vectordb-bench 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. vectordb_bench/__init__.py +14 -3
  2. vectordb_bench/backend/assembler.py +2 -2
  3. vectordb_bench/backend/cases.py +146 -57
  4. vectordb_bench/backend/clients/__init__.py +6 -1
  5. vectordb_bench/backend/clients/api.py +23 -11
  6. vectordb_bench/backend/clients/elastic_cloud/config.py +5 -5
  7. vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +11 -9
  8. vectordb_bench/backend/clients/milvus/config.py +2 -3
  9. vectordb_bench/backend/clients/milvus/milvus.py +32 -19
  10. vectordb_bench/backend/clients/pgvector/config.py +49 -0
  11. vectordb_bench/backend/clients/pgvector/pgvector.py +171 -0
  12. vectordb_bench/backend/clients/pinecone/config.py +3 -3
  13. vectordb_bench/backend/clients/pinecone/pinecone.py +19 -13
  14. vectordb_bench/backend/clients/qdrant_cloud/config.py +23 -6
  15. vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +12 -13
  16. vectordb_bench/backend/clients/weaviate_cloud/config.py +3 -3
  17. vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py +9 -8
  18. vectordb_bench/backend/clients/zilliz_cloud/config.py +5 -4
  19. vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py +3 -1
  20. vectordb_bench/backend/dataset.py +100 -162
  21. vectordb_bench/backend/result_collector.py +2 -2
  22. vectordb_bench/backend/runner/mp_runner.py +29 -13
  23. vectordb_bench/backend/runner/serial_runner.py +98 -36
  24. vectordb_bench/backend/task_runner.py +43 -48
  25. vectordb_bench/frontend/components/check_results/charts.py +10 -21
  26. vectordb_bench/frontend/components/check_results/data.py +31 -15
  27. vectordb_bench/frontend/components/check_results/expanderStyle.py +37 -0
  28. vectordb_bench/frontend/components/check_results/filters.py +61 -33
  29. vectordb_bench/frontend/components/check_results/footer.py +8 -0
  30. vectordb_bench/frontend/components/check_results/headerIcon.py +8 -4
  31. vectordb_bench/frontend/components/check_results/nav.py +7 -6
  32. vectordb_bench/frontend/components/check_results/priceTable.py +3 -2
  33. vectordb_bench/frontend/components/check_results/stPageConfig.py +18 -0
  34. vectordb_bench/frontend/components/get_results/saveAsImage.py +50 -0
  35. vectordb_bench/frontend/components/run_test/autoRefresh.py +1 -1
  36. vectordb_bench/frontend/components/run_test/caseSelector.py +19 -16
  37. vectordb_bench/frontend/components/run_test/dbConfigSetting.py +20 -7
  38. vectordb_bench/frontend/components/run_test/dbSelector.py +5 -5
  39. vectordb_bench/frontend/components/run_test/hideSidebar.py +4 -6
  40. vectordb_bench/frontend/components/run_test/submitTask.py +16 -10
  41. vectordb_bench/frontend/const/dbCaseConfigs.py +291 -0
  42. vectordb_bench/frontend/const/dbPrices.py +6 -0
  43. vectordb_bench/frontend/const/styles.py +58 -0
  44. vectordb_bench/frontend/pages/{qps_with_price.py → quries_per_dollar.py} +24 -17
  45. vectordb_bench/frontend/pages/run_test.py +17 -11
  46. vectordb_bench/frontend/vdb_benchmark.py +19 -12
  47. vectordb_bench/metric.py +19 -10
  48. vectordb_bench/models.py +14 -40
  49. vectordb_bench/results/dbPrices.json +32 -0
  50. vectordb_bench/results/getLeaderboardData.py +52 -0
  51. vectordb_bench/results/leaderboard.json +1 -0
  52. vectordb_bench/results/{result_20230609_standard.json → result_20230705_standard.json} +1910 -897
  53. {vectordb_bench-0.0.1.dist-info → vectordb_bench-0.0.3.dist-info}/METADATA +107 -27
  54. vectordb_bench-0.0.3.dist-info/RECORD +67 -0
  55. vectordb_bench/frontend/const.py +0 -391
  56. vectordb_bench-0.0.1.dist-info/RECORD +0 -56
  57. {vectordb_bench-0.0.1.dist-info → vectordb_bench-0.0.3.dist-info}/LICENSE +0 -0
  58. {vectordb_bench-0.0.1.dist-info → vectordb_bench-0.0.3.dist-info}/WHEEL +0 -0
  59. {vectordb_bench-0.0.1.dist-info → vectordb_bench-0.0.3.dist-info}/entry_points.txt +0 -0
