vectordb-bench 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vectordb_bench/__init__.py +14 -3
- vectordb_bench/backend/assembler.py +2 -2
- vectordb_bench/backend/cases.py +146 -57
- vectordb_bench/backend/clients/__init__.py +6 -1
- vectordb_bench/backend/clients/api.py +23 -11
- vectordb_bench/backend/clients/elastic_cloud/config.py +5 -5
- vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +11 -9
- vectordb_bench/backend/clients/milvus/config.py +2 -3
- vectordb_bench/backend/clients/milvus/milvus.py +32 -19
- vectordb_bench/backend/clients/pgvector/config.py +49 -0
- vectordb_bench/backend/clients/pgvector/pgvector.py +171 -0
- vectordb_bench/backend/clients/pinecone/config.py +3 -3
- vectordb_bench/backend/clients/pinecone/pinecone.py +19 -13
- vectordb_bench/backend/clients/qdrant_cloud/config.py +23 -6
- vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +12 -13
- vectordb_bench/backend/clients/weaviate_cloud/config.py +3 -3
- vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py +9 -8
- vectordb_bench/backend/clients/zilliz_cloud/config.py +5 -4
- vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py +3 -1
- vectordb_bench/backend/dataset.py +100 -162
- vectordb_bench/backend/result_collector.py +2 -2
- vectordb_bench/backend/runner/mp_runner.py +29 -13
- vectordb_bench/backend/runner/serial_runner.py +98 -36
- vectordb_bench/backend/task_runner.py +43 -48
- vectordb_bench/frontend/components/check_results/charts.py +10 -21
- vectordb_bench/frontend/components/check_results/data.py +31 -15
- vectordb_bench/frontend/components/check_results/expanderStyle.py +37 -0
- vectordb_bench/frontend/components/check_results/filters.py +61 -33
- vectordb_bench/frontend/components/check_results/footer.py +8 -0
- vectordb_bench/frontend/components/check_results/headerIcon.py +8 -4
- vectordb_bench/frontend/components/check_results/nav.py +7 -6
- vectordb_bench/frontend/components/check_results/priceTable.py +3 -2
- vectordb_bench/frontend/components/check_results/stPageConfig.py +18 -0
- vectordb_bench/frontend/components/get_results/saveAsImage.py +50 -0
- vectordb_bench/frontend/components/run_test/autoRefresh.py +1 -1
- vectordb_bench/frontend/components/run_test/caseSelector.py +19 -16
- vectordb_bench/frontend/components/run_test/dbConfigSetting.py +20 -7
- vectordb_bench/frontend/components/run_test/dbSelector.py +5 -5
- vectordb_bench/frontend/components/run_test/hideSidebar.py +4 -6
- vectordb_bench/frontend/components/run_test/submitTask.py +16 -10
- vectordb_bench/frontend/const/dbCaseConfigs.py +291 -0
- vectordb_bench/frontend/const/dbPrices.py +6 -0
- vectordb_bench/frontend/const/styles.py +58 -0
- vectordb_bench/frontend/pages/{qps_with_price.py → quries_per_dollar.py} +24 -17
- vectordb_bench/frontend/pages/run_test.py +17 -11
- vectordb_bench/frontend/vdb_benchmark.py +19 -12
- vectordb_bench/metric.py +19 -10
- vectordb_bench/models.py +14 -40
- vectordb_bench/results/dbPrices.json +32 -0
- vectordb_bench/results/getLeaderboardData.py +52 -0
- vectordb_bench/results/leaderboard.json +1 -0
- vectordb_bench/results/{result_20230609_standard.json → result_20230705_standard.json} +1910 -897
- {vectordb_bench-0.0.1.dist-info → vectordb_bench-0.0.3.dist-info}/METADATA +107 -27
- vectordb_bench-0.0.3.dist-info/RECORD +67 -0
- vectordb_bench/frontend/const.py +0 -391
- vectordb_bench-0.0.1.dist-info/RECORD +0 -56
- {vectordb_bench-0.0.1.dist-info → vectordb_bench-0.0.3.dist-info}/LICENSE +0 -0
- {vectordb_bench-0.0.1.dist-info → vectordb_bench-0.0.3.dist-info}/WHEEL +0 -0
- {vectordb_bench-0.0.1.dist-info → vectordb_bench-0.0.3.dist-info}/entry_points.txt +0 -0
- {vectordb_bench-0.0.1.dist-info → vectordb_bench-0.0.3.dist-info}/top_level.txt +0 -0
@@ -4,19 +4,17 @@ from vectordb_bench.frontend.components.run_test.caseSelector import caseSelecto
|
|
4
4
|
from vectordb_bench.frontend.components.run_test.dbConfigSetting import dbConfigSettings
|
5
5
|
from vectordb_bench.frontend.components.run_test.dbSelector import dbSelector
|
6
6
|
from vectordb_bench.frontend.components.run_test.generateTasks import generate_tasks
|
7
|
-
from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
|
8
7
|
from vectordb_bench.frontend.components.run_test.hideSidebar import hideSidebar
|
9
|
-
from vectordb_bench.frontend.components.check_results.nav import NavToResults
|
10
8
|
from vectordb_bench.frontend.components.run_test.submitTask import submitTask
|
9
|
+
from vectordb_bench.frontend.components.check_results.nav import NavToResults
|
10
|
+
from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
|
11
|
+
from vectordb_bench.frontend.components.check_results.stPageConfig import initRunTestPageConfig
