vectara-agentic 0.4.7__py3-none-any.whl → 0.4.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vectara-agentic might be problematic. Click here for more details.

@@ -72,7 +72,7 @@ class SubQuestionQueryWorkflow(Workflow):
72
72
  raise ValueError(f"Expected inputs to be of type {self.InputsModel}")
73
73
 
74
74
  query = ev.inputs.query
75
- await ctx.set("original_query", query)
75
+ await ctx.store.set("original_query", query)
76
76
 
77
77
  required_attrs = ["agent", "llm", "tools"]
78
78
  for attr in required_attrs:
@@ -81,15 +81,15 @@ class SubQuestionQueryWorkflow(Workflow):
81
81
  f"{attr.capitalize()} not provided to workflow Start Event."
82
82
  )
83
83
 
84
- await ctx.set("agent", ev.agent)
85
- await ctx.set("llm", ev.llm)
86
- await ctx.set("tools", ev.tools)
87
- await ctx.set("verbose", getattr(ev, "verbose", False))
84
+ await ctx.store.set("agent", ev.agent)
85
+ await ctx.store.set("llm", ev.llm)
86
+ await ctx.store.set("tools", ev.tools)
87
+ await ctx.store.set("verbose", getattr(ev, "verbose", False))
88
88
 
89
89
  chat_history = [str(msg) for msg in ev.agent.memory.get()]
90
90
 
91
- llm = await ctx.get("llm")
92
- original_query = await ctx.get("original_query")
91
+ llm = await ctx.store.get("llm")
92
+ original_query = await ctx.store.get("original_query")
93
93
  response = llm.complete(
94
94
  f"""
95
95
  Given a user question, and a list of tools, output a list of
@@ -140,7 +140,7 @@ class SubQuestionQueryWorkflow(Workflow):
140
140
  # We use the original query as a single question fallback
141
141
  sub_questions = [original_query]
142
142
 
143
- await ctx.set("sub_question_count", len(sub_questions))
143
+ await ctx.store.set("sub_question_count", len(sub_questions))
144
144
  for question in sub_questions:
145
145
  ctx.send_event(self.QueryEvent(question=question))
146
146
 
@@ -151,13 +151,13 @@ class SubQuestionQueryWorkflow(Workflow):
151
151
  """
152
152
  Given a sub-question, return the answer to the sub-question, using the agent.
153
153
  """
154
- if await ctx.get("verbose"):
154
+ if await ctx.store.get("verbose"):
155
155
  logging.info(f"Sub-question is {ev.question}")
156
- agent = await ctx.get("agent")
156
+ agent = await ctx.store.get("agent")
157
157
  question = ev.question
158
158
  response = await agent.achat(question)
159
159
  answer = str(response)
160
- await ctx.set("qna", await ctx.get("qna", []) + [(question, answer)])
160
+ await ctx.store.set("qna", await ctx.store.get("qna", []) + [(question, answer)])
161
161
  return self.AnswerEvent(question=question, answer=answer)
162
162
 
163
163
  @step
@@ -166,7 +166,7 @@ class SubQuestionQueryWorkflow(Workflow):
166
166
  Given a list of answers to sub-questions, combine them into a single answer.
167
167
  """
168
168
  ready = ctx.collect_events(
169
- ev, [self.AnswerEvent] * await ctx.get("sub_question_count")
169
+ ev, [self.AnswerEvent] * await ctx.store.get("sub_question_count")
170
170
  )
171
171
  if ready is None:
172
172
  return None
@@ -180,18 +180,18 @@ class SubQuestionQueryWorkflow(Workflow):
180
180
  each of which has been answered. Combine the answers to all the sub-questions
181
181
  into a single answer to the original question.
182
182
 
183
- Original question: {await ctx.get('original_query')}
183
+ Original question: {await ctx.store.get('original_query')}
184
184
 