  60. {vectordb_bench-0.0.1.dist-info → vectordb_bench-0.0.3.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vectordb-bench
3
- Version: 0.0.1
3
+ Version: 0.0.3
4
4
  Summary: VectorDBBench is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VectorDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
5
5
  Author-email: XuanYang-cn <xuan.yang@zilliz.com>
6
6
  Project-URL: repository, https://github.com/zilliztech/VectorDBBench
@@ -27,12 +27,19 @@ Requires-Dist: environs
27
27
  Requires-Dist: scikit-learn
28
28
  Requires-Dist: s3fs
29
29
  Requires-Dist: psutil
30
+ Requires-Dist: polars
31
+ Requires-Dist: pgvector
32
+ Requires-Dist: sqlalchemy
30
33
  Provides-Extra: test
31
34
  Requires-Dist: ruff ; extra == 'test'
32
35
  Requires-Dist: pytest ; extra == 'test'
33
36
 
34
37
  # VectorDBBench: A Benchmark Tool for VectorDB
35
38
 
39
+ [![version](https://img.shields.io/pypi/v/vectordb-bench.svg?color=blue)](https://pypi.org/project/vectordb-bench/)
40
+ [![Downloads](https://pepy.tech/badge/vectordb-bench)](https://pepy.tech/project/vectordb-bench)
41
+
42
+ **Leaderboard:** https://zilliz.com/benchmark
36
43
  ## Quick Start
37
44
  ### Prerequirement
38
45
  ``` shell
@@ -53,10 +60,28 @@ VectorDBBench is not just an offering of benchmark results for mainstream vector
53
60
  Understanding the importance of user experience, we provide an intuitive visual interface. This not only empowers users to initiate benchmarks at ease, but also to view comparative result reports, thereby reproducing benchmark results effortlessly.
54
61
  To add more relevance and practicality, we provide cost-effectiveness reports particularly for cloud services. This allows for a more realistic and applicable benchmarking process.
55
62
 
56
- Closely mimicking real-world production environments, we've set up diverse testing scenarios including insertion, searching, and filtered searching. To provide you with credible and reliable data, we've included public datasets from actual production scenarios, such as SIFT, GIST, Cohere, and more. It's fascinating to discover how a relatively unknown open-source database might excel in certain circumstances!
63
+ Closely mimicking real-world production environments, we've set up diverse testing scenarios including insertion, searching, and filtered searching. To provide you with credible and reliable data, we've included public datasets from actual production scenarios, such as [SIFT](http://corpus-texmex.irisa.fr/), [GIST](http://corpus-texmex.irisa.fr/), [Cohere](https://huggingface.co/datasets/Cohere/wikipedia-22-12/tree/main/en), and more. It's fascinating to discover how a relatively unknown open-source database might excel in certain circumstances!
57
64
 
58
65
  Prepare to delve into the world of VectorDBBench, and let it guide you in uncovering your perfect vector database match.
59
66
 
67
+ ## Leaderboard
68
+ ### Introduction
69
+ To facilitate the presentation of test results and provide a comprehensive performance analysis report, we offer a [leaderboard page](https://zilliz.com/benchmark). It allows us to choose from QPS, QP$, and latency metrics, and provides a comprehensive assessment of a system's performance based on the test results of various cases and a set of scoring mechanisms (to be introduced later). On this leaderboard, we can select the systems and models to be compared, and filter out cases we do not want to consider. Comprehensive scores are always ranked from best to worst, and the specific test results of each query will be presented in the list below.
70
+
71
+ ### Scoring Rules
72
+
73
+ 1. For each case, select a base value and score each system based on relative values.
74
+ - For QPS and QP$, we use the highest value as the reference, denoted as `base_QPS` or `base_QP$`, and the score of each system is `(QPS/base_QPS) * 100` or `(QP$/base_QP$) * 100`.