|
11
12
|
|
12
13
|
|
13
14
|
def main():
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
# layout="wide",
|
18
|
-
initial_sidebar_state="collapsed",
|
19
|
-
)
|
15
|
+
# set page config
|
16
|
+
initRunTestPageConfig(st)
|
17
|
+
|
20
18
|
# header
|
21
19
|
drawHeaderIcon(st)
|
22
20
|
|
@@ -36,20 +34,28 @@ def main():
|
|
36
34
|
|
37
35
|
# db config setting
|
38
36
|
dbConfigs = {}
|
37
|
+
isAllValid = True
|
39
38
|
if len(activedDbList) > 0:
|
40
39
|
dbConfigContainer = st.container()
|
41
|
-
dbConfigs = dbConfigSettings(dbConfigContainer, activedDbList)
|
40
|
+
dbConfigs, isAllValid = dbConfigSettings(dbConfigContainer, activedDbList)
|
42
41
|
|
43
42
|
# select case and set db_case_config
|
44
43
|
caseSelectorContainer = st.container()
|
45
44
|
activedCaseList, allCaseConfigs = caseSelector(caseSelectorContainer, activedDbList)
|
46
45
|
|
47
46
|
# generate tasks
|
48
|
-
tasks =
|
47
|
+
tasks = (
|
48
|
+
generate_tasks(activedDbList, dbConfigs, activedCaseList, allCaseConfigs)
|
49
|
+
if isAllValid
|
50
|
+
else []
|
51
|
+
)
|
49
52
|
|
50
53
|
# submit
|
51
54
|
submitContainer = st.container()
|
52
|
-
submitTask(submitContainer, tasks)
|
55
|
+
submitTask(submitContainer, tasks, isAllValid)
|
56
|
+
|
57
|
+
# nav to results
|
58
|
+
NavToResults(st, key="footer-nav-to-results")
|
53
59
|
|
54
60
|
# autofresh
|
55
61
|
autoRefresh()
|
@@ -1,19 +1,18 @@
|
|
1
1
|
import streamlit as st
|
2
|
-
from vectordb_bench.frontend.
|
2
|
+
from vectordb_bench.frontend.components.check_results.footer import footer
|
3
|
+
from vectordb_bench.frontend.components.check_results.stPageConfig import initResultsPageConfig
|
3
4
|
from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
|
4
|
-
from vectordb_bench.frontend.components.check_results.nav import
|
5
|
+
from vectordb_bench.frontend.components.check_results.nav import NavToQuriesPerDollar, NavToRunTest
|
5
6
|
from vectordb_bench.frontend.components.check_results.charts import drawCharts
|
6
7
|
from vectordb_bench.frontend.components.check_results.filters import getshownData
|
8
|
+
from vectordb_bench.frontend.components.get_results.saveAsImage import getResults
|
9
|
+
from vectordb_bench.frontend.const.styles import *
|
7
10
|
from vectordb_bench.interface import benchMarkRunner
|
8
11
|
|
9
12
|
|
10
13
|
def main():
|
11
|
-
|
12
|
-
|
13
|
-
page_icon="https://assets.zilliz.com/favicon_f7f922fe27.png",
|
14
|
-
# layout="wide",
|
15
|
-
# initial_sidebar_state="collapsed",
|
16
|
-
)
|
14
|
+
# set page config
|
15
|
+
initResultsPageConfig(st)
|
17
16
|
|
18
17
|
# header
|
19
18
|
drawHeaderIcon(st)
|
@@ -21,22 +20,30 @@ def main():
|
|
21
20
|
allResults = benchMarkRunner.get_results()
|
22
21
|
|
23
22
|
st.title("Vector Database Benchmark")
|
24
|
-
# st.write("description [todo]")
|
25
23
|
|
26
|
-
# results selector
|
24
|
+
# results selector and filter
|
27
25
|
resultSelectorContainer = st.sidebar.container()
|
28
|
-
shownData, failedTasks, showCases = getshownData(
|
26
|
+
shownData, failedTasks, showCases = getshownData(
|
27
|
+
allResults, resultSelectorContainer
|
28
|
+
)
|
29
29
|
|
30
30
|
resultSelectorContainer.divider()
|
31
31
|
|
32
32
|
# nav
|
33
33
|
navContainer = st.sidebar.container()
|
34
34
|
NavToRunTest(navContainer)
|
35
|
-
|
35
|
+
NavToQuriesPerDollar(navContainer)
|
36
|
+
|
37
|
+
# save or share
|
38
|
+
resultesContainer = st.sidebar.container()
|
39
|
+
getResults(resultesContainer, "vectordb_bench")
|
36
40
|
|
37
41
|
# charts
|
38
42
|
drawCharts(st, shownData, failedTasks, showCases)
|
39
43
|
|
44
|
+
# footer
|
45
|
+
footer(st.container())
|
46
|
+
|
40
47
|
|
41
48
|
if __name__ == "__main__":
|
42
49
|
main()
|
vectordb_bench/metric.py
CHANGED
@@ -20,23 +20,32 @@ class Metric:
|
|
20
20
|
serial_latency_p99: float = 0.0
|
21
21
|
recall: float = 0.0
|
22
22
|
|
23
|
+
|
24
|
+
QURIES_PER_DOLLAR_METRIC = "QP$ (Quries per Dollar)"
|
25
|
+
LOAD_DURATION_METRIC = "load_duration"
|
26
|
+
SERIAL_LATENCY_P99_METRIC = "serial_latency_p99"
|
27
|
+
MAX_LOAD_COUNT_METRIC = "max_load_count"
|
28
|
+
QPS_METRIC = "qps"
|
29
|
+
RECALL_METRIC = "recall"
|
30
|
+
|
23
31
|
metricUnitMap = {
|
24
|
-
|
25
|
-
|
26
|
-
|
32
|
+
LOAD_DURATION_METRIC: "s",
|
33
|
+
SERIAL_LATENCY_P99_METRIC: "ms",
|
34
|
+
MAX_LOAD_COUNT_METRIC: "K",
|
35
|
+
QURIES_PER_DOLLAR_METRIC: "K",
|
27
36
|
}
|
28
37
|
|
29
38
|
lowerIsBetterMetricList = [
|
30
|
-
|
31
|
-
|
39
|
+
LOAD_DURATION_METRIC,
|
40
|
+
SERIAL_LATENCY_P99_METRIC,
|
32
41
|
]
|
33
42
|
|
34
43
|
metricOrder = [
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
44
|
+
QPS_METRIC,
|
45
|
+
RECALL_METRIC,
|
46
|
+
LOAD_DURATION_METRIC,
