vectordb-bench 0.0.30__py3-none-any.whl → 1.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (80) hide show
  1. vectordb_bench/__init__.py +14 -27
  2. vectordb_bench/__main__.py +1 -1
  3. vectordb_bench/backend/assembler.py +19 -6
  4. vectordb_bench/backend/cases.py +186 -23
  5. vectordb_bench/backend/clients/__init__.py +16 -0
  6. vectordb_bench/backend/clients/api.py +22 -1
  7. vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py +82 -41
  8. vectordb_bench/backend/clients/aws_opensearch/config.py +37 -4
  9. vectordb_bench/backend/clients/chroma/chroma.py +6 -2
  10. vectordb_bench/backend/clients/elastic_cloud/config.py +31 -1
  11. vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +133 -45
  12. vectordb_bench/backend/clients/milvus/config.py +1 -0
  13. vectordb_bench/backend/clients/milvus/milvus.py +75 -23
  14. vectordb_bench/backend/clients/oceanbase/cli.py +100 -0
  15. vectordb_bench/backend/clients/oceanbase/config.py +125 -0
  16. vectordb_bench/backend/clients/oceanbase/oceanbase.py +215 -0
  17. vectordb_bench/backend/clients/pinecone/pinecone.py +39 -25
  18. vectordb_bench/backend/clients/qdrant_cloud/config.py +73 -3
  19. vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +100 -33
  20. vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py +1 -1
  21. vectordb_bench/backend/dataset.py +146 -27
  22. vectordb_bench/backend/filter.py +76 -0
  23. vectordb_bench/backend/runner/__init__.py +3 -3
  24. vectordb_bench/backend/runner/mp_runner.py +52 -39
  25. vectordb_bench/backend/runner/rate_runner.py +68 -52
  26. vectordb_bench/backend/runner/read_write_runner.py +125 -68
  27. vectordb_bench/backend/runner/serial_runner.py +56 -23
  28. vectordb_bench/backend/task_runner.py +59 -20
  29. vectordb_bench/cli/cli.py +59 -1
  30. vectordb_bench/cli/vectordbbench.py +3 -0
  31. vectordb_bench/frontend/components/check_results/data.py +16 -11
  32. vectordb_bench/frontend/components/check_results/filters.py +53 -25
  33. vectordb_bench/frontend/components/check_results/headerIcon.py +18 -13
  34. vectordb_bench/frontend/components/check_results/nav.py +20 -0
  35. vectordb_bench/frontend/components/custom/displayCustomCase.py +43 -8
  36. vectordb_bench/frontend/components/custom/displaypPrams.py +10 -5
  37. vectordb_bench/frontend/components/custom/getCustomConfig.py +10 -0
  38. vectordb_bench/frontend/components/label_filter/charts.py +60 -0
  39. vectordb_bench/frontend/components/run_test/caseSelector.py +48 -52
  40. vectordb_bench/frontend/components/run_test/dbSelector.py +9 -5
  41. vectordb_bench/frontend/components/run_test/inputWidget.py +48 -0
  42. vectordb_bench/frontend/components/run_test/submitTask.py +3 -1
  43. vectordb_bench/frontend/components/streaming/charts.py +253 -0
  44. vectordb_bench/frontend/components/streaming/data.py +62 -0
  45. vectordb_bench/frontend/components/tables/data.py +1 -1
  46. vectordb_bench/frontend/components/welcome/explainPrams.py +66 -0
