.json,sha256=-05PkyEt8ZAvwLrihmUsjyURRZ4vMcoc2WrEzURWETs,78862
147
167
  vectordb_bench/results/QdrantCloud/result_20230727_standard_qdrantcloud.json,sha256=2GaPFRiufjLFxx2yekTqLqwJnsga5urNKa16zdZrQng,11187
148
168
  vectordb_bench/results/QdrantCloud/result_20230808_standard_qdrantcloud.json,sha256=tZjJSku1w4IqU-5T0LvxFfDPjf_9e0yCzMG-coiSniM,10241
169
+ vectordb_bench/results/QdrantCloud/result_20250602_standard_qdrantcloud.json,sha256=40O8F99uM0cjxtMjj4e6uaLleCnZTO24MruQY866bxA,123327
149
170
  vectordb_bench/results/WeaviateCloud/result_20230727_standard_weaviatecloud.json,sha256=WBlfjmbO3R4G6F4lDuneEigffUyTU7ti1SyWoff3oNI,15497
150
171
  vectordb_bench/results/WeaviateCloud/result_20230808_standard_weaviatecloud.json,sha256=lXjudo-l-6H0EOIemoB5n4GddOOHJnwndrGwCJIH-EY,7865
151
- vectordb_bench/results/ZillizCloud/result_20230727_standard_zillizcloud.json,sha256=-Mdm4By65XDRCrmVOCF8yQXjcZtH4Xo4shcjoDoBUKU,18293
152
- vectordb_bench/results/ZillizCloud/result_20230808_standard_zillizcloud.json,sha256=77XlHT5zM_K7mG5HfDQKwXZnSCuR37VUbt6-P3J_amI,15737
153
- vectordb_bench/results/ZillizCloud/result_20240105_standard_202401_zillizcloud.json,sha256=TualfJ0664Hs-vdIW68bdkqAEYyzotXmu2P0yIN-GHk,42526
154
- vectordb_bench-0.0.30.dist-info/licenses/LICENSE,sha256=HXbxhrb5u5SegVzeLNF_voVgRsJMavcLaOmD1N0lZkM,1067
155
- vectordb_bench-0.0.30.dist-info/METADATA,sha256=yrsk1c3mlsnnulXQvT-VaRVt52DLYQdROI5ZSxhuy9U,39780
156
- vectordb_bench-0.0.30.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
157
- vectordb_bench-0.0.30.dist-info/entry_points.txt,sha256=Qzw6gVx96ui8esG21H6yHsI6nboEohRmV424TYhQNrA,113
158
- vectordb_bench-0.0.30.dist-info/top_level.txt,sha256=jnhZFZAuKX1J60yt-XOeBZ__ctiZMvoC_s0RFq29lpM,15
159
- vectordb_bench-0.0.30.dist-info/RECORD,,
172
+ vectordb_bench/results/ZillizCloud/result_20250613_standard_zillizcloud.json,sha256=gZCnDanS5Yb6Uzvb0Q6wDxMl81UAoGzsZRHU8JwqNds,215610
173
+ vectordb_bench-1.0.1.dist-info/licenses/LICENSE,sha256=HXbxhrb5u5SegVzeLNF_voVgRsJMavcLaOmD1N0lZkM,1067
174
+ vectordb_bench-1.0.1.dist-info/METADATA,sha256=D11znOn8CK2UaA6Yzg21Klmw1Esl4RGvVb3jKIEfHv4,40753
175
+ vectordb_bench-1.0.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
176
+ vectordb_bench-1.0.1.dist-info/entry_points.txt,sha256=Qzw6gVx96ui8esG21H6yHsI6nboEohRmV424TYhQNrA,113
177
+ vectordb_bench-1.0.1.dist-info/top_level.txt,sha256=jnhZFZAuKX1J60yt-XOeBZ__ctiZMvoC_s0RFq29lpM,15
178
+ vectordb_bench-1.0.1.dist-info/RECORD,,