75
+ - For Latency, we use the lowest value as the reference, that is, `base_Latency`, and the score of each system is `(Latency + 10ms)/(base_Latency + 10ms)`.
76
+
77
+ We want to give equal weight to different cases, and not let a case with high absolute result values become the sole reason for the overall scoring. Therefore, when scoring different systems in each case, we need to use relative values.
78
+
79
+ Also, for Latency, we add 10ms to the numerator and denominator to ensure that if every system performs particularly well in a case, its advantage will not be infinitely magnified when latency tends to 0.
80
+
81
+ 2. For systems that fail or timeout in a particular case, we will give them a score based on a value worse than the worst result by a factor of two. For example, in QPS or QP$, it would be half the lowest value. For Latency, it would be twice the maximum value.
82
+
83
+ 3. For each system, we will take the geometric mean of its scores in all cases as its comprehensive score for a particular metric.
84
+
60
85
  ## Build on your own
61
86
  ### Install requirements
62
87
  ``` shell
@@ -85,12 +110,14 @@ $ ruff check vectordb_bench --fix
85
110
 
86
111
  ## How does it work?
87
112
  ### Result Page
88
- ![image](https://github.com/liliu-z/VectorDBBench/assets/105927039/a8418fb6-0822-4f04-a04d-ab9143815b3e)
113
+ ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/7f5cdae7-f9f2-4a81-b2e0-e5c6268cd970)
89
114
  This is the main page of VectorDBBench, which displays the standard benchmark results we provide. Additionally, results of all tests performed by users themselves will also be shown here. We also offer the ability to select and compare results from multiple tests simultaneously.
90
115
 
91
- The standard benchmark results displayed here include all 12 cases that we currently support for all our clients (Milvus, Zilliz Cloud, Elastic Search, Qdrant Cloud, and Weaviate Cloud). However, as some systems may not be able to complete all the tests successfully due to issues like Out of Memory (OOM) or timeouts, not all clients are included in every case.
116
+ The standard benchmark results displayed here include all 9 cases that we currently support for all our clients (Milvus, Zilliz Cloud, Elastic Search, Qdrant Cloud, and Weaviate Cloud). However, as some systems may not be able to complete all the tests successfully due to issues like Out of Memory (OOM) or timeouts, not all clients are included in every case.
117
+
118
+ All standard benchmark results are generated by a client running on an 8 core, 32 GB host, which is located in the same region as the server being tested. The client host is equipped with an `Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz` processor. Also all the servers for the open-source systems tested in our benchmarks run on hosts with the same type of processor.
92
119
  ### Run Test Page
93
- ![image](https://github.com/liliu-z/VectorDBBench/assets/105927039/364e2462-107e-4ce1-aabc-ff2b217ae9b7)
120
+ ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/a789099a-3707-4214-8052-b73463b8f2c6)
94
121
  This is the page to run a test:
95
122
  1. Initially, you select the systems to be tested - multiple selections are allowed. Once selected, corresponding forms will pop up to gather necessary information for using the chosen databases. The db_label is used to differentiate different instances of the same system. We recommend filling in the host size or instance type here (as we do in our standard results).
96
123
  2. The next step is to select the test cases you want to perform. You can select multiple cases at once, and a form to collect corresponding parameters will appear.
@@ -99,11 +126,11 @@ Now we can only run one task at the same time.
99
126
 
100
127
  ## Module
101
128
  ### Code Structure
102
- ![image](https://github.com/liliu-z/VectorDBBench/assets/105927039/8d65c8b4-b9a3-4405-9db8-d27bf1ffda4b)
129
+ ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/8c06512e-5419-4381-b084-9c93aed59639)
103
130
  ### Client
104
131
  Our client module is designed with flexibility and extensibility in mind, aiming to integrate APIs from different systems seamlessly. As of now, it supports Milvus, Zilliz Cloud, Elastic Search, Pinecone, Qdrant, and Weaviate. Stay tuned for more options, as we are consistently working on extending our reach to other systems.