  47. vectordb_bench/frontend/components/welcome/pagestyle.py +106 -0
  48. vectordb_bench/frontend/components/welcome/welcomePrams.py +147 -0
  49. vectordb_bench/frontend/config/dbCaseConfigs.py +309 -42
  50. vectordb_bench/frontend/config/styles.py +34 -4
  51. vectordb_bench/frontend/pages/concurrent.py +5 -1
  52. vectordb_bench/frontend/pages/custom.py +4 -0
  53. vectordb_bench/frontend/pages/label_filter.py +56 -0
  54. vectordb_bench/frontend/pages/quries_per_dollar.py +5 -1
  55. vectordb_bench/frontend/{vdb_benchmark.py → pages/results.py} +10 -4
  56. vectordb_bench/frontend/pages/run_test.py +3 -3
  57. vectordb_bench/frontend/pages/streaming.py +135 -0
  58. vectordb_bench/frontend/pages/tables.py +4 -0
  59. vectordb_bench/frontend/vdbbench.py +31 -0
  60. vectordb_bench/interface.py +8 -3
  61. vectordb_bench/metric.py +15 -1
  62. vectordb_bench/models.py +31 -11
  63. vectordb_bench/results/ElasticCloud/result_20250318_standard_elasticcloud.json +5890 -0
  64. vectordb_bench/results/Milvus/result_20250509_standard_milvus.json +6138 -0
  65. vectordb_bench/results/OpenSearch/result_20250224_standard_opensearch.json +7319 -0
  66. vectordb_bench/results/Pinecone/result_20250124_standard_pinecone.json +2365 -0
  67. vectordb_bench/results/QdrantCloud/result_20250602_standard_qdrantcloud.json +3556 -0
  68. vectordb_bench/results/ZillizCloud/result_20250613_standard_zillizcloud.json +6290 -0
  69. vectordb_bench/results/dbPrices.json +12 -4
  70. vectordb_bench/results/getLeaderboardDataV2.py +59 -0
  71. vectordb_bench/results/leaderboard_v2.json +2662 -0
  72. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/METADATA +93 -40
  73. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/RECORD +77 -58
  74. vectordb_bench/results/ZillizCloud/result_20230727_standard_zillizcloud.json +0 -791
  75. vectordb_bench/results/ZillizCloud/result_20230808_standard_zillizcloud.json +0 -679
  76. vectordb_bench/results/ZillizCloud/result_20240105_standard_202401_zillizcloud.json +0 -1352
  77. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/WHEEL +0 -0
  78. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/entry_points.txt +0 -0
  79. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/licenses/LICENSE +0 -0
  80. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.1.dist-info}/top_level.txt +0 -0
@@ -3,7 +3,8 @@ from vectordb_bench.models import DB
3
3
  # style const
4
4
  DB_SELECTOR_COLUMNS = 6
5
5
  DB_CONFIG_SETTING_COLUMNS = 3
6
- CASE_CONFIG_SETTING_COLUMNS = 4
6
+ CASE_CONFIG_SETTING_COLUMNS = 2
7
+ DB_CASE_CONFIG_SETTING_COLUMNS = 4
7
8
  CHECKBOX_INDENT = 30
8
9
  TASK_LABEL_INPUT_COLUMNS = 2
9
10
  CHECKBOX_MAX_COLUMNS = 4
@@ -16,6 +17,9 @@ SIDEBAR_CONTROL_COLUMNS = 3
16
17
  LEGEND_RECT_WIDTH = 24
17
18
  LEGEND_RECT_HEIGHT = 16
18
19
  LEGEND_TEXT_FONT_SIZE = 14
20
+ STREAMING_CHART_COLUMNS = 2
21
+ SCATTER_MAKER_SIZE = 8
22
+ SCATTER_LINE_WIDTH = 2
19
23
 