185
185
  Sub-questions and answers:
186
186
  {answers}
187
187
  """
188
- if await ctx.get("verbose"):
188
+ if await ctx.store.get("verbose"):
189
189
  logging.info(f"Final prompt is {prompt}")
190
190
 
191
- llm = await ctx.get("llm")
191
+ llm = await ctx.store.get("llm")
192
192
  response = llm.complete(prompt)
193
193
 
194
- if await ctx.get("verbose"):
194
+ if await ctx.store.get("verbose"):
195
195
  logging.info(f"Final response is {response}")
196
196
  return StopEvent(result=self.OutputsModel(response=str(response)))
197
197
 
@@ -246,33 +246,33 @@ class SequentialSubQuestionsWorkflow(Workflow):
246
246
  raise ValueError(f"Expected inputs to be of type {self.InputsModel}")
247
247
  if hasattr(ev, "inputs"):
248
248
  query = ev.inputs.query
249
- await ctx.set("original_query", query)
249
+ await ctx.store.set("original_query", query)
250
250
 
251
251
  if hasattr(ev, "agent"):
252
- await ctx.set("agent", ev.agent)
252
+ await ctx.store.set("agent", ev.agent)
253
253
  else:
254
254
  raise ValueError("Agent not provided to workflow Start Event.")
255
255
  chat_history = [str(msg) for msg in ev.agent.memory.get()]
256
256
 
257
257
  if hasattr(ev, "llm"):
258
- await ctx.set("llm", ev.llm)
258
+ await ctx.store.set("llm", ev.llm)
259
259
  else:
260
260
  raise ValueError("LLM not provided to workflow Start Event.")
261
261
 
262
262
  if hasattr(ev, "tools"):
263
- await ctx.set("tools", ev.tools)
263
+ await ctx.store.set("tools", ev.tools)
264
264
  else:
265
265
  raise ValueError("Tools not provided to workflow Start Event.")
266
266
 
267
267
  if hasattr(ev, "verbose"):
268
- await ctx.set("verbose", ev.verbose)
268
+ await ctx.store.set("verbose", ev.verbose)
269
269
  else:
270
- await ctx.set("verbose", False)
270
+ await ctx.store.set("verbose", False)
271
271
 
272
- original_query = await ctx.get("original_query")
272
+ original_query = await ctx.store.get("original_query")
273
273
  if ev.verbose:
274
274
  logging.info(f"Query is {original_query}")
275
- llm = await ctx.get("llm")
275
+ llm = await ctx.store.get("llm")
276
276
  response = llm.complete(
277
277
  f"""
278
278
  Given a user question, and a list of tools, output a list of
@@ -320,8 +320,8 @@ class SequentialSubQuestionsWorkflow(Workflow):
320
320
 
321
321
  sub_questions = response_obj.get("sub_questions")
322
322
 
323
- await ctx.set("sub_questions", sub_questions)
324
- if await ctx.get("verbose"):
323
+ await ctx.store.set("sub_questions", sub_questions)
324
+ if await ctx.store.get("verbose"):
325
325
  logging.info(f"Sub-questions are {sub_questions}")
326
326
 
327
327
  return self.QueryEvent(question=sub_questions[0], prev_answer="", num=0)
@@ -333,10 +333,10 @@ class SequentialSubQuestionsWorkflow(Workflow):
333
333
  """
334
334
  Given a sub-question, return the answer to the sub-question, using the agent.
335
335
  """
336
- if await ctx.get("verbose"):
336
+ if await ctx.store.get("verbose"):
337
337
  logging.info(f"Sub-question is {ev.question}")
338
- agent = await ctx.get("agent")
339
- sub_questions = await ctx.get("sub_questions")
338
+ agent = await ctx.store.get("agent")
339
+ sub_questions = await ctx.store.get("sub_questions")
340
340
  question = ev.question
341
341
  if ev.prev_answer:
342
342
  prev_question = sub_questions[ev.num - 1]
@@ -348,11 +348,11 @@ class SequentialSubQuestionsWorkflow(Workflow):
348
348
  else:
349
349
  response = await agent.achat(question)
350
350
  answer = response.response
351
- if await ctx.get("verbose"):
351
+ if await ctx.store.get("verbose"):
352
352
  logging.info(f"Answer is {answer}")
353
353
 