105
132
  ### Benchmark Cases
106
- We've developed an array of 12 comprehensive benchmark cases to test vector databases' various capabilities, each designed to give you a different piece of the puzzle. These cases are categorized into three main types:
133
+ We've developed an array of 9 comprehensive benchmark cases to test vector databases' various capabilities, each designed to give you a different piece of the puzzle. These cases are categorized into three main types:
107
134
  #### Capacity Case
108
135
  - **Large Dim:** Tests the database's loading capacity by inserting large-dimension vectors (GIST 100K vectors, 960 dimensions) until fully loaded. The final number of inserted vectors is reported.
109
136
  - **Small Dim:** Similar to the Large Dim case but uses small-dimension vectors (SIFT 100K vectors, 128 dimensions).
@@ -111,30 +138,24 @@ We've developed an array of 12 comprehensive benchmark cases to test vector data
111
138
  - **XLarge Dataset:** Measures search performance with a massive dataset (LAION 100M vectors, 768 dimensions) at varying parallel levels. The results include index building time, recall, latency, and maximum QPS.
112
139
  - **Large Dataset:** Similar to the XLarge Dataset case, but uses a slightly smaller dataset (Cohere 10M vectors, 768 dimensions).
113
140
  - **Medium Dataset:** A case using a medium dataset (Cohere 1M vectors, 768 dimensions).
114
- - **Small Dataset:** This case uses a small dataset (Cohere 100K vectors, 768 dimensions).
115
141
  #### Filtering Search Performance Case
116
142
  - **Large Dataset, Low Filtering Rate:** Evaluates search performance with a large dataset (Cohere 10M vectors, 768 dimensions) under a low filtering rate (1% vectors) at different parallel levels.
117
143
  - **Medium Dataset, Low Filtering Rate:** This case uses a medium dataset (Cohere 1M vectors, 768 dimensions) with a similar low filtering rate.
118
- - **Small Dataset, Low Filtering Rate:** This case uses a small dataset (Cohere 100K vectors, 768 dimensions) with a low filtering rate.
119
144
  - **Large Dataset, High Filtering Rate:** It tests with a large dataset (Cohere 10M vectors, 768 dimensions) but under a high filtering rate (99% vectors).
120
145
  - **Medium Dataset, High Filtering Rate:** This case uses a medium dataset (Cohere 1M vectors, 768 dimensions) with a high filtering rate.
121
- - **Small Dataset, High Filtering Rate:** Finally, this case uses a small dataset (Cohere 100K vectors, 768 dimensions) under a high filtering rate.
122
146
  For a quick reference, here is a table summarizing the key aspects of each case:
123
147
 
124
- Case No. | Case Type | Dataset Size | Dataset Type | Filtering Rate | Results |
125
- |----------|-----------|--------------|--------------|----------------|---------|
126
- 1 | Capacity Case | Large Dim | GIST 100K vectors, 960 dimensions | N/A | Number of inserted vectors |
127
- 2 | Capacity Case | Small Dim | SIFT 100K vectors, 128 dimensions | N/A | Number of inserted vectors |
128
- 3 | Search Performance Case | XLarge Dataset | LAION 100M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
129
- 4 | Search Performance Case | Large Dataset | Cohere 10M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
130
- 5 | Search Performance Case | Medium Dataset | Cohere 1M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
131
- 6 | Search Performance Case | Small Dataset | Cohere 100K vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
132
- 7 | Filtering Search Performance Case | Large Dataset, Low Filtering Rate | Cohere 10M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
133
- 8 | Filtering Search Performance Case | Medium Dataset, Low Filtering Rate | Cohere 1M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
134
- 9 | Filtering Search Performance Case | Small Dataset, Low Filtering Rate | Cohere 100K vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
135
- 10 | Filtering Search Performance Case | Large Dataset, High Filtering Rate | Cohere 10M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
136
- 11 | Filtering Search Performance Case | Medium Dataset, High Filtering Rate | Cohere 1M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
137
- 12 | Filtering Search Performance Case | Small Dataset, High Filtering Rate | Cohere 100K vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
148
+ Case No. | Case Type | Dataset Size | Filtering Rate | Results |
149
+ |----------|-----------|--------------|----------------|---------|
150
+ 1 | Capacity Case | GIST 100K vectors, 960 dimensions | N/A | Number of inserted vectors |
151
+ 2 | Capacity Case | SIFT 100K vectors, 128 dimensions | N/A | Number of inserted vectors |
152
+ 3 | Search Performance Case | LAION 100M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
153
+ 4 | Search Performance Case | Cohere 10M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
154
+ 5 | Search Performance Case | Cohere 1M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
155
+ 6 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
156
+ 7 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
157
+ 8 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
158
+ 9 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
138
159
 
139
160
  Each case provides an in-depth examination of a vector database's abilities, providing you a comprehensive view of the database's performance.
