vectara-agentic 0.4.7__py3-none-any.whl → 0.4.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vectara-agentic might be problematic. Click here for more details.
- tests/benchmark_models.py +12 -12
- tests/test_agent.py +4 -3
- tests/test_bedrock.py +101 -0
- tests/test_gemini.py +94 -8
- tests/test_groq.py +97 -16
- tests/test_openai.py +101 -0
- tests/test_react_streaming.py +26 -2
- vectara_agentic/_version.py +1 -1
- vectara_agentic/agent.py +19 -30
- vectara_agentic/agent_core/factory.py +11 -4
- vectara_agentic/agent_core/prompts.py +64 -8
- vectara_agentic/agent_core/serialization.py +3 -3
- vectara_agentic/agent_core/streaming.py +174 -197
- vectara_agentic/agent_core/utils/hallucination.py +33 -1
- vectara_agentic/db_tools.py +4 -0
- vectara_agentic/llm_utils.py +55 -2
- vectara_agentic/sub_query_workflow.py +31 -31
- vectara_agentic/tools.py +0 -2
- vectara_agentic/utils.py +35 -10
- {vectara_agentic-0.4.7.dist-info → vectara_agentic-0.4.9.dist-info}/METADATA +32 -32
- {vectara_agentic-0.4.7.dist-info → vectara_agentic-0.4.9.dist-info}/RECORD +24 -24
- {vectara_agentic-0.4.7.dist-info → vectara_agentic-0.4.9.dist-info}/WHEEL +0 -0
- {vectara_agentic-0.4.7.dist-info → vectara_agentic-0.4.9.dist-info}/licenses/LICENSE +0 -0
- {vectara_agentic-0.4.7.dist-info → vectara_agentic-0.4.9.dist-info}/top_level.txt +0 -0
tests/benchmark_models.py
CHANGED
|
@@ -68,7 +68,7 @@ def validate_api_keys(models_to_test: List[Dict]) -> None:
|
|
|
68
68
|
missing_keys.append(key)
|
|
69
69
|
|
|
70
70
|
if missing_keys:
|
|
71
|
-
print("
|
|
71
|
+
print("ERROR: Missing required API keys for benchmark execution:")
|
|
72
72
|
print()
|
|
73
73
|
for key in sorted(missing_keys):
|
|
74
74
|
print(f" • {key}")
|
|
@@ -83,7 +83,7 @@ def validate_api_keys(models_to_test: List[Dict]) -> None:
|
|
|
83
83
|
|
|
84
84
|
sys.exit(1)
|
|
85
85
|
|
|
86
|
-
print("
|
|
86
|
+
print("All required API keys are present")
|
|
87
87
|
print(f"Found API keys for {len(required_keys)} required environment variables")
|
|
88
88
|
|
|
89
89
|
|
|
@@ -135,7 +135,7 @@ class ModelBenchmark:
|
|
|
135
135
|
{"provider": ModelProvider.OPENAI, "model": "gpt-5-mini"},
|
|
136
136
|
{"provider": ModelProvider.OPENAI, "model": "gpt-4o-mini"},
|
|
137
137
|
{"provider": ModelProvider.OPENAI, "model": "gpt-4.1-mini"},
|
|
138
|
-
{"provider": ModelProvider.ANTHROPIC, "model": "claude-sonnet-4-
|
|
138
|
+
{"provider": ModelProvider.ANTHROPIC, "model": "claude-sonnet-4-5"},
|
|
139
139
|
{"provider": ModelProvider.TOGETHER, "model": "deepseek-ai/DeepSeek-V3"},
|
|
140
140
|
{"provider": ModelProvider.GROQ, "model": "openai/gpt-oss-20b"},
|
|
141
141
|
{"provider": ModelProvider.GEMINI, "model": "models/gemini-2.5-flash-lite"},
|
|
@@ -817,11 +817,11 @@ class ModelBenchmark:
|
|
|
817
817
|
observability_setup = setup_observer(dummy_config, verbose=True)
|
|
818
818
|
if observability_setup:
|
|
819
819
|
print(
|
|
820
|
-
"
|
|
820
|
+
"Arize Phoenix observability enabled - LLM calls will be traced\n"