20
24
  PATTERN_SHAPES = ["", "+", "\\", "x", ".", "|", "/", "-"]
21
25
 
@@ -29,8 +33,8 @@ MAX_AUTO_REFRESH_COUNT = 999999
29
33
  MAX_AUTO_REFRESH_INTERVAL = 5000 # 5s
30
34
 
31
35
  PAGE_TITLE = "VectorDB Benchmark"
32
- FAVICON = "https://assets.zilliz.com/favicon_f7f922fe27.png"
33
- HEADER_ICON = "https://assets.zilliz.com/vdb_benchmark_db790b5387.png"
36
+ FAVICON = "https://assets.zilliz.com/VDB_Bench_icon_d3276bedc4.png"
37
+ HEADER_ICON = "https://assets.zilliz.com/VDB_Bench_text_icon_6c5f52a458.png"
34
38
 
35
39
  # RedisCloud icon: https://assets.zilliz.com/Redis_Cloud_74b8bfef39.png
36
40
  # Elasticsearch icon: https://assets.zilliz.com/elasticsearch_beffeadc29.png
@@ -41,15 +45,26 @@ DB_TO_ICON = {
41
45
  DB.ElasticCloud: "https://assets.zilliz.com/Elatic_Cloud_dad8d6a3a3.png",
42
46
  DB.Pinecone: "https://assets.zilliz.com/pinecone_94d8154979.png",
43
47
  DB.QdrantCloud: "https://assets.zilliz.com/qdrant_b691674fcd.png",
48
+ DB.QdrantLocal: "https://assets.zilliz.com/qdrant_b691674fcd.png",
44
49
  DB.WeaviateCloud: "https://assets.zilliz.com/weaviate_4f6f171ebe.png",
45
50
  DB.PgVector: "https://assets.zilliz.com/PG_Vector_d464f2ef5f.png",
46
51
  DB.PgVectoRS: "https://assets.zilliz.com/PG_Vector_d464f2ef5f.png",
52
+ DB.PgVectorScale: "",
53
+ DB.PgDiskANN: "https://assets.zilliz.com/PG_Vector_d464f2ef5f.png",
54
+ DB.AlloyDB: "",
55
+ DB.MemoryDB: "",
56
+ DB.AliyunElasticsearch: "",
47
57
  DB.Redis: "https://assets.zilliz.com/Redis_Cloud_74b8bfef39.png",
58
+ DB.MariaDB: "",
48
59
  DB.Chroma: "https://assets.zilliz.com/chroma_ceb3f06ed7.png",
60
+ DB.AliyunOpenSearch: "",
49
61
  DB.AWSOpenSearch: "https://assets.zilliz.com/opensearch_1eee37584e.jpeg",
62
+ DB.MongoDB: "",
50
63
  DB.TiDB: "https://img2.pingcap.com/forms/3/d/3d7fd5f9767323d6f037795704211ac44b4923d6.png",
64
+ DB.Clickhouse: "",
51
65
  DB.Vespa: "https://vespa.ai/vespa-content/uploads/2025/01/Vespa-symbol-green-rgb.png.webp",
52
- DB.LanceDB: "https://raw.githubusercontent.com/lancedb/lancedb/main/docs/src/assets/logo.png",
66
+ DB.LanceDB: "",
67
+ DB.OceanBase: "",
53
68
  }
54
69
 
55
70
  # RedisCloud color: #0D6EFD
@@ -67,3 +82,18 @@ COLOR_MAP = {
67
82
  DB.TiDB.value: "#0D6EFD",
68
83
  DB.Vespa.value: "#61d790",
69
84
  }
85
+
86
+ COLORS_10 = [
87
+ "#a6cee3",
88
+ "#1f78b4",
89
+ "#b2df8a",
90
+ "#33a02c",
91
+ "#fb9a99",
92
+ "#e31a1c",
93
+ "#fdbf6f",
94
+ "#ff7f00",
95
+ "#cab2d6",
96
+ "#6a3d9a",
97
+ ]
98
+
99
+ COLORS_2 = ["#1f78b4", "#d8b365"]
@@ -4,6 +4,7 @@ from vectordb_bench.frontend.components.check_results.headerIcon import drawHead
4
4
  from vectordb_bench.frontend.components.check_results.nav import (
5
5
  NavToResults,
6
6
  NavToRunTest,
7
+ NavToPages,
7
8
  )
8
9
  from vectordb_bench.frontend.components.check_results.filters import getshownData
9
10
  from vectordb_bench.frontend.components.concurrent.charts import drawChartsByCase
@@ -25,6 +26,9 @@ def main():
25
26
  # header
26
27
  drawHeaderIcon(st)
27
28
 
29
+ # navigate
30
+ NavToPages(st)
31
+
28
32
  allResults = benchmark_runner.get_results()
29
33
 
30
34
  def check_conc_data(res: TestResult):
@@ -42,7 +46,7 @@ def main():
42
46
 
43
47
  # results selector
44
48
  resultSelectorContainer = st.sidebar.container()
45
- shownData, _, showCaseNames = getshownData(checkedResults, resultSelectorContainer)
49
+ shownData, _, showCaseNames = getshownData(resultSelectorContainer, checkedResults)
46
50
 