354
354
  if ev.num + 1 < len(sub_questions):
355
- await ctx.set("qna", await ctx.get("qna", []) + [(question, answer)])
355
+ await ctx.store.set("qna", await ctx.store.get("qna", []) + [(question, answer)])
356
356
  return self.QueryEvent(
357
357
  question=sub_questions[ev.num + 1],
358
358
  prev_answer=answer,
vectara_agentic/tools.py CHANGED
@@ -66,7 +66,6 @@ LI_packages = {
66
66
  },
67
67
  }
68
68
 
69
-
70
69
  def normalize_url(url):
71
70
  """
72
71
  Normalize URL for consistent comparison by handling percent-encoding.
@@ -90,7 +89,6 @@ def normalize_url(url):
90
89
  logging.warning(f"Error normalizing URL '{url}': {e}")
91
90
  return url
92
91
 
93
-
94
92
  def citation_appears_in_text(citation_text, citation_url, response_text):
95
93
  """
96
94
  Check if citation appears in response text using multiple matching strategies.
vectara_agentic/utils.py CHANGED
@@ -17,16 +17,41 @@ def is_float(value: str) -> bool:
17
17
  return False
18
18
 
19
19
 
20
- def remove_self_from_signature(func):
21
- """Decorator to remove 'self' from a method's signature for introspection."""
22
- sig = signature(func)
23
- params = list(sig.parameters.values())
24
- # Remove the first parameter if it is named 'self'
25
- if params and params[0].name == "self":
26
- params = params[1:]
27
- new_sig = sig.replace(parameters=params)
28
- func.__signature__ = new_sig
29
- return func
20
+ class remove_self_from_signature: # pylint: disable=invalid-name
21
+ """Descriptor that hides 'self' on the class attribute, but leaves bound methods alone.
22
+
23
+ This solves the issue where modifying __signature__ on methods causes problems
24
+ with Python's bound method creation. Instead, we use a descriptor that:
25
+ - Returns a wrapper with 'self' removed when accessed on the class (for tool creation)
26
+ - Returns a normal bound method when accessed on instances (for normal method calls)
27
+ """
28
+ def __init__(self, func):
29
+ import functools
30
+ functools.update_wrapper(self, func)
31
+ self.func = func
32
+ sig = signature(func)
33
+ params = list(sig.parameters.values())
34
+ # Remove the first parameter if it is named 'self'
35
+ if params and params[0].name == "self":
36
+ params = params[1:]
37
+ self._unbound_sig = sig.replace(parameters=params)
38
+
39
+ def __get__(self, obj, objtype=None):
40
+ import functools
41
+ import types
42
+ if obj is None:
43
+ # Accessed on the class: provide a function-like object with 'self' removed.
44
+ @functools.wraps(self.func)
45
+ def wrapper(*args, **kwargs):
46
+ return self.func(*args, **kwargs)
47
+ wrapper.__signature__ = self._unbound_sig
48
+ return wrapper
49
+ # Accessed on an instance: return the original bound method so inspect removes 'self' exactly once.
50
+ return types.MethodType(self.func, obj)
51
+
52
+ # Allow direct calls via the descriptor if someone invokes it off the class attribute.
53
+ def __call__(self, *args, **kwargs):
54
+ return self.func(*args, **kwargs)
30
55
 