|
|
821
821
|
)
|
|
822
822
|
_observability_initialized = True
|
|
823
823
|
else:
|
|
824
|
-
print("
|
|
824
|
+
print("Arize Phoenix observability setup failed\n")
|
|
825
825
|
|
|
826
826
|
# Create semaphore to limit concurrent model testing
|
|
827
827
|
model_semaphore = asyncio.Semaphore(self.max_concurrent_models)
|
|
@@ -835,7 +835,7 @@ class ModelBenchmark:
|
|
|
835
835
|
tasks.append(task)
|
|
836
836
|
|
|
837
837
|
# Execute all model benchmarks in parallel
|
|
838
|
-
print("
|
|
838
|
+
print("Starting parallel benchmark execution...\n")
|
|
839
839
|
await asyncio.gather(*tasks, return_exceptions=True)
|
|
840
840
|
|
|
841
841
|
async def _run_model_benchmark(
|
|
@@ -857,9 +857,9 @@ class ModelBenchmark:
|
|
|
857
857
|
provider, model_name, test_name, test_config
|
|
858
858
|
)
|
|
859
859
|
except Exception as e:
|
|
860
|
-
print(f"
|
|
860
|
+
print(f"Error in {model_name} - {test_name}: {e}")
|
|
861
861
|
|
|
862
|
-
print(f"
|
|
862
|
+
print(f"Completed: {provider.value} - {model_name}")
|
|
863
863
|
|
|
864
864
|
async def _run_scenario_benchmark(
|
|
865
865
|
self,
|
|
@@ -892,18 +892,18 @@ class ModelBenchmark:
|
|
|
892
892
|
|
|
893
893
|
if result.error:
|
|
894
894
|
print(
|
|
895
|
-
f"
|
|
895
|
+
f"{model_name}/{test_name} Iteration {iteration_num}: {result.error}"
|
|
896
896
|
)
|
|
897
897
|
else:
|
|
898
898
|
print(
|
|
899
|
-
f"
|
|
899
|
+
f"{model_name}/{test_name} Iteration {iteration_num}: "
|
|
900
900
|
f"{result.total_response_time:.2f}s, "
|
|
901
901
|
f"first token: {result.first_token_latency:.2f}s, "
|
|
902
902
|
f"{result.tokens_per_second:.1f} chars/sec"
|
|
903
903
|
)
|
|
904
904
|
|
|
905
905
|
except Exception as e:
|
|
906
|
-
print(f"
|
|
906
|
+
print(f"{model_name}/{test_name} Iteration {iteration_num}: {e}")
|
|
907
907
|
# Create error result
|
|
908
908
|
error_result = BenchmarkResult(
|
|
909
909
|
model_name=model_name,
|
|
@@ -929,7 +929,7 @@ class ModelBenchmark:
|
|
|
929
929
|
successful = len([r for r in iteration_results if r.error is None])
|
|
930
930
|
success_rate = (successful / len(iteration_results)) * 100
|
|
931
931
|
print(
|
|
932
|
-
f"
|
|
932
|
+
f"{model_name}/{test_name} complete: {successful}/{len(iteration_results)} successful ({success_rate:.1f}%)"
|
|
933
933
|
)
|
|
934
934
|
|
|
935
935
|
return iteration_results
|
tests/test_agent.py
CHANGED
|
@@ -13,7 +13,6 @@ from vectara_agentic.agent_config import AgentConfig
|
|
|
13
13
|
from vectara_agentic.types import ModelProvider, ObserverType
|
|
14
14
|
from vectara_agentic.tools import ToolsFactory
|
|
15
15
|
|
|
16
|
-
from vectara_agentic.agent_core.prompts import GENERAL_INSTRUCTIONS
|
|
17
16
|
from conftest import mult, STANDARD_TEST_TOPIC, STANDARD_TEST_INSTRUCTIONS
|
|
18
17
|
|
|
19
18
|
|
|
@@ -54,9 +53,11 @@ class TestAgentPackage(unittest.TestCase):
|
|
|
54
53
|
+ date.today().strftime("%A, %B %d, %Y")
|
|
55
54
|
+ " with Always do as your mother tells you!"