47
51
  resultSelectorContainer.divider()
48
52
 
@@ -1,6 +1,7 @@
1
1
  from functools import partial
2
2
  import streamlit as st
3
3
  from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
4
+ from vectordb_bench.frontend.components.check_results.nav import NavToPages
4
5
  from vectordb_bench.frontend.components.custom.displayCustomCase import (
5
6
  displayCustomCase,
6
7
  )
@@ -49,6 +50,9 @@ def main():
49
50
  # init style
50
51
  initStyle(st)
51
52
 
53
+ # navigate
54
+ NavToPages(st)
55
+
52
56
  st.title("Custom Dataset")
53
57
  displayParams(st)
54
58
  customCaseManager = CustomCaseManager()
@@ -0,0 +1,56 @@
1
+ import streamlit as st
2
+ from vectordb_bench.backend.filter import FilterOp
3
+ from vectordb_bench.frontend.components.check_results.footer import footer
4
+ from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
5
+ from vectordb_bench.frontend.components.check_results.nav import (
6
+ NavToQuriesPerDollar,
7
+ NavToRunTest,
8
+ NavToPages,
9
+ )
10
+ from vectordb_bench.frontend.components.label_filter.charts import drawCharts
11
+ from vectordb_bench.frontend.components.check_results.filters import getshownData
12
+ from vectordb_bench.frontend.config.styles import FAVICON
13
+ from vectordb_bench.interface import benchmark_runner
14
+
15
+
16
+ def main():
17
+ # set page config
18
+ st.set_page_config(
19
+ page_title="Label Filter",
20
+ page_icon=FAVICON,
21
+ layout="wide",
22
+ # initial_sidebar_state="collapsed",
23
+ )
24
+
25
+ # header
26
+ drawHeaderIcon(st)
27
+
28
+ # navigate
29
+ NavToPages(st)
30
+
31
+ allResults = benchmark_runner.get_results()
32
+
33
+ st.title("Vector Database Benchmark (Label Filter)")
34
+
35
+ # results selector and filter
36
+ resultSelectorContainer = st.sidebar.container()
37
+ shownData, failedTasks, showCaseNames = getshownData(
38
+ resultSelectorContainer, allResults, filter_type=FilterOp.StrEqual
39
+ )
40
+
41
+ resultSelectorContainer.divider()
42
+
43
+ # nav
44
+ navContainer = st.sidebar.container()
45
+ NavToRunTest(navContainer)
46
+ NavToQuriesPerDollar(navContainer)
47
+
48
+ # charts
49
+ drawCharts(st, shownData)
50
+
51
+ # footer
52
+ footer(st.container())
53
+
54
+
55
+ if __name__ == "__main__":
56
+ main()
@@ -9,6 +9,7 @@ from vectordb_bench.frontend.components.check_results.stPageConfig import (
9
9
  )
10
10
  from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
11
11
  from vectordb_bench.frontend.components.check_results.nav import (
12
+ NavToPages,
12
13
  NavToResults,
13
14
  NavToRunTest,
14
15
  )
@@ -27,13 +28,16 @@ def main():
27
28
  # header
28
29
  drawHeaderIcon(st)
29
30
 
31
+ # navigate
32
+ NavToPages(st)
33
+
30
34
  allResults = benchmark_runner.get_results()
31
35
 
32
36
  st.title("Vector DB Benchmark (QP$)")
33
37
 
34
38
  # results selector
35
39
  resultSelectorContainer = st.sidebar.container()
36
- shownData, _, showCaseNames = getshownData(allResults, resultSelectorContainer)
40
+ shownData, _, showCaseNames = getshownData(resultSelectorContainer, allResults)
37
41
 
38
42
  resultSelectorContainer.divider()
39
43
 
@@ -7,6 +7,7 @@ from vectordb_bench.frontend.components.check_results.headerIcon import drawHead
7
7
  from vectordb_bench.frontend.components.check_results.nav import (
8
8
  NavToQuriesPerDollar,
9
9
  NavToRunTest,
10
+ NavToPages,
10
11
  )
11
12
  from vectordb_bench.frontend.components.check_results.charts import drawCharts
12
13
  from vectordb_bench.frontend.components.check_results.filters import getshownData
@@ -22,17 +23,22 @@ def main():
22
23
  # header
23
24
  drawHeaderIcon(st)
24
25
 
26
+ # navigate
27
+ NavToPages(st)
28
+
25
29
  allResults = benchmark_runner.get_results()
26
30
 