31
56
 
32
57
  async def summarize_vectara_document(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vectara_agentic
3
- Version: 0.4.7
3
+ Version: 0.4.9
4
4
  Summary: A Python package for creating AI Assistants and AI Agents with Vectara
5
5
  Home-page: https://github.com/vectara/py-vectara-agentic
6
6
  Author: Ofer Mendelevitch
@@ -16,34 +16,34 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
16
16
  Requires-Python: >=3.10
17
17
  Description-Content-Type: text/markdown
18
18
  License-File: LICENSE
19
- Requires-Dist: llama-index==0.13.6
20
- Requires-Dist: llama-index-core==0.13.6
21
- Requires-Dist: llama-index-workflows==1.3.0
22
- Requires-Dist: llama-index-cli==0.5.0
23
- Requires-Dist: llama-index-indices-managed-vectara==0.5.0
24
- Requires-Dist: llama-index-llms-openai==0.5.4
25
- Requires-Dist: llama-index-llms-openai-like==0.5.0
26
- Requires-Dist: llama-index-llms-anthropic==0.8.6
27
- Requires-Dist: llama-index-llms-together==0.4.0
28
- Requires-Dist: llama-index-llms-groq==0.4.0
29
- Requires-Dist: llama-index-llms-cohere==0.6.0
30
- Requires-Dist: llama-index-llms-google-genai==0.3.0
31
- Requires-Dist: google_genai>=1.31.0
32
- Requires-Dist: llama-index-llms-bedrock-converse==0.9.0
33
- Requires-Dist: llama-index-tools-yahoo-finance==0.4.0
34
- Requires-Dist: llama-index-tools-arxiv==0.4.0
35
- Requires-Dist: llama-index-tools-database==0.4.0
36
- Requires-Dist: llama-index-tools-google==0.6.0
37
- Requires-Dist: llama-index-tools-tavily_research==0.4.0
38
- Requires-Dist: llama_index.tools.brave_search==0.4.0
39
- Requires-Dist: llama-index-tools-neo4j==0.4.0
40
- Requires-Dist: llama-index-tools-waii==0.4.0
41
- Requires-Dist: llama-index-graph-stores-kuzu==0.9.0
42
- Requires-Dist: llama-index-tools-salesforce==0.4.0
43
- Requires-Dist: llama-index-tools-slack==0.4.0
44
- Requires-Dist: llama-index-tools-exa==0.4.0
45
- Requires-Dist: llama-index-tools-wikipedia==0.4.0
46
- Requires-Dist: llama-index-tools-bing-search==0.4.0
19
+ Requires-Dist: llama-index==0.14.3
20
+ Requires-Dist: llama-index-core==0.14.3
21
+ Requires-Dist: llama-index-workflows==2.5.0
22
+ Requires-Dist: llama-index-cli==0.5.1
23
+ Requires-Dist: llama-index-indices-managed-vectara==0.5.1
24
+ Requires-Dist: llama-index-llms-openai==0.5.6
25
+ Requires-Dist: llama-index-llms-openai-like==0.5.1
26
+ Requires-Dist: llama-index-llms-anthropic==0.9.3
27
+ Requires-Dist: llama-index-llms-together==0.4.1
28
+ Requires-Dist: llama-index-llms-groq==0.4.1
29
+ Requires-Dist: llama-index-llms-cohere==0.6.1
30
+ Requires-Dist: llama-index-llms-google-genai==0.5.1
31
+ Requires-Dist: google_genai==1.39.1
32
+ Requires-Dist: llama-index-llms-bedrock-converse==0.9.5
33
+ Requires-Dist: llama-index-tools-yahoo-finance==0.4.1
34
+ Requires-Dist: llama-index-tools-arxiv==0.4.1
35
+ Requires-Dist: llama-index-tools-database==0.4.1
36
+ Requires-Dist: llama-index-tools-google==0.6.2
37
+ Requires-Dist: llama-index-tools-tavily_research==0.4.1
38
+ Requires-Dist: llama_index.tools.brave_search==0.4.1
39
+ Requires-Dist: llama-index-tools-neo4j==0.4.1
40
+ Requires-Dist: llama-index-tools-waii==0.4.1
41
+ Requires-Dist: llama-index-graph-stores-kuzu==0.9.1
42
+ Requires-Dist: llama-index-tools-salesforce==0.4.1
43
+ Requires-Dist: llama-index-tools-slack==0.4.1
44
+ Requires-Dist: llama-index-tools-exa==0.4.1
45
+ Requires-Dist: llama-index-tools-wikipedia==0.4.1
46
+ Requires-Dist: llama-index-tools-bing-search==0.4.1
47
47
  Requires-Dist: openai>=1.99.3
48
48
  Requires-Dist: tavily-python>=0.7.10
49
49
  Requires-Dist: exa-py>=1.14.20
@@ -736,13 +736,13 @@ If you want to use `agent`, `tools`, `llm` or `verbose` in other events (that ar
736
736
  the `Context` of the Workflow as follows:
737
737
 