|
47
|
+
SERIAL_LATENCY_P99_METRIC,
|
48
|
+
MAX_LOAD_COUNT_METRIC,
|
40
49
|
]
|
41
50
|
|
42
51
|
|
vectordb_bench/models.py
CHANGED
@@ -12,6 +12,7 @@ from .backend.clients import (
|
|
12
12
|
DBCaseConfig,
|
13
13
|
IndexType,
|
14
14
|
)
|
15
|
+
from .backend.cases import CaseType
|
15
16
|
from .base import BaseModel
|
16
17
|
from . import config
|
17
18
|
from .metric import Metric
|
@@ -27,38 +28,6 @@ class PerformanceTimeoutError(TimeoutError):
|
|
27
28
|
pass
|
28
29
|
|
29
30
|
|
30
|
-
class CaseType(Enum):
|
31
|
-
"""
|
32
|
-
Value will be displayed in UI
|
33
|
-
"""
|
34
|
-
|
35
|
-
CapacitySDim = "Capacity Test (Large-dim)"
|
36
|
-
CapacityLDim = "Capacity Test (Small-dim)"
|
37
|
-
|
38
|
-
Performance100M = "Search Performance Test (XLarge Dataset)"
|
39
|
-
PerformanceLZero = "Search Performance Test (Large Dataset)"
|
40
|
-
PerformanceMZero = "Search Performance Test (Medium Dataset)"
|
41
|
-
PerformanceSZero = "Search Performance Test (Small Dataset)"
|
42
|
-
|
43
|
-
PerformanceLLow = (
|
44
|
-
"Filtering Search Performance Test (Large Dataset, Low Filtering Rate)"
|
45
|
-
)
|
46
|
-
PerformanceMLow = (
|
47
|
-
"Filtering Search Performance Test (Medium Dataset, Low Filtering Rate)"
|
48
|
-
)
|
49
|
-
PerformanceSLow = (
|
50
|
-
"Filtering Search Performance Test (Small Dataset, Low Filtering Rate)"
|
51
|
-
)
|
52
|
-
PerformanceLHigh = (
|
53
|
-
"Filtering Search Performance Test (Large Dataset, High Filtering Rate)"
|
54
|
-
)
|
55
|
-
PerformanceMHigh = (
|
56
|
-
"Filtering Search Performance Test (Medium Dataset, High Filtering Rate)"
|
57
|
-
)
|
58
|
-
PerformanceSHigh = (
|
59
|
-
"Filtering Search Performance Test (Small Dataset, High Filtering Rate)"
|
60
|
-
)
|
61
|
-
|
62
31
|
|
63
32
|
class CaseConfigParamType(Enum):
|
64
33
|
"""
|
@@ -74,6 +43,8 @@ class CaseConfigParamType(Enum):
|
|
74
43
|
Nprobe = "nprobe"
|
75
44
|
MaxConnections = "maxConnections"
|
76
45
|
numCandidates = "num_candidates"
|
46
|
+
lists = "lists"
|
47
|
+
probes = "probes"
|
77
48
|
|
78
49
|
|
79
50
|
class CustomizedCase(BaseModel):
|
@@ -151,6 +122,7 @@ class TestResult(BaseModel):
|
|
151
122
|
task_config = case_result.get("task_config")
|
152
123
|
db = DB(task_config.get("db"))
|
153
124
|
dbcls = db.init_cls
|
125
|
+
|
154
126
|
task_config["db_config"] = dbcls.config_cls()(
|
155
127
|
**task_config["db_config"]
|
156
128
|
)
|
@@ -197,20 +169,21 @@ class TestResult(BaseModel):
|
|
197
169
|
max_qps = max(map(len, [str(f.metrics.qps) for f in filtered_results])) + 3
|
198
170
|
max_recall = max(map(len, [str(f.metrics.recall) for f in filtered_results])) + 3
|
199
171
|
|
200
|
-
max_db_labels = 8 if max_db_labels
|
201
|
-
max_load_dur = 11 if max_load_dur
|
202
|
-
max_qps = 10 if max_qps
|
203
|
-
max_recall = 13 if max_recall
|
172
|
+
max_db_labels = 8 if max_db_labels < 8 else max_db_labels
|
173
|
+
max_load_dur = 11 if max_load_dur < 11 else max_load_dur
|
174
|
+
max_qps = 10 if max_qps < 10 else max_qps
|
175
|
+
max_recall = 13 if max_recall < 13 else max_recall
|
204
176
|
|
205
|
-
LENGTH = (max_db, max_db_labels, max_case, len(self.task_label), max_load_dur, max_qps, 15, max_recall, 14)
|
177
|
+
LENGTH = (max_db, max_db_labels, max_case, len(self.task_label), max_load_dur, max_qps, 15, max_recall, 14, 5)
|
206
178
|
|
207
179
|
DATA_FORMAT = (
|
208
|
-
f"%-{max_db}s | %-{max_db_labels}s %-{max_case}s %-{len(self.task_label)}s
|
209
|
-
f"| %-{max_load_dur}s %-{max_qps}s %-15s %-{max_recall}s %-14s"
|
180
|
+
f"%-{max_db}s | %-{max_db_labels}s %-{max_case}s %-{len(self.task_label)}s"
|
181
|
+
f" | %-{max_load_dur}s %-{max_qps}s %-15s %-{max_recall}s %-14s"
|
182
|
+
f" | %-5s"
|
210
183
|
)
|
211
184
|
|
212
185
|
TITLE = DATA_FORMAT % (
|
213
|
-
"DB", "db_label", "case", "label", "load_dur", "qps", "latency(p99)", "recall", "max_load_count")
|
186
|
+
"DB", "db_label", "case", "label", "load_dur", "qps", "latency(p99)", "recall", "max_load_count", "label")
|
214
187
|
SPLIT = DATA_FORMAT%tuple(map(lambda x:"-"*x, LENGTH))
|
215
188
|
SUMMERY_FORMAT = ("Task summery: run_id=%s, task_label=%s") % (self.run_id[:5], self.task_label)
|
216
189
|
fmt = [SUMMERY_FORMAT, TITLE, SPLIT]
|
@@ -227,6 +200,7 @@ class TestResult(BaseModel):
|
|
227
200
|
f.metrics.serial_latency_p99,
|
228
201
|
f.metrics.recall,
|
229
202
|
f.metrics.max_load_count,
|
203
|
+
f.label.value,
|
230
204
|
))
|
231
205
|
|
232
206
|
tmp_logger = logging.getLogger("no_color")
|
@@ -0,0 +1,32 @@
|
|
1
|
+
{
|
2
|
+
"Milvus": {},
|
3
|
+
"ZillizCloud": {
|
4
|
+
"1cu-perf": 0.159,
|
5
|
+
"8cu-perf": 1.272,
|
6
|
+
"1cu-cap": 0.159,
|
7
|
+
"2cu-cap": 0.318
|
8
|
+
},
|
9
|
+
"WeaviateCloud": {