27
31
  st.title("Vector Database Benchmark")
28
32
  st.caption(
29
- "Except for zillizcloud-v2024.1, which was tested in _January 2024_, all other tests were completed before _August 2023_."
33
+ "Choose your desired test results to display from the sidebar. "
34
+ "For your reference, we've included two standard benchmarks tested by our team. "
35
+ "Note that `standard_2025` was tested in 2025; the others in 2023. "
36
+ "Unless explicitly labeled as distributed multi-node, test with single-node mode by default."
30
37
  )
31
- st.caption("All tested milvus are in _standalone_ mode.")
32
-
38
+ st.caption("We welcome community contributions for better results, parameter configurations, and optimizations.")
33
39
  # results selector and filter
34
40
  resultSelectorContainer = st.sidebar.container()
35
- shownData, failedTasks, showCaseNames = getshownData(allResults, resultSelectorContainer)
41
+ shownData, failedTasks, showCaseNames = getshownData(resultSelectorContainer, allResults)
36
42
 
37
43
  resultSelectorContainer.divider()
38
44
 
@@ -7,7 +7,7 @@ from vectordb_bench.frontend.components.run_test.generateTasks import generate_t
7
7
  from vectordb_bench.frontend.components.run_test.hideSidebar import hideSidebar
8
8
  from vectordb_bench.frontend.components.run_test.initStyle import initStyle
9
9
  from vectordb_bench.frontend.components.run_test.submitTask import submitTask
10
- from vectordb_bench.frontend.components.check_results.nav import NavToResults
10
+ from vectordb_bench.frontend.components.check_results.nav import NavToResults, NavToPages
11
11
  from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
12
12
  from vectordb_bench.frontend.components.check_results.stPageConfig import initRunTestPageConfig
13
13
 
@@ -25,8 +25,8 @@ def main():
25
25
  # hide sidebar
26
26
  hideSidebar(st)
27
27
 
28
- # nav to results
29
- NavToResults(st)
28
+ # navigate
29
+ NavToPages(st)
30
30
 