738
738
  ```python
739
- await ctx.set("agent", ev.agent)
739
+ await ctx.store.set("agent", ev.agent)
740
740
  ```
741
741
 
742
742
  and then in any other event you can pull that agent object with
743
743
 
744
744
  ```python
745
- agent = await ctx.get("agent")
745
+ agent = await ctx.store.get("agent")
746
746
  ```
747
747
 
748
748
  Similarly you can reuse the `llm`, `tools` or `verbose` arguments within other nodes in the workflow.
@@ -886,7 +886,7 @@ The `AgentConfig` object may include the following items:
886
886
  - `main_llm_provider` and `tool_llm_provider`: the LLM provider for main agent and for the tools. Valid values are `OPENAI`, `ANTHROPIC`, `TOGETHER`, `GROQ`, `COHERE`, `BEDROCK`, `GEMINI` (default: `OPENAI`).
887
887
 
888
888
  > **Note:** Fireworks AI support has been removed. If you were using Fireworks, please migrate to one of the supported providers listed above.
889
- - `main_llm_model_name` and `tool_llm_model_name`: agent model name for agent and tools (default depends on provider: OpenAI uses gpt-4.1-mini, Gemini uses gemini-2.5-flash-lite).
889
+ - `main_llm_model_name` and `tool_llm_model_name`: agent model name for agent and tools (default depends on provider: OpenAI uses gpt-4.1-mini, Anthropic uses claude-sonnet-4-5, Gemini uses models/gemini-2.5-flash, Together.AI uses deepseek-ai/DeepSeek-V3, GROQ uses openai/gpt-oss-20b, Bedrock uses us.anthropic.claude-sonnet-4-20250514-v1:0, Cohere uses command-a-03-2025).
890
890
  - `observer`: the observer type; should be `ARIZE_PHOENIX` or if undefined no observation framework will be used.
891
891
  - `endpoint_api_key`: a secret key if using the API endpoint option (defaults to `dev-api-key`)
892
892
 