140
161
 
@@ -155,7 +176,7 @@ VectorDBBench aims to provide a more comprehensive, multi-faceted testing enviro
155
176
 
156
177
  1. Navigate to the vectordb_bench/backend/clients directory.
157
178
  2. Create a new folder for your client, for example, "new_client".
158
- 3. Inside the "new_client" folder, create two files: new_client.py and config.py.
179
+ 3. Inside the "new_client" folder, create two files: new_client.py and config.py.
159
180
 
160
181
  **Step 2: Implement new_client.py and config.py**
161
182
 
@@ -220,7 +241,66 @@ For the system under test, we use the default server-side configuration to maint
220
241
  For the Client, we welcome any parameter tuning to obtain better results.
221
242
  ### Incomplete Results
222
243
  Many databases may not be able to complete all test cases due to issues such as Out of Memory (OOM), crashes, or timeouts. In these scenarios, we will clearly state these occurrences in the test results.
223
- ### Unpublishable Results
224
- Although we are trying to support as many clients as possible for benchmarking, due to the restrictions imposed by the [Dewitt Clause](https://cube.dev/blog/dewitt-clause-or-can-you-benchmark-a-database), we're unable to publish all benchmark results. This means that users may not be able to fully compare performance data for certain databases on our platform, despite the support we have integrated for these systems.
225
244
  ### Mistake Or Misrepresentation
226
245
  We strive for accuracy in learning and supporting various vector databases, yet there might be oversights or misapplications. For any such occurrences, feel free to [raise an issue](https://github.com/zilliztech/VectorDBBench/issues/new) or make amendments on our GitHub page.
246
+ ## Timeout
247
+ In our pursuit to ensure that our benchmark reflects the reality of a production environment while guaranteeing the practicality of the system, we have implemented a timeout plan based on our experiences for various tests.
248
+
249
+ **1. Capacity Case:**
250
+ - For Capacity Case, we have assigned an overall timeout.
251
+
252
+ **2. Other Cases:**
253
+
254
+ For other cases, we have set two timeouts:
255
+
256
+ - **Data Loading Timeout:** This timeout is designed to filter out systems that are too slow in inserting data, thus ensuring that we are only considering systems that is able to cope with the demands of a real-world production environment within a reasonable time frame.
257
+
258
+ - **Optimization Preparation Timeout**: This timeout is established to avoid excessive optimization strategies that might work for benchmarks but fail to deliver in real production environments. By doing this, we ensure that the systems we consider are not only suitable for testing environments but also applicable and efficient in production scenarios.
259
+
260
+ This multi-tiered timeout approach allows our benchmark to be more representative of actual production environments and assists us in identifying systems that can truly perform in real-world scenarios.
261
+ <table>
262
+ <tr>
263
+ <th>Case</th>
264
+ <th>Data Size</th>
265
+ <th>Timeout Type</th>
266
+ <th>Value</th>
267
+ </tr>
268
+ <tr>
269
+ <td>Capacity Case</td>
270
+ <td>N/A</td>
271
+ <td>Loading timeout</td>
272
+ <td>24 hours</td>
273
+ </tr>
274
+ <tr>
275
+ <td rowspan="2">Other Cases</td>
276
+ <td rowspan="2">1M vectors, 768 dimensions</td>
277
+ <td>Loading timeout</td>
278
+ <td>2.5 hours</td>
279
+ </tr>
280
+ <tr>
281
+ <td>Optimization timeout</td>
282
+ <td>15 mins</td>
283
+ </tr>
284
+ <tr>
285
+ <td rowspan="2">Other Cases</td>
286
+ <td rowspan="2">10M vectors, 768 dimensions</td>
287
+ <td>Loading timeout</td>
288
+ <td>25 hours</td>
289
+ </tr>
290
+ <tr>
291
+ <td>Optimization timeout</td>
292
+ <td>2.5 hours</td>
293
+ </tr>
294
+ <tr>
295
+ <td rowspan="2">Other Cases</td>
296
+ <td rowspan="2">100M vectors, 768 dimensions</td>
297
+ <td>Loading timeout</td>
298
+ <td>250 hours</td>
299
+ </tr>
300
+ <tr>
301
+ <td>Optimization timeout</td>
302
+ <td>25 hours</td>
303
+ </tr>
304
+ </table>
305
+
306
+ **Note:** Some datapoints in the standard benchmark results that voilate this timeout will be kept for now for reference. We will remove them in the future.