|
|
56
55
|
)
|
|
56
|
+
# Test format_prompt with dummy instructions since we're only testing template substitution
|
|
57
|
+
dummy_instructions = "Test instructions"
|
|
57
58
|
self.assertEqual(
|
|
58
59
|
format_prompt(
|
|
59
|
-
prompt_template,
|
|
60
|
+
prompt_template, dummy_instructions, topic, custom_instructions
|
|
60
61
|
),
|
|
61
62
|
expected_output,
|
|
62
63
|
)
|
|
@@ -83,7 +84,7 @@ class TestAgentPackage(unittest.TestCase):
|
|
|
83
84
|
config = AgentConfig(
|
|
84
85
|
agent_type=AgentType.REACT,
|
|
85
86
|
main_llm_provider=ModelProvider.ANTHROPIC,
|
|
86
|
-
main_llm_model_name="claude-sonnet-4-
|
|
87
|
+
main_llm_model_name="claude-sonnet-4-5",
|
|
87
88
|
tool_llm_provider=ModelProvider.TOGETHER,
|
|
88
89
|
tool_llm_model_name="moonshotai/Kimi-K2-Instruct",
|
|
89
90
|
observer=ObserverType.ARIZE_PHOENIX,
|
tests/test_bedrock.py
CHANGED
|
@@ -8,6 +8,7 @@ import threading
|
|
|
8
8
|
|
|
9
9
|
from vectara_agentic.agent import Agent
|
|
10
10
|
from vectara_agentic.tools import ToolsFactory
|
|
11
|
+
from vectara_agentic.tools_catalog import ToolsCatalog
|
|
11
12
|
|
|
12
13
|
import nest_asyncio
|
|
13
14
|
|
|
@@ -15,6 +16,7 @@ nest_asyncio.apply()
|
|
|
15
16
|
|
|
16
17
|
from conftest import (
|
|
17
18
|
mult,
|
|
19
|
+
add,
|
|
18
20
|
fc_config_bedrock,
|
|
19
21
|
STANDARD_TEST_TOPIC,
|
|
20
22
|
STANDARD_TEST_INSTRUCTIONS,
|
|
@@ -64,6 +66,105 @@ class TestBedrock(unittest.IsolatedAsyncioTestCase):
|
|
|
64
66
|
|
|
65
67
|
self.assertEqual(response3.response, "1050")
|
|
66
68
|
|
|
69
|
+
async def test_claude_sonnet_4_multi_tool_chain(self):
|
|
70
|
+
"""Test Claude Sonnet 4 with complex multi-step reasoning chain using multiple tools via Bedrock."""
|
|
71
|
+
with ARIZE_LOCK:
|
|
72
|
+
# Use Bedrock config (Claude Sonnet 4)
|
|
73
|
+
tools_catalog = ToolsCatalog(fc_config_bedrock)
|
|
74
|
+
tools = [
|
|
75
|
+
ToolsFactory().create_tool(mult),
|
|
76
|
+
ToolsFactory().create_tool(add),
|
|
77
|
+
ToolsFactory().create_tool(tools_catalog.summarize_text),
|
|
78
|
+
ToolsFactory().create_tool(tools_catalog.rephrase_text),
|
|
79
|
+
]
|
|
80
|
+
|
|
81
|
+
agent = Agent(
|
|
82
|
+
agent_config=fc_config_bedrock,
|
|
83
|
+
tools=tools,
|
|
84
|
+
topic=STANDARD_TEST_TOPIC,
|
|
85
|
+
custom_instructions="You are a mathematical reasoning agent that explains your work step by step.",
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
# Complex multi-step reasoning task
|
|
89
|
+
complex_query = (
|
|
90
|
+
"Perform this calculation step by step: "
|
|
91
|
+
"First multiply 5 by 9, then add 13 to that result, "
|
|
92
|
+
"then multiply the new result by 2. "
|
|
93
|
+
"After getting the final number, summarize the entire mathematical process "
|
|
94
|
+
"with expertise in 'mathematics education', "
|
|
95
|
+
"then rephrase that summary as a 10-year-old would explain it."