@@ -1,22 +1,22 @@
1
1
  tests/__init__.py,sha256=Bmsv0bLu2Hx-b7RZVvEzoodqYxE37hHd7fXCF2cT5pg,176
2
- tests/benchmark_models.py,sha256=f9SMmPc4h8WL9TQUJaeA22fcbu2oSx8lhhm1ht3fjDE,44125
2
+ tests/benchmark_models.py,sha256=Vd-wojefr4s50GxQDFRdFrppiPIMwSTxmf5GHbzoFOU,44052
3
3
  tests/conftest.py,sha256=Y9lOptmjCFQ4VI0zmlOF80ERbkskwAn2XEWOk5CwMaQ,9362
4
4
  tests/endpoint.py,sha256=bOmjEjLt7PIR3s74M0HOtFj43l4k1s0urBUQNMUVKS0,2749
5
5
  tests/run_tests.py,sha256=juM7vnTz7B8Gr6DKD8L5zBPbgBQf_RQnjRkmsQPeWYw,3338
6
- tests/test_agent.py,sha256=7SvDAvXsy6z3k7YaYVhyzF-Jc6cIBzrZhNXHSOpzwEI,6935
6
+ tests/test_agent.py,sha256=fAy7XpiQPKpCfDblka0Gr4kOtOnnBK0FXS7HZ9s04Fc,7007
7
7
  tests/test_agent_fallback_memory.py,sha256=1LoRHxUM767bGmCeusPlGubX_pIeP5KxIABRwdWLJGo,10862
8
8
  tests/test_agent_memory_consistency.py,sha256=D8ivCGp5reJyOK7Q6wDiZlv3bKX4-SEchnqocyib1Po,8966
9
9
  tests/test_agent_type.py,sha256=hx0FPKhhP-zaT2Z7MYlrZw10srws8VUQgBoZk2-vUxY,5155
10
10
  tests/test_api_endpoint.py,sha256=PrfV6kWvq5icm3zLgrse9isBsR6EkwfUtSdz1ADSUUs,5115
11
- tests/test_bedrock.py,sha256=4qBip3plouQkHTRU01_sYebop6fiVe3Fnx5vjkMl3H4,2003
11
+ tests/test_bedrock.py,sha256=zbZYzhep1N4EwS2QdN2XKYlRUjApFb-8PoBZmVuubAU,7465
12
12
  tests/test_fallback.py,sha256=LQtnYoK-NohJL3D3pQnlY0yrIGs2B25j6B3gX3wGM1c,3073
13
- tests/test_gemini.py,sha256=HVTWmwPFxJ-hjketCkbXa_mOyWXpE-1dG9fu47z00bU,1632
14
- tests/test_groq.py,sha256=BikJ0AV5-k3kvTUbila9bmIKv2iJy3TQm-Kb_Y23kYw,3378
15
- tests/test_openai.py,sha256=Uc8wPovmeLgmMItV4OOya6rWlSv7Omre1_B11ajpozU,5396
13
+ tests/test_gemini.py,sha256=2MoW-xK6WFEMN6gsSKkJ1n_anIVnCwVrTjjN-n1gdIE,5761
14
+ tests/test_groq.py,sha256=LxNZXp2qXybYT6-VWDaNwJsZ9-EsbRykRko1sYZNqXc,8139
15
+ tests/test_openai.py,sha256=2xlvNiPeKiT_StpT6ItVRG6z8QpIOmq7A95ATq1S3yg,10830
16
16
  tests/test_private_llm.py,sha256=O5sQfZ_NgE2S1-YJ6eMRn1Gz17XkRjEk9O0iHGACRu0,2752
17
17
  tests/test_react_error_handling.py,sha256=xAozh77qNSvaEzMDHjw2blbDNVUY-5qfvBldD_YHCQQ,11198
18
18
  tests/test_react_memory.py,sha256=3YAPhrWAjmDcT2jm2IfxBx2LSWJGkpYUhWQiVt-qXFs,10177
19
- tests/test_react_streaming.py,sha256=ZM79HTEvv9sln82vTt9uHfTB0aLLs26PkGf3k4swY4Q,5045
19
+ tests/test_react_streaming.py,sha256=yaqQVGPXWPnKGoJfkRZ4hufgQPXmfkKWsu5sfoQGXm4,5751
20
20
  tests/test_react_workflow_events.py,sha256=sd7CZbgaQIEhb7d0E8VMXC-ivKTQzZvZaRt5QAPFUyA,15118