@@ -0,0 +1,67 @@
1
+ vectordb_bench/__init__.py,sha256=pNBMwS6NTyl3NK2QTELRtohlrUK0fC4b3TpE3IpbV1M,1224
2
+ vectordb_bench/__main__.py,sha256=YJOTn5MlbmLyr3PRsecY6fj7igHLB6_D3y1HwF_sO20,848
3
+ vectordb_bench/base.py,sha256=d34WCGXZI1u5RGQtqrPHd3HbOF5AmioFrM2j30Aj1sY,130
4
+ vectordb_bench/interface.py,sha256=aa46X4fitgScdHbQn_5naJr77Gb0uPFHoRiOhMAY560,8671
5
+ vectordb_bench/log_util.py,sha256=YGaaevphwoPD0exF8EX_6hX5_9BoysCcKyHl4Ox5Fbk,2907
6
+ vectordb_bench/metric.py,sha256=-SAcUm2m0OkHcph2QZusx-wZh8wCTrrHMy1Kv0WWL2w,1332
7
+ vectordb_bench/models.py,sha256=pcoEKcKpI8q9EnC3q5l8G6CkmdQ9PLR6-Nnsejbnswk,6711
8
+ vectordb_bench/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
+ vectordb_bench/backend/assembler.py,sha256=3RA8fMjU5x0FmVrruA_h7dan3YqL7cF4Mlp3o-WumSI,1717
10
+ vectordb_bench/backend/cases.py,sha256=d2p-FqYa9gLgXVA_aQhcf8FU4M3gT-bZdufx_7xc864,8432
11
+ vectordb_bench/backend/dataset.py,sha256=n3ah8Yqvo2H2XpTBZOCRRPLoOVOYZWvf3T5zK6r4tgY,11509
12
+ vectordb_bench/backend/result_collector.py,sha256=nSXheGz8-vQa3frIW_eEKAPaVgqMLXXWPgcVsYgPXho,449
13
+ vectordb_bench/backend/task_runner.py,sha256=IE1e-TwiupBmS9Hm44KeyWS0r0aMVorHll1LSJNxB_A,9217
14
+ vectordb_bench/backend/utils.py,sha256=YBIoxJIxVUPD-0SpbJwdnswX-nmlR9GPE4fj28M7CMQ,2563
15
+ vectordb_bench/backend/clients/__init__.py,sha256=FMT1zyi7AbKWhbIi-LbkBioYBGZBLDKOefPSt9sfIDY,1406
16
+ vectordb_bench/backend/clients/api.py,sha256=FcOcp_KU-MAjAC8XO96vGbziFLzblDn991xNgUTASq8,5628
17
+ vectordb_bench/backend/clients/elastic_cloud/config.py,sha256=xkaBNtsayByelVLda8LiSEwxjQjESpijJ8IFOh03f_0,1598
18
+ vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py,sha256=wo2yb2dsvMTUunbaz9yqOxF9cB6iPYzQlYObSSL5TdY,5071
19
+ vectordb_bench/backend/clients/milvus/config.py,sha256=_6RsYKI3Ed8exMCWgI7ZdpM8MVzWJlj9mz4iHDVrONc,3152
20
+ vectordb_bench/backend/clients/milvus/milvus.py,sha256=9xBdsJQhg4yzXA0iy-Tv4bOzJXv5mg3cP22lN-BWFrc,6543
21
+ vectordb_bench/backend/clients/pgvector/config.py,sha256=sy1dqNP9CyZdFBsSqE8oNg9dPE57ssIsIUafbvgQW_Q,1510
22
+ vectordb_bench/backend/clients/pgvector/pgvector.py,sha256=_VPuRpO0A94p2Y25YyDwyHRoGGTMiIxloP8ilJImXCU,5414
23
+ vectordb_bench/backend/clients/pinecone/config.py,sha256=QV3v-mfjxkFeT6jNeOKSywnxDiaCFr1YUXmePxiTC-Q,395
24
+ vectordb_bench/backend/clients/pinecone/pinecone.py,sha256=U31QbXLuTcNPp7PK24glE6LM23-YpbxK_Kj-NmEwoZY,4078
25