|
10
|
+
"standard": 10.1,
|
11
|
+
"bus_crit": 32.6
|
12
|
+
},
|
13
|
+
"ElasticCloud": {
|
14
|
+
"upTo2.5c8g": 0.4793
|
15
|
+
},
|
16
|
+
"QdrantCloud": {
|
17
|
+
"0.5c4g-1node": 0.052,
|
18
|
+
"2c8g-1node": 0.166,
|
19
|
+
"4c16g-1node": 0.2852,
|
20
|
+
"4c16g-5node": 1.426
|
21
|
+
},
|
22
|
+
"Pinecone": {
|
23
|
+
"s1.x1": 0.0973,
|
24
|
+
"s1.x2": 0.194,
|
25
|
+
"p1.x1": 0.0973,
|
26
|
+
"p2.x1": 0.146,
|
27
|
+
"p2.x1-8node": 1.168,
|
28
|
+
"p1.x1-8node": 0.779,
|
29
|
+
"s1.x1-2node": 0.195
|
30
|
+
},
|
31
|
+
"PgVector": {}
|
32
|
+
}
|
@@ -0,0 +1,52 @@
|
|
1
|
+
from vectordb_bench import config
|
2
|
+
import ujson
|
3
|
+
import pathlib
|
4
|
+
from vectordb_bench.backend.cases import CaseType
|
5
|
+
from vectordb_bench.frontend.const.dbPrices import DB_DBLABEL_TO_PRICE
|
6
|
+
from vectordb_bench.interface import benchMarkRunner
|
7
|
+
from vectordb_bench.models import CaseResult, ResultLabel, TestResult
|
8
|
+
|
9
|
+
taskLabelToCode = {
|
10
|
+
ResultLabel.FAILED: -1,
|
11
|
+
ResultLabel.OUTOFRANGE: -2,
|
12
|
+
ResultLabel.NORMAL: 1,
|
13
|
+
}
|
14
|
+
|
15
|
+
|
16
|
+
def main():
|
17
|
+
allResults: list[TestResult] = benchMarkRunner.get_results()
|
18
|
+
results: list[CaseResult] = []
|
19
|
+
for result in allResults:
|
20
|
+
if result.task_label == "standard":
|
21
|
+
results += result.results
|
22
|
+
|
23
|
+
if allResults is not None:
|
24
|
+
data = [
|
25
|
+
{
|
26
|
+
"db": d.task_config.db.value,
|
27
|
+
"db_label": d.task_config.db_config.db_label,
|
28
|
+
"db_name": d.task_config.db_name,
|
29
|
+
"case": d.task_config.case_config.case_id.case_name,
|
30
|
+
"qps": d.metrics.qps,
|
31
|
+
"latency": d.metrics.serial_latency_p99,
|
32
|
+
"label": taskLabelToCode[d.label],
|
33
|
+
}
|
34
|
+
for d in results
|
35
|
+
if d.task_config.case_config.case_id != CaseType.CapacityDim128
|
36
|
+
and d.task_config.case_config.case_id != CaseType.CapacityDim960
|
37
|
+
]
|
38
|
+
|
39
|
+
# compute qp$
|
40
|
+
for d in data:
|
41
|
+
db = d["db"]
|
42
|
+
db_label = d["db_label"]
|
43
|
+
qps = d["qps"]
|
44
|
+
price = DB_DBLABEL_TO_PRICE.get(db, {}).get(db_label, 0)
|
45
|
+
d["qp$"] = qps / price if price > 0 else 0.0
|
46
|
+
|
47
|
+
with open(pathlib.Path(config.RESULTS_LOCAL_DIR, "leaderboard.json"), "w") as f:
|
48
|
+
ujson.dump(data, f)
|
49
|
+
|
50
|
+
|
51
|
+
if __name__ == "__main__":
|
52
|
+
main()
|
@@ -0,0 +1 @@
|
|
1
|
+
[{"db":"ElasticCloud","db_label":"upTo2.5c8g","db_name":"ElasticCloud-upTo2.5c8g","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":15.2269,"latency":861.8,"label":1,"qp$":31.76903818068016},{"db":"ElasticCloud","db_label":"upTo2.5c8g","db_name":"ElasticCloud-upTo2.5c8g","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":15.1749,"latency":774.3,"label":1,"qp$":31.660546630502814},{"db":"ElasticCloud","db_label":"upTo2.5c8g","db_name":"ElasticCloud-upTo2.5c8g","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":27.6181,"latency":305.5,"label":1,"qp$":57.621740037554765},{"db":"ElasticCloud","db_label":"upTo2.5c8g","db_name":"ElasticCloud-upTo2.5c8g","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-2,"qp$":0.0},{"db":"ElasticCloud","db_label":"upTo2.5c8g","db_name":"ElasticCloud-upTo2.5c8g","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-2,"qp$":0.0},{"db":"ElasticCloud","db_label":"upTo2.5c8g","db_name":"ElasticCloud-upTo2.5c8g","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-2,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-disk","db_name":"Milvus-2c8g-disk","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":100.6667,"latency":21.1,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-disk","db_name":"Milvus-2c8g-disk","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":101.1399,"latency":19.7,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-disk","db_name":"Milvus-2c8g-disk","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":52.2606,"latency":18.3,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-disk","db_name":"Milvus-2c8g-disk","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-disk","db_name":"Milvus-2c8g-disk","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-disk","db_name":"Milvus-2c8g-disk","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Milvus","db_label":"4c16g-disk","db_name":"Milvus-4c16g-disk","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":61.0661,"latency":49.8,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"4c16g-disk","db_name":"Milvus-4c16g-disk","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":58.9326,"latency":44.6,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"4c16g-disk","db_name":"Milvus-4c16