21
21
  tests/test_return_direct.py,sha256=ZhcgkRNGqPQFAYm8moY3HLLIpwdFuAyjShE3F6L16lQ,1522
22
22
  tests/test_serialization.py,sha256=DJZ2E_K54t8INwZR0Q8gS1wi-MGbLIheOBcbRmZNcro,5383
@@ -30,30 +30,30 @@ tests/test_workflow.py,sha256=43YUF-0YDbiiJrTSYjnyqrC4gvHYuHQp7uuzV2jMdTE,3553
30
30
  vectara_agentic/__init__.py,sha256=CfS3QR4drKygcTcyH5zUUDuXXQ3WZtTCytz8W4-loeE,1077
31
31
  vectara_agentic/_callback.py,sha256=hYbHU_3sMF4-h0YMierZ9EEWspakNixk7wXAAWztlmU,15364
32
32
  vectara_agentic/_observability.py,sha256=rApfdndB2R021iM0xG4MumTSDX1Ba6qbNM0N_AOTbR0,4884
33
- vectara_agentic/_version.py,sha256=LVDemBeUlAXxk_tSkMeZxasQy5XKZ9fTZCIyTuUQTGg,65
34
- vectara_agentic/agent.py,sha256=5eC4BkMPWep8c_LIHSB2N1CvsFLdX6qPAhIpgLR08Gc,49125
33
+ vectara_agentic/_version.py,sha256=YPyUmZTSai1XaNSO7h7qjHY96xXytEyltsPXdnRuPUI,65
34
+ vectara_agentic/agent.py,sha256=AxtSdl05wYxPGsXV9p40ppnKBbGhlDNijBHPn3SLlWg,48552
35
35
  vectara_agentic/agent_config.py,sha256=njqEX2qHJjAp2KpNuJglgZhyWXPK74wjIjBPACD6w7w,4074
36
36
  vectara_agentic/agent_endpoint.py,sha256=E_AF-YwxaKqd1-p43X62e1e4ugwOWKIyNq4RWOfsO7A,7402
37
- vectara_agentic/db_tools.py,sha256=nVZkpGdG63ooGngjX9g7YWyBZRtYMDpvzNasbO696nM,11498
38
- vectara_agentic/llm_utils.py,sha256=CqrBOMf9sL-CD0xD-yiEYNyduZV4GBho4e518z_pt5s,9422
39
- vectara_agentic/sub_query_workflow.py,sha256=1y0fBoUem4i-R34QYlSzcMwM8YhmYgj6S_bWynUtL6w,13001
37
+ vectara_agentic/db_tools.py,sha256=OcHYH-4bjgjKU2fUpeWyanO157AMalda5LSQAGiMfwY,11640
38
+ vectara_agentic/llm_utils.py,sha256=bHpQA8-5LSiqNj5SuuhlYLYYv9vzxbfzr2uLh5GYjZk,11010
39
+ vectara_agentic/sub_query_workflow.py,sha256=2pOhE_O6nUw4moQK11QOo7ATcMjlkiJBhlz7T0oumFI,13199
40
40
  vectara_agentic/tool_utils.py,sha256=whnQlk9coeIt01sqUnKnzUorefgn96yWqhtRfHxNL84,25921
41
- vectara_agentic/tools.py,sha256=nqfSkiLbuzjAud2pWgVMSvRj_N6M25Lii5quJWYKbeU,41614
41
+ vectara_agentic/tools.py,sha256=7uW7O1JPeCfN2ndSbxNeynEd3L_NvfwfD2PM2zqix6k,41612
42
42
  vectara_agentic/tools_catalog.py,sha256=p6eRram-diJyMz5dZI703auSAm97FfW5wLAMyz_2sB0,4634
43
43
  vectara_agentic/types.py,sha256=qKkK8vRNiLvEcMInMyOClK2bD7iFlrWGTkl3fGC6Xic,6117
44
- vectara_agentic/utils.py,sha256=R9HitEG5K3Q_p2M_teosT181OUxkhs1-hnj98qDYGbE,2545
44
+ vectara_agentic/utils.py,sha256=gdELFBl98PNFdWCD9Qyz00ZrviQ8JS9jYkbx9aY-l8M,3787
45
45