31
31
  # header
32
32
  st.title("Run Your Test")
@@ -0,0 +1,135 @@
1
+ import logging
2
+ import streamlit as st
3
+ from vectordb_bench.backend.cases import CaseLabel
4
+ from vectordb_bench.frontend.components.check_results.footer import footer
5
+ from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
6
+ from vectordb_bench.frontend.components.check_results.nav import (
7
+ NavToResults,
8
+ NavToRunTest,
9
+ NavToPages,
10
+ )
11
+ from vectordb_bench.frontend.components.check_results.filters import getshownData
12
+ from vectordb_bench.frontend.components.streaming.charts import drawChartsByCase
13
+ from vectordb_bench.frontend.components.get_results.saveAsImage import getResults
14
+ from vectordb_bench.frontend.components.streaming.data import DisplayedMetric
15
+ from vectordb_bench.frontend.config.styles import FAVICON
16
+ from vectordb_bench.interface import benchmark_runner
17
+ from vectordb_bench.models import CaseResult, TestResult
18
+
19
+ log = logging.getLogger("vectordb_bench")
20
+
21
+
22
+ def main():
23
+ # set page config
24
+ st.set_page_config(
25
+ page_title="VDBB Streaming Perf",
26
+ page_icon=FAVICON,
27
+ layout="wide",
28
+ # initial_sidebar_state="collapsed",
29
+ )
30
+
31
+ # header
32
+ drawHeaderIcon(st)
33
+
34
+ # navigate
35
+ NavToPages(st)
36
+
37
+ allResults = benchmark_runner.get_results()
38
+
39
+ def check_streaming_data(res: TestResult):
40
+ case_results = res.results
41
+ flag = False
42
+ for case_result in case_results:
43
+ if case_result.task_config.case_config.case.label == CaseLabel.Streaming:
44
+ flag = True
45
+
46
+ return flag
47
+
48
+ checkedResults = [res for res in allResults if check_streaming_data(res)]
49
+
50
+ st.title("VDBBench - Streaming Performance")
51
+
52
+ # results selector
53
+ resultSelectorContainer = st.sidebar.container()
54
+
55
+ def case_results_filter(case_result: CaseResult) -> bool:
56
+ return len(case_result.metrics.st_search_stage_list) > 0
57
+
58
+ shownData, _, showCaseNames = getshownData(
59
+ resultSelectorContainer, checkedResults, case_results_filter=case_results_filter
60
+ )
61
+
62
+ resultSelectorContainer.divider()
63
+
64
+ # nav
65
+ navContainer = st.sidebar.container()
66
+ NavToRunTest(navContainer)
67
+ NavToResults(navContainer)
68
+
69
+ # save or share
70
+ resultesContainer = st.sidebar.container()
71
+ getResults(resultesContainer, "vectordb_bench_streaming")
72
+
73
+ # # main
74
+ # latency_type = st.radio("Latency Type", options=["latency_p99", "latency_avg"])
75
+ st.markdown("Tests search performance with a **stable** and **fixed** insertion rate.")
76
+ control_panel = st.columns(3)
77
+ compared_with_optimized = control_panel[0].toggle(
78
+ "Compare with **optimezed** performance.",
79
+ value=True,
80
+ help="VectorDB is allowed to do **optimizations** after all insertions done and then test search performance.",
81
+ )
82
+ x_use_actual_time = control_panel[0].toggle(
83
+ "Use **actual time** as X-axis instead of search stage.",
84
+ value=False,
85
+ help="Since vdbbench inserts may be faster than vetordb can process them, the time it actually reaches search_stage may have different delays.",
86
+ )
87
+ accuracy_metric = DisplayedMetric.recall
88
+ show_ndcg = control_panel[1].toggle(
89
+ "Show **NDCG** instead of Recall.",
90
+ value=False,
91
+ help="A more appropriate indicator to measure ANN search accuracy than Recall.",
92
+ )
93
+ need_adjust = control_panel[1].toggle(
94
+ "Adjust the NDCG/Recall value based on the search stage.",
95
+ value=True,
96
+ help="NDCG/Recall is calculated using the ground truth file of the **entire** database, **divided by the search stage** to simulate the actual value.",
97
+ )
98
+ if show_ndcg:
99
+ if need_adjust:
100
+ accuracy_metric = DisplayedMetric.adjusted_ndcg
101
+ else:
102
+ accuracy_metric = DisplayedMetric.ndcg
103
+ else:
104
+ if need_adjust:
105
+ accuracy_metric = DisplayedMetric.adjusted_recall
106
+ line_chart_displayed_y_metrics: list[tuple[DisplayedMetric, str]] = [
107
+ (
108
+ DisplayedMetric.qps,
109
+ "max-qps of increasing **concurrency search** tests in each search stage.",
110
+ ),
111
+ (accuracy_metric, "calculated in each search_stage."),
112
+ (
113
+ DisplayedMetric.latency_p99,
114
+ "serial lantency (p99) of **serial search** tests in each search stage.",
115
+ ),
116
+ ]
117
+ line_chart_displayed_x_metric = DisplayedMetric.search_stage
118
+ if x_use_actual_time:
119
+ line_chart_displayed_x_metric = DisplayedMetric.search_time
120
+
121
+ drawChartsByCase(
122
+ st.container(),
123
+ shownData,
124
+ showCaseNames,
125
+ with_last_optimized_data=compared_with_optimized,
126
+ line_chart_displayed_x_metric=line_chart_displayed_x_metric,
127
+ line_chart_displayed_y_metrics=line_chart_displayed_y_metrics,
128
+ )
129
+
130
+ # footer
131
+ footer(st.container())
132
+
133
+
134
+ if __name__ == "__main__":
135
+ main()
@@ -1,5 +1,6 @@
1
1
  import streamlit as st
2
2
  from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
3
+ from vectordb_bench.frontend.components.check_results.nav import NavToPages
3
4
  from vectordb_bench.frontend.components.tables.data import getNewResults
4
5
  from vectordb_bench.frontend.config.styles import FAVICON
5
6
 
@@ -16,6 +17,9 @@ def main():
16
17
  # header
17
18
  drawHeaderIcon(st)
18
19
 
20
+ # navigate
21
+ NavToPages(st)
22
+
19
23
  df = getNewResults()
20
24
  st.dataframe(df, height=800)
21
25
 