g-disk","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":42.5977,"latency":54.9,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"4c16g-disk","db_name":"Milvus-4c16g-disk","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":536.0726,"latency":8.200000000000001,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"4c16g-disk","db_name":"Milvus-4c16g-disk","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":467.179,"latency":7.0,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"4c16g-disk","db_name":"Milvus-4c16g-disk","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":431.7512,"latency":8.3,"label":1,"qp$":0.0},{"db":"ZillizCloud","db_label":"1cu-cap","db_name":"ZillizCloud-1cu-cap","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":330.0144,"latency":9.0,"label":1,"qp$":2075.5622641509435},{"db":"ZillizCloud","db_label":"1cu-cap","db_name":"ZillizCloud-1cu-cap","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":271.6585,"latency":10.1,"label":1,"qp$":1708.5440251572327},{"db":"ZillizCloud","db_label":"1cu-cap","db_name":"ZillizCloud-1cu-cap","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":216.5226,"latency":12.9,"label":1,"qp$":1361.777358490566},{"db":"ZillizCloud","db_label":"1cu-cap","db_name":"ZillizCloud-1cu-cap","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"ZillizCloud","db_label":"1cu-cap","db_name":"ZillizCloud-1cu-cap","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"ZillizCloud","db_label":"1cu-cap","db_name":"ZillizCloud-1cu-cap","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"ZillizCloud","db_label":"2cu-cap","db_name":"ZillizCloud-2cu-cap","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":123.9553,"latency":23.0,"label":1,"qp$":389.79654088050313},{"db":"ZillizCloud","db_label":"2cu-cap","db_name":"ZillizCloud-2cu-cap","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":59.1479,"latency":44.5,"label":1,"qp$":185.99968553459118},{"db":"ZillizCloud","db_label":"2cu-cap","db_name":"ZillizCloud-2cu-cap","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":40.999,"latency":55.300000000000004,"label":1,"qp$":128.92767295597486},{"db":"ZillizCloud","db_label":"2cu-cap","db_name":"ZillizCloud-2cu-cap","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":579.9416,"latency":9.4,"label":1,"qp$":1823.71572327044},{"db":"ZillizCloud","db_label":"2cu-cap","db_name":"ZillizCloud-2cu-cap","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":425.2529,"latency":11.299999999999999,"label":1,"qp$":1337.2732704402515},{"db":"ZillizCloud","db_label":"2cu-cap","db_name":"ZillizCloud-2cu-cap","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":397.0539,"latency":13.799999999999999,"label":1,"qp$":1248.5971698113208},{"db":"WeaviateCloud","db_label":"bus_crit","db_name":"WeaviateCloud-bus_crit","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"bus_crit","db_name":"WeaviateCloud-bus_crit","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"bus_crit","db_name":"WeaviateCloud-bus_crit","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"bus_crit","db_name":"WeaviateCloud-bus_crit","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":67.9121,"latency":179.5,"label":1,"qp$":2.083193251533742},{"db":"WeaviateCloud","db_label":"bus_crit","db_name":"WeaviateCloud-bus_crit","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":0.7636,"latency":1921.3,"label":1,"qp$":0.02342331288343558},{"db":"WeaviateCloud","db_label":"bus_crit","db_name":"WeaviateCloud-bus_crit","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":32.0,"latency":124.5,"label":1,"qp$":0.9815950920245399},{"db":"WeaviateCloud","db_label":"sandbox","db_name":"WeaviateCloud-sandbox","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"sandbox","db_name":"WeaviateCloud-sandbox","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"sandbox","db_name":"WeaviateCloud-sandbox","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"sandbox","db_name":"WeaviateCloud-sandbox","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"sandbox","db_name":"WeaviateCloud-sandbox","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"sandbox","db_name":"WeaviateCloud-sandbox","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"standard","db_name":"WeaviateCloud-standard","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":63.1365,"latency":145.7,"label":1,"qp$":6.251138613861386},{"db":"WeaviateCloud","db_label":"standard","db_name":"WeaviateCloud-standard","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":0.7512,"latency":1983.8,"label":1,"qp$":0.07437623762376237},{"db":"WeaviateCloud","db_label":"standard","db_name":"WeaviateCloud-standard","