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
print("\nStarting Claude Sonnet 4 multi-tool chain test (Bedrock)")
|
|
99
|
+
print(f"Query: {complex_query}")
|
|
100
|
+
print("Streaming response:\n" + "="*50)
|
|
101
|
+
|
|
102
|
+
stream = await agent.astream_chat(complex_query)
|
|
103
|
+
|
|
104
|
+
# Capture streaming deltas and tool calls
|
|
105
|
+
streaming_deltas = []
|
|
106
|
+
tool_calls_made = []
|
|
107
|
+
full_response = ""
|
|
108
|
+
|
|
109
|
+
async for chunk in stream.async_response_gen():
|
|
110
|
+
if chunk and chunk.strip():
|
|
111
|
+
streaming_deltas.append(chunk)
|
|
112
|
+
full_response += chunk
|
|
113
|
+
# Display each streaming delta
|
|
114
|
+
print(f"Delta: {repr(chunk)}")
|
|
115
|
+
|
|
116
|
+
# Track tool calls in the stream
|
|
117
|
+
if "mult" in chunk.lower():
|
|
118
|
+
if "mult" not in [call["tool"] for call in tool_calls_made]:
|
|
119
|
+
tool_calls_made.append({"tool": "mult", "order": len(tool_calls_made) + 1})
|
|
120
|
+
print(f"Tool call detected: mult (#{len(tool_calls_made)})")
|
|
121
|
+
if "add" in chunk.lower():
|
|
122
|
+
if "add" not in [call["tool"] for call in tool_calls_made]:
|
|
123
|
+
tool_calls_made.append({"tool": "add", "order": len(tool_calls_made) + 1})
|
|
124
|
+
print(f"Tool call detected: add (#{len(tool_calls_made)})")
|
|
125
|
+
if "summarize" in chunk.lower():
|
|
126
|
+
if "summarize_text" not in [call["tool"] for call in tool_calls_made]:
|
|
127
|
+
tool_calls_made.append({"tool": "summarize_text", "order": len(tool_calls_made) + 1})
|
|
128
|
+
print(f"Tool call detected: summarize_text (#{len(tool_calls_made)})")
|
|
129
|
+
if "rephrase" in chunk.lower():
|
|
130
|
+
if "rephrase_text" not in [call["tool"] for call in tool_calls_made]:
|
|
131
|
+
tool_calls_made.append({"tool": "rephrase_text", "order": len(tool_calls_made) + 1})
|
|
132
|
+
print(f"Tool call detected: rephrase_text (#{len(tool_calls_made)})")
|
|
133
|
+
|
|
134
|
+
response = await stream.aget_response()
|
|
135
|
+
|
|
136
|
+
print("="*50)
|
|
137
|
+
print(f"Streaming completed. Total deltas: {len(streaming_deltas)}")
|
|
138
|
+
print(f"Tool calls made: {[call['tool'] for call in tool_calls_made]}")
|
|
139
|
+
print(f"📄 Final response length: {len(response.response)} chars")
|
|
140
|
+
print(f"Final response: {response.response}")
|
|
141
|
+
|
|
142
|
+
# Validate tool usage sequence
|
|
143
|
+
tools_used = [call["tool"] for call in tool_calls_made]
|
|
144
|
+
print(f"🧪 Tools used in order: {tools_used}")
|
|
145
|
+
|
|
146
|
+
# Check that at least multiplication happened (basic requirement)
|
|
147
|
+
self.assertIn("mult", tools_used, f"Expected multiplication tool to be used. Tools used: {tools_used}")
|
|
148
|
+
|
|
149
|
+
# Check for mathematical results in the full response or streaming deltas
|
|
150
|
+
# Expected: 5*9=45, 45+13=58, 58*2=116
|
|
151
|
+
expected_intermediate_results = ["45", "58", "116"]
|
|
152
|
+
all_text = (full_response + " " + response.response).lower()
|
|
153
|
+
math_results_found = sum(1 for result in expected_intermediate_results
|
|
154
|
+
if result in all_text)
|
|
155
|
+
|
|
156
|
+
print(f"🔢 Mathematical results found: {math_results_found}/3 expected")
|
|
157
|
+
print(f"Full text searched: {all_text[:200]}...")