+ vectordb_bench/backend/clients/qdrant_cloud/config.py,sha256=VvPvzkWMYAFixpRCK9Rm5NJZpSPLYE2MPLAmnAO28aQ,892
26
+ vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py,sha256=zuRFHOZ-Rkwu68EWk05V0d4bcbqxLGgAxyuwLXMsFV0,5261
27
+ vectordb_bench/backend/clients/weaviate_cloud/config.py,sha256=aiW40N6PcMlh_VvbqNJ7iZg2mZu2Omb-PJySLpMGi5I,1292
28
+ vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py,sha256=i5RyS4Udim8xgzGSMdEGXSkfS9LMcR5332nv_1FFS0o,5179
29
+ vectordb_bench/backend/clients/zilliz_cloud/config.py,sha256=sXg6MQr51-XfBS4E92-lksP4bxXY2BIPSERrmSEXsfc,816
30
+ vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py,sha256=b_IwKKUssmErHUAze4y-fWcA_3dZDLqza3A4b7I5o8w,1015
31
+ vectordb_bench/backend/runner/__init__.py,sha256=5dZfPky8pY9Bi9HD5GZ3Fge8V2FJWrkGkQUkNL2v1t0,230
32
+ vectordb_bench/backend/runner/mp_runner.py,sha256=amvLKrSyM0g0dUtOZmzdlksdVfhIF49URnJ2IA_WQPU,5009
33
+ vectordb_bench/backend/runner/serial_runner.py,sha256=855WozDesngoNQJ2DqoM5jvXnrGHP31A4PBwZIctb_k,9290
34
+ vectordb_bench/frontend/utils.py,sha256=BzKR1kMX1ErlXAzkFUb06O2mIcxBbquRzJtxoHgRnKs,162
35
+ vectordb_bench/frontend/vdb_benchmark.py,sha256=qmhj-UUq5Ra8MnLiiCDAkueZoha5IV6ZdtBGt64LJg0,1545
36
+ vectordb_bench/frontend/components/check_results/charts.py,sha256=zbtEyUSk2FJbSlaGw1LH4boSljFXfhVZlC8rrIgVw_4,5113
37
+ vectordb_bench/frontend/components/check_results/data.py,sha256=cuCvXTarZzh_7XZ1SWUJd4gLAo78Yn9RBJ4VZpQRkFQ,3192
38
+ vectordb_bench/frontend/components/check_results/expanderStyle.py,sha256=dETG2-smcWntQTARUXzbSv90Py5yN74mGXoBGn4loow,1295
39
+ vectordb_bench/frontend/components/check_results/filters.py,sha256=41KXtVyC1BMGRXh3OoHodMXNw3eZLQHSzNZ91eviIk4,4225
40
+ vectordb_bench/frontend/components/check_results/footer.py,sha256=Nh1RzorDg-8R5ewp_UGFnUqWaAEZ7xZ1RpqHDew1mGY,395
41
+ vectordb_bench/frontend/components/check_results/headerIcon.py,sha256=Q0mbnav2FWaRkEb8QT2ACjiJjSoyioRZPfv-StQ4DVk,433
42
+ vectordb_bench/frontend/components/check_results/nav.py,sha256=DQl74rujw70ayh37PQaiO4AdtVZ95-OtTMEtw_Ui7hE,685
43
+ vectordb_bench/frontend/components/check_results/priceTable.py,sha256=E7sxhSCjkBOMlQFHe6zFizhQLsJ-mUcXUbNj4FpqSUE,1308
44
+ vectordb_bench/frontend/components/check_results/stPageConfig.py,sha256=rAL2prWx0hT7Q3QWz6ALyKUMNladX6U48GlKvVq3DFA,429
45
+ vectordb_bench/frontend/components/get_results/saveAsImage.py,sha256=MdQCqjrX5rQyK34XfTkVykVLOcOouIz4enMR1P5GBiY,1457