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":30.1358,"latency":129.8,"label":1,"qp$":2.983742574257426},{"db":"WeaviateCloud","db_label":"standard","db_name":"WeaviateCloud-standard","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"standard","db_name":"WeaviateCloud-standard","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"WeaviateCloud","db_label":"standard","db_name":"WeaviateCloud-standard","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"ZillizCloud","db_label":"1cu-perf","db_name":"ZillizCloud-1cu-perf","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":516.27,"latency":7.0,"label":1,"qp$":3246.9811320754716},{"db":"ZillizCloud","db_label":"1cu-perf","db_name":"ZillizCloud-1cu-perf","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":354.8416,"latency":10.0,"label":1,"qp$":2231.708176100629},{"db":"ZillizCloud","db_label":"1cu-perf","db_name":"ZillizCloud-1cu-perf","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":427.5229,"latency":8.7,"label":1,"qp$":2688.8232704402517},{"db":"ZillizCloud","db_label":"1cu-perf","db_name":"ZillizCloud-1cu-perf","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"ZillizCloud","db_label":"1cu-perf","db_name":"ZillizCloud-1cu-perf","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"ZillizCloud","db_label":"1cu-perf","db_name":"ZillizCloud-1cu-perf","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"ZillizCloud","db_label":"8cu-perf","db_name":"ZillizCloud-8cu-perf","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":2884.689,"latency":5.3,"label":1,"qp$":2267.837264150943},{"db":"ZillizCloud","db_label":"8cu-perf","db_name":"ZillizCloud-8cu-perf","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":1689.5799,"latency":6.6,"label":1,"qp$":1328.2860849056603},{"db":"ZillizCloud","db_label":"8cu-perf","db_name":"ZillizCloud-8cu-perf","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":1517.6792,"latency":10.0,"label":1,"qp$":1193.1440251572328},{"db":"ZillizCloud","db_label":"8cu-perf","db_name":"ZillizCloud-8cu-perf","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":822.5318,"latency":5.6,"label":1,"qp$":646.6444968553459},{"db":"ZillizCloud","db_label":"8cu-perf","db_name":"ZillizCloud-8cu-perf","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":378.9146,"latency":10.3,"label":1,"qp$":297.8888364779874},{"db":"ZillizCloud","db_label":"8cu-perf","db_name":"ZillizCloud-8cu-perf","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":218.6854,"latency":16.2,"label":1,"qp$":171.92248427672953},{"db":"Milvus","db_label":"2c8g-hnsw","db_name":"Milvus-2c8g-hnsw","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":274.5407,"latency":4.8999999999999995,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-hnsw","db_name":"Milvus-2c8g-hnsw","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":236.5672,"latency":10.3,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-hnsw","db_name":"Milvus-2c8g-hnsw","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":309.4833,"latency":4.3,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-hnsw","db_name":"Milvus-2c8g-hnsw","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-hnsw","db_name":"Milvus-2c8g-hnsw","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Milvus","db_label":"2c8g-hnsw","db_name":"Milvus-2c8g-hnsw","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Milvus","db_label":"16c64g-hnsw","db_name":"Milvus-16c64g-hnsw","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":178.6585,"latency":13.700000000000001,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"16c64g-hnsw","db_name":"Milvus-16c64g-hnsw","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":178.3732,"latency":15.0,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"16c64g-hnsw","db_name":"Milvus-16c64g-hnsw","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":229.3526,"latency":12.5,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"16c64g-hnsw","db_name":"Milvus-16c64g-hnsw","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":1258.7043,"latency":4.8999999999999995,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"16c64g-hnsw","db_name":"Milvus-16c64g-hnsw","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":1075.8776,"latency":5.3,"label":1,"qp$":0.0},{"db":"Milvus","db_label":"16c64g-hnsw","db_name":"Milvus-16c64g-hnsw","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":1494.8493,"latency":4.7,"label":1,"qp$":0.0},{"db":"QdrantCloud","db_label":"2c8g-1node","db_name":"QdrantCloud-2c8g-1node","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"QdrantCloud","db_label":"2c8g-1node","db_name":"QdrantCloud-2c8g-1node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