@@ -0,0 +1,31 @@
1
+ import streamlit as st
2
+ from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
3
+ from vectordb_bench.frontend.components.custom.initStyle import initStyle
4
+ from vectordb_bench.frontend.components.welcome.explainPrams import explainPrams
5
+ from vectordb_bench.frontend.components.welcome.welcomePrams import welcomePrams
6
+ from vectordb_bench.frontend.config.styles import FAVICON, PAGE_TITLE
7
+
8
+
9
+ def main():
10
+ st.set_page_config(
11
+ page_title=PAGE_TITLE,
12
+ page_icon=FAVICON,
13
+ layout="wide",
14
+ initial_sidebar_state="collapsed",
15
+ )
16
+
17
+ # header
18
+ drawHeaderIcon(st)
19
+
20
+ # init style
21
+ initStyle(st)
22
+
23
+ # page
24
+ welcomePrams(st)
25
+
26
+ # description
27
+ explainPrams(st)
28
+
29
+
30
+ if __name__ == "__main__":
31
+ main()
@@ -12,7 +12,7 @@ from multiprocessing.connection import Connection
12
12
  import psutil
13
13
 
14
14
  from . import config
15
- from .backend.assembler import Assembler
15
+ from .backend.assembler import Assembler, FilterNotSupportedError
16
16
  from .backend.data_source import DatasetSource
17
17
  from .backend.result_collector import ResultCollector
18
18
  from .backend.task_runner import TaskRunner
@@ -88,16 +88,21 @@ class BenchMarkRunner:
88
88
  log.warning(msg)
89
89
  self.latest_error = msg
90
90
  return True
91
+ except FilterNotSupportedError as e:
92
+ log.warning(e.args[0])
93
+ self.latest_error = e.args[0]
94
+ return True
91
95
 
92
96
  return self._run_async(send_conn)
93
97
 
94
- def get_results(self, result_dir: pathlib.Path | None = None) -> list[TestResult]:
98
+ @staticmethod
99
+ def get_results(result_dir: pathlib.Path | None = None) -> list[TestResult]:
95
100
  """results of all runs, each TestResult represents one run."""
96
101
  target_dir = result_dir if result_dir else config.RESULTS_LOCAL_DIR
97
102
  return ResultCollector.collect(target_dir)
98
103
 
99
104
  def _try_get_signal(self):
100
- if self.receive_conn and self.receive_conn.poll():
105
+ while self.receive_conn and self.receive_conn.poll():
101
106
  sig, received = self.receive_conn.recv()
102
107
  log.debug(f"Sigal received to process: {sig}, {received}")
103
108
  if sig == SIGNAL.ERROR:
vectordb_bench/metric.py CHANGED
@@ -13,8 +13,12 @@ class Metric:
13
13
  # for load cases
14
14
  max_load_count: int = 0
15
15
 
16
+ # for both performace and streaming cases
17
+ insert_duration: float = 0.0
18
+ optimize_duration: float = 0.0
19
+ load_duration: float = 0.0 # insert + optimize
20
+
16
21
  # for performance cases
17
- load_duration: float = 0.0 # duration to load all dataset into DB
18
22
  qps: float = 0.0
19
23
  serial_latency_p99: float = 0.0
20
24
  recall: float = 0.0
@@ -24,6 +28,16 @@ class Metric:
24
28
  conc_latency_p99_list: list[float] = field(default_factory=list)
25
29
  conc_latency_avg_list: list[float] = field(default_factory=list)
26
30
 
31
+ # for streaming cases
32
+ st_ideal_insert_duration: int = 0
33
+ st_search_stage_list: list[int] = field(default_factory=list)
34
+ st_search_time_list: list[float] = field(default_factory=list)
35
+ st_max_qps_list_list: list[float] = field(default_factory=list)
36
+ st_recall_list: list[float] = field(default_factory=list)
37
+ st_ndcg_list: list[float] = field(default_factory=list)
38
+ st_serial_latency_p99_list: list[float] = field(default_factory=list)
39
+ st_conc_failed_rate_list: list[float] = field(default_factory=list)
40
+
27
41
 
28
42
  QURIES_PER_DOLLAR_METRIC = "QP$ (Quries per Dollar)"
29
43
  LOAD_DURATION_METRIC = "load_duration"