46
+ vectordb_bench/frontend/components/run_test/autoRefresh.py,sha256=ofsl2sdmBd2y9O_xaJDr58NPycJsDwCdf2rEyE_f6e8,288
47
+ vectordb_bench/frontend/components/run_test/caseSelector.py,sha256=F06V0Fabp7NohIRwZLktB6tarVDGG--ftH6P2NA0qsk,3609
48
+ vectordb_bench/frontend/components/run_test/dbConfigSetting.py,sha256=_2mSi7If5Xme84Bk6spklD6pa4b0Fw0MnS2JaFgW6mg,2126
49
+ vectordb_bench/frontend/components/run_test/dbSelector.py,sha256=r8ABYpu6aWA94FiQxB0g75n7jU_mOFY5nYcHkKQ8e8g,1242
50
+ vectordb_bench/frontend/components/run_test/generateTasks.py,sha256=tqjhMWm1HTkxPlQClr5pVcMMyf3_Zg1SKt8Bw7L4w3I,706
51
+ vectordb_bench/frontend/components/run_test/hideSidebar.py,sha256=vb5kzIMmbMqWX67qFEHek21X4sGO_tPyn_uPqUEtp3Q,234
52
+ vectordb_bench/frontend/components/run_test/submitTask.py,sha256=4dvlS1Frf32Cqc4yiVmbLnUPqOxgoFLKJ8pdxYvY7uI,2322
53
+ vectordb_bench/frontend/const/dbCaseConfigs.py,sha256=XQkmKiGtxd4cC0r1aWgBWbSrsJWTBYJ_11VBqRBHg3Y,8382
54
+ vectordb_bench/frontend/const/dbPrices.py,sha256=10aBKjVcEg8y7TPSda28opmBM1KmXNrvbU9WM_BsZcE,176
55
+ vectordb_bench/frontend/const/styles.py,sha256=3xpIV7YfD19y_qLz73m19YpeU0gAY1HRURmJwWjGVIc,1935
56
+ vectordb_bench/frontend/pages/quries_per_dollar.py,sha256=SpXwKwdarwPz7RtF_qxyODfwARBb3VI9iKElYtnwEVs,2422
57
+ vectordb_bench/frontend/pages/run_test.py,sha256=nkXTVBauuCgkJ6WRSQ_-qa83RAmc0Z3VH2uTDrNCQL8,2045
58
+ vectordb_bench/results/dbPrices.json,sha256=VoaOjqbWyTdEMLXuzerL5xR46QbxOWFmxCf2mPhjJV4,576
59
+ vectordb_bench/results/getLeaderboardData.py,sha256=5aWBNb7hfp2rGjOrBTKeHUA8Uyr0MsDNUuHDF6u1DPQ,1707
60
+ vectordb_bench/results/leaderboard.json,sha256=QRE1S8FSIduD4hMqohKuibmcqHnNR61tRFkA4HKgOk4,26502
61
+ vectordb_bench/results/result_20230705_standard.json,sha256=qzCAfyBL4tk2eyhMDo8PM6tK2xklr3RpFztwCbNceNg,96237
62
+ vectordb_bench-0.0.3.dist-info/LICENSE,sha256=HXbxhrb5u5SegVzeLNF_voVgRsJMavcLaOmD1N0lZkM,1067
63
+ vectordb_bench-0.0.3.dist-info/METADATA,sha256=iULpZuFtVq34JXEL1Y8ipRC1gXwxYfnf3vtLupzzT5k,18933
64
+ vectordb_bench-0.0.3.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
65
+ vectordb_bench-0.0.3.dist-info/entry_points.txt,sha256=RVG6ppvzIsstAM199pDqeKu8lnxntjwYapn0smVQY7A,60
66
+ vectordb_bench-0.0.3.dist-info/top_level.txt,sha256=jnhZFZAuKX1J60yt-XOeBZ__ctiZMvoC_s0RFq29lpM,15
67
+ vectordb_bench-0.0.3.dist-info/RECORD,,