|
|
158
|
+
|
|
159
|
+
# More lenient assertion - just check that some mathematical progress was made
|
|
160
|
+
self.assertGreaterEqual(math_results_found, 1,
|
|
161
|
+
f"Expected at least 1 mathematical result. Found {math_results_found}. "
|
|
162
|
+
f"Full text: {all_text}")
|
|
163
|
+
|
|
164
|
+
# Verify that streaming actually produced content
|
|
165
|
+
self.assertGreater(len(streaming_deltas), 0, "Expected streaming deltas to be produced")
|
|
166
|
+
self.assertGreater(len(response.response.strip()), 0, "Expected non-empty final response")
|
|
167
|
+
|
|
67
168
|
|
|
68
169
|
if __name__ == "__main__":
|
|
69
170
|
unittest.main()
|
tests/test_gemini.py
CHANGED
|
@@ -4,25 +4,48 @@ import warnings
|
|
|
4
4
|
warnings.simplefilter("ignore", DeprecationWarning)
|
|
5
5
|
|
|
6
6
|
import unittest
|
|
7
|
+
import asyncio
|
|
8
|
+
import gc
|
|
7
9
|
|
|
8
10
|
from vectara_agentic.agent import Agent
|
|
9
11
|
from vectara_agentic.tools import ToolsFactory
|
|
12
|
+
from vectara_agentic.tools_catalog import ToolsCatalog
|
|
13
|
+
from vectara_agentic.llm_utils import clear_llm_cache
|
|
10
14
|
|
|
11
15
|
|
|
12
16
|
import nest_asyncio
|
|
13
17
|
|
|
14
18
|
nest_asyncio.apply()
|
|
15
19
|
|
|
16
|
-
from conftest import (
|
|
20
|
+
from tests.conftest import (
|
|
17
21
|
mult,
|
|
22
|
+
add,
|
|
18
23
|
fc_config_gemini,
|
|
19
24
|
STANDARD_TEST_TOPIC,
|
|
20
25
|
STANDARD_TEST_INSTRUCTIONS,
|
|
21
26
|
)
|
|
22
27
|
|
|
23
28
|
|
|
24
|
-
class TestGEMINI(unittest.
|
|
25
|
-
def
|
|
29
|
+
class TestGEMINI(unittest.IsolatedAsyncioTestCase):
|
|
30
|
+
def setUp(self):
|
|
31
|
+
"""Set up test fixtures."""
|
|
32
|
+
super().setUp()
|
|
33
|
+
# Clear any cached LLM instances before each test
|
|
34
|
+
clear_llm_cache()
|
|
35
|
+
# Force garbage collection to clean up any lingering resources
|
|
36
|
+
gc.collect()
|
|
37
|
+
|
|
38
|
+
async def asyncTearDown(self):
|
|
39
|
+
"""Clean up after each test - async version."""
|
|
40
|
+
await super().asyncTearDown()
|
|
41
|
+
# Clear cached LLM instances after each test
|
|
42
|
+
clear_llm_cache()
|
|
43
|
+
# Force garbage collection
|
|
44
|
+
gc.collect()
|
|
45
|
+
# Small delay to allow cleanup
|
|
46
|
+
await asyncio.sleep(0.01)
|
|
47
|
+
|
|
48
|
+
async def test_gemini(self):
|
|
26
49
|
tools = [ToolsFactory().create_tool(mult)]
|
|
27
50
|
|
|
28
51
|
agent = Agent(
|
|
@@ -31,14 +54,14 @@ class TestGEMINI(unittest.TestCase):
|
|
|
31
54
|
topic=STANDARD_TEST_TOPIC,
|
|
32
55
|
custom_instructions=STANDARD_TEST_INSTRUCTIONS,
|
|
33
56
|
)
|
|
34
|
-
_ = agent.