  vectara_agentic/agent_core/__init__.py,sha256=R3KGbSOiY21FOjbeQ_GyIi6uR9Rz7PTfudO9RjSuEZQ,722
46
- vectara_agentic/agent_core/factory.py,sha256=Nmmhl98r2Op4qJwq9cgfy7DfrWI62JUfxFXHoBxKHBo,14158
47
- vectara_agentic/agent_core/prompts.py,sha256=bpUJ2JvQ9IYZZkNyTBzoFKcOVasixsZc0nLu9vNDLBY,10000
48
- vectara_agentic/agent_core/serialization.py,sha256=Npfcgm9j8B0ck74uIUgqTGljt8HTpcMCdnWV6CKYBZE,11878
49
- vectara_agentic/agent_core/streaming.py,sha256=mTHjCWBMMCeEDre_FqhXM27251M8fxSmDwcrOt-wfuw,26473
46
+ vectara_agentic/agent_core/factory.py,sha256=NQjz2yDwFXM5v45-1BFhl47lfmrPCmSxkgq1Gd9WhyA,14402
47
+ vectara_agentic/agent_core/prompts.py,sha256=Rhoku-uL2pa0HnxT-toL4Kr0mTyyuReCgZ2Euw5eTIg,11510
48
+ vectara_agentic/agent_core/serialization.py,sha256=CPC4jeMX-2OlCZ3T4hjBCRSZlLyA3Q0xjjIZUJD8JUQ,11860
49
+ vectara_agentic/agent_core/streaming.py,sha256=yeV0M9C-QzJ3GDB1ra9Cpk068msG1u9s8Jd29fk3030,25396
50
50
  vectara_agentic/agent_core/utils/__init__.py,sha256=y5Xf0IH-5TRxMBRA9IyhmWnGZOVIyqV45P6lX4c2Qsc,762
51
- vectara_agentic/agent_core/utils/hallucination.py,sha256=XmV7tW-MBN9BrzM79zu0T7zaWil7fIkNQjLfDZE43v4,5312
51
+ vectara_agentic/agent_core/utils/hallucination.py,sha256=buJpB8asIlkkmuvLIFKcVfVblsttjiighTHi1GnjG7Y,6394
52
52
  vectara_agentic/agent_core/utils/logging.py,sha256=-Ll8iUelml92WuhNWScuY6H-RheyZOTBHNxXQ1UGy0M,1701
53
53
  vectara_agentic/agent_core/utils/schemas.py,sha256=4sEyQ-_z-eZJzgxCJf62AuBgV7RN1Azc9mLPPlj6IWg,2769
54
54
  vectara_agentic/agent_core/utils/tools.py,sha256=JQmiWldJd2_9SXE9cCEF9u4ESLJr15-JemORAAZbgnk,5068
55
- vectara_agentic-0.4.7.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
56
- vectara_agentic-0.4.7.dist-info/METADATA,sha256=nsbgh52lR8Dn01zeDX5mgWrFvEC04DMROyYw_QZYZuA,38906
57
- vectara_agentic-0.4.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
58
- vectara_agentic-0.4.7.dist-info/top_level.txt,sha256=Y7TQTFdOYGYodQRltUGRieZKIYuzeZj2kHqAUpfCUfg,22
59
- vectara_agentic-0.4.7.dist-info/RECORD,,
55
+ vectara_agentic-0.4.9.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
56
+ vectara_agentic-0.4.9.dist-info/METADATA,sha256=ORKSviCTSA_0mMDsEQSCwyLvtyJIyNg_y-2WCJjhEuI,39114
57
+ vectara_agentic-0.4.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
58
+ vectara_agentic-0.4.9.dist-info/top_level.txt,sha256=Y7TQTFdOYGYodQRltUGRieZKIYuzeZj2kHqAUpfCUfg,22
59
+ vectara_agentic-0.4.9.dist-info/RECORD,,