"QdrantCloud","db_label":"2c8g-1node","db_name":"QdrantCloud-2c8g-1node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"QdrantCloud","db_label":"2c8g-1node","db_name":"QdrantCloud-2c8g-1node","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"QdrantCloud","db_label":"2c8g-1node","db_name":"QdrantCloud-2c8g-1node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"QdrantCloud","db_label":"2c8g-1node","db_name":"QdrantCloud-2c8g-1node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"QdrantCloud","db_label":"4c16g-5node","db_name":"QdrantCloud-4c16g-5node","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":537.4975,"latency":18.9,"label":1,"qp$":376.9267180925666},{"db":"QdrantCloud","db_label":"4c16g-5node","db_name":"QdrantCloud-4c16g-5node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":372.0466,"latency":17.8,"label":1,"qp$":260.9022440392707},{"db":"QdrantCloud","db_label":"4c16g-5node","db_name":"QdrantCloud-4c16g-5node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":1156.2898,"latency":14.4,"label":1,"qp$":810.8624123422161},{"db":"QdrantCloud","db_label":"4c16g-5node","db_name":"QdrantCloud-4c16g-5node","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":110.248,"latency":69.0,"label":1,"qp$":77.31276297335204},{"db":"QdrantCloud","db_label":"4c16g-5node","db_name":"QdrantCloud-4c16g-5node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":87.2601,"latency":27.799999999999997,"label":1,"qp$":61.1922159887798},{"db":"QdrantCloud","db_label":"4c16g-5node","db_name":"QdrantCloud-4c16g-5node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":125.7846,"latency":23.099999999999998,"label":1,"qp$":88.20799438990183},{"db":"QdrantCloud","db_label":"4c16g-1node","db_name":"QdrantCloud-4c16g-1node","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":240.7209,"latency":17.4,"label":1,"qp$":844.0424263674614},{"db":"QdrantCloud","db_label":"4c16g-1node","db_name":"QdrantCloud-4c16g-1node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":189.4399,"latency":17.5,"label":1,"qp$":664.2352734922861},{"db":"QdrantCloud","db_label":"4c16g-1node","db_name":"QdrantCloud-4c16g-1node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":313.5116,"latency":16.1,"label":1,"qp$":1099.2692847124824},{"db":"QdrantCloud","db_label":"4c16g-1node","db_name":"QdrantCloud-4c16g-1node","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"QdrantCloud","db_label":"4c16g-1node","db_name":"QdrantCloud-4c16g-1node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"QdrantCloud","db_label":"4c16g-1node","db_name":"QdrantCloud-4c16g-1node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"s1.x1","db_name":"Pinecone-s1.x1","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":18.7634,"latency":153.70000000000002,"label":1,"qp$":192.84069886947586},{"db":"Pinecone","db_label":"s1.x1","db_name":"Pinecone-s1.x1","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":18.3619,"latency":79.8,"label":1,"qp$":188.7142857142857},{"db":"Pinecone","db_label":"s1.x1","db_name":"Pinecone-s1.x1","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":25.2744,"latency":61.199999999999996,"label":1,"qp$":259.7574511819116},{"db":"Pinecone","db_label":"s1.x1","db_name":"Pinecone-s1.x1","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"s1.x1","db_name":"Pinecone-s1.x1","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"s1.x1","db_name":"Pinecone-s1.x1","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"p2.x1","db_name":"Pinecone-p2.x1","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":261.798,"latency":23.099999999999998,"label":1,"qp$":1793.13698630137},{"db":"Pinecone","db_label":"p2.x1","db_name":"Pinecone-p2.x1","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":166.1851,"latency":23.900000000000002,"label":1,"qp$":1138.2541095890413},{"db":"Pinecone","db_label":"p2.x1","db_name":"Pinecone-p2.x1","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":121.7169,"latency":29.0,"label":1,"qp$":833.677397260274},{"db":"Pinecone","db_label":"p2.x1","db_name":"Pinecone-p2.x1","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"p2.x1","db_name":"Pinecone-p2.x1","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"p2.x1","db_name":"Pinecone-p2.x1","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"p1.x1","db_name":"Pinecone-p1.x1","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":46.6189,"latency":43.1,"label":1,"qp$":479.1253854059609},{"db":"Pinecone","db_label":"p1.x1","db_name":"Pinecone-p1.x1","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":42.4856,"latency":44.0,"label":1,"qp$":436.6454265159301},{"db":"Pinecone","db_label":"p1.x1","db_name":"Pinecone-p1.x1","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":138.9479,"latency":26.200000000000003,"label":1,"qp$":1428.0359712230218},{"db":"Pinecone","db_label":"p1.x1","db_name":"Pinecone-p1.x1","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"p1.x1","db_name":"Pinecone-p1.x1","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"p1.x1","db_name":"Pinecone-p1.x1","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"s1.x1-2node","db_name":"Pinecone-s1.x1-2node","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":20.7437,"latency":75.80000000000001,"label":1,"qp$":106.37794871794871},{"db":"Pinecone","db_label":"s1.x1-2node","db_name":"Pinecone-s1.x1-2node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":20.2993,"latency":76.5,"label":1,"qp$":104.09897435897435},{"db":"Pinecone","db_label":"s1.x1-2node","db_name":"Pinecone-s1.x1-2node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":26.4719,"latency":67.0,"label":1,"qp$":135.75333333333333},{"db":"Pinecone","db_label":"s1.x1-2node","db_name":"Pinecone-s1.x1-2node","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":8.6675,"latency":180.2,"label":1,"qp$":44.44871794871795},{"db":"Pinecone","db_label":"s1.x1-2node","db_name":"Pinecone-s1.x1-2node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":7.8121,"latency":167.7,"label":1,"qp$":40.06205128205128},{"db":"Pinecone","db_label":"s1.x1-2node","db_name":"Pinecone-s1.x1-2node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":16.869,"latency":87.8,"label":1,"qp$":86.50769230769231},{"db":"Pinecone","db_label":"p2.x1-8node","db_name":"Pinecone-p2.x1-8node","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":365.0835,"latency":23.599999999999998,"label":1,"qp$":312.57148972602744},{"db":"Pinecone","db_label":"p2.x1-8node","db_name":"Pinecone-p2.x1-8node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":325.5271,"latency":25.1,"label":1,"qp$":278.7047089041096},{"db":"Pinecone","db_label":"p2.x1-8node","db_name":"Pinecone-p2.x1-8node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":596.7942,"latency":24.2,"label":1,"qp$":510.95393835616443},{"db":"Pinecone","db_label":"p2.x1-8node","db_name":"Pinecone-p2.x1-8node","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":303.2044,"latency":27.400000000000002,"label":1,"qp$":259.5928082191781},{"db":"Pinecone","db_label":"p2.x1-8node","db_name":"Pinecone-p2.x1-8node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":136.0345,"latency":31.9,"label":1,"qp$":116.46789383561645},{"db":"Pinecone","db_label":"p2.x1-8node","db_name":"Pinecone-p2.x1-8node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":66.7221,"latency":42.1,"label":1,"qp$":57.125085616438355},{"db":"Pinecone","db_label":"p1.x1-8node","db_name":"Pinecone-p1.x1-8node","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":131.2549,"latency":30.200000000000003,"label":1,"qp$":168.49152759948652},{"db":"Pinecone","db_label":"p1.x1-8node","db_name":"Pinecone-p1.x1-8node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":127.9337,"latency":30.099999999999998,"label":1,"qp$":164.2281129653402},{"db":"Pinecone","db_label":"p1.x1-8node","db_name":"Pinecone-p1.x1-8node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":595.8462,"latency":23.400000000000002,"label":1,"qp$":764.8860077021822},{"db":"Pinecone","db_label":"p1.x1-8node","db_name":"Pinecone-p1.x1-8node","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"p1.x1-8node","db_name":"Pinecone-p1.x1-8node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"Pinecone","db_label":"p1.x1-8node","db_name":"Pinecone-p1.x1-8node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"PgVector","db_label":"2c8g-1node","db_name":"PgVector-2c8g-1node","case":"Search Performance Test (1M Dataset, 768 Dim)","qps":10.6271,"latency":730.7,"label":1,"qp$":0.0},{"db":"PgVector","db_label":"2c8g-1node","db_name":"PgVector-2c8g-1node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)","qps":10.8507,"latency":733.1999999999999,"label":1,"qp$":0.0},{"db":"PgVector","db_label":"2c8g-1node","db_name":"PgVector-2c8g-1node","case":"Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)","qps":75.7055,"latency":121.2,"label":1,"qp$":0.0},{"db":"PgVector","db_label":"2c8g-1node","db_name":"PgVector-2c8g-1node","case":"Search Performance Test (10M Dataset, 768 Dim)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"PgVector","db_label":"2c8g-1node","db_name":"PgVector-2c8g-1node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0},{"db":"PgVector","db_label":"2c8g-1node","db_name":"PgVector-2c8g-1node","case":"Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)","qps":0.0,"latency":0.0,"label":-1,"qp$":0.0}]
|