|
|
35
|
-
_ = agent.
|
|
36
|
-
res = agent.
|
|
57
|
+
_ = await agent.achat("What is 5 times 10. Only give the answer, nothing else")
|
|
58
|
+
_ = await agent.achat("what is 3 times 7. Only give the answer, nothing else")
|
|
59
|
+
res = await agent.achat(
|
|
37
60
|
"what is the result of multiplying the results of the last two multiplications. Only give the answer, nothing else."
|
|
38
61
|
)
|
|
39
62
|
self.assertIn("1050", res.response)
|
|
40
63
|
|
|
41
|
-
def test_gemini_single_prompt(self):
|
|
64
|
+
async def test_gemini_single_prompt(self):
|
|
42
65
|
tools = [ToolsFactory().create_tool(mult)]
|
|
43
66
|
|
|
44
67
|
agent = Agent(
|
|
@@ -47,11 +70,74 @@ class TestGEMINI(unittest.TestCase):
|
|
|
47
70
|
topic=STANDARD_TEST_TOPIC,
|
|
48
71
|
custom_instructions=STANDARD_TEST_INSTRUCTIONS,
|
|
49
72
|
)
|
|
50
|
-
res = agent.
|
|
73
|
+
res = await agent.achat(
|
|
51
74
|
"First, multiply 5 by 10. Then, multiply 3 by 7. Finally, multiply the results of the first two calculations."
|
|
52
75
|
)
|
|
53
76
|
self.assertIn("1050", res.response)
|
|
54
77
|
|
|
78
|
+
async def test_gemini_25_flash_multi_tool_chain(self):
|
|
79
|
+
"""Test Gemini 2.5 Flash with complex multi-step reasoning chain using multiple tools."""
|
|
80
|
+
# Use Gemini config (Gemini 2.5 Flash)
|
|
81
|
+
tools_catalog = ToolsCatalog(fc_config_gemini)
|
|
82
|
+
tools = [
|
|
83
|
+
ToolsFactory().create_tool(mult),
|
|
84
|
+
ToolsFactory().create_tool(add),
|
|
85
|
+
ToolsFactory().create_tool(tools_catalog.summarize_text),
|
|
86
|
+
ToolsFactory().create_tool(tools_catalog.rephrase_text),
|
|
87
|
+
]
|
|
88
|
+
|
|
89
|
+
agent = Agent(
|
|
90
|
+
agent_config=fc_config_gemini,
|
|
91
|
+
tools=tools,
|
|
92
|
+
topic=STANDARD_TEST_TOPIC,
|
|
93
|
+
custom_instructions="You are a mathematical reasoning agent that explains your work step by step.",
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
# Complex multi-step reasoning task
|
|
97
|
+
complex_query = (
|
|
98
|
+
"Perform this calculation step by step: "
|
|
99
|
+
"First multiply 3 by 8, then add 14 to that result, "
|
|
100
|
+
"then multiply the new result by 3. "
|
|
101
|
+
"After getting the final number, create a text description of the entire mathematical process "
|
|
102
|
+
"(e.g., 'First I multiplied 3 by 8 to get 24, then added 14 to get 38, then multiplied by 3 to get 114'). "
|
|
103
|
+
"Then use the summarize_text tool to summarize that text description with expertise in 'mathematics education'. "
|
|
104
|
+
"Finally, use the rephrase_text tool to rephrase that summary as a 10-year-old would explain it."
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
print("\nStarting Gemini 2.5 Flash multi-tool chain test")
|
|
108
|
+
print(f"Query: {complex_query}")
|
|
109
|
+
|
|
110
|
+
# Note: Gemini tests now use async chat
|
|
111
|
+
response = await agent.achat(complex_query)
|
|
112
|
+
|
|
113
|
+
print(f"Final response: {response.response}")
|
|
114
|
+
print(f"📄 Final response length: {len(response.response)} chars")
|
|
115
|
+
|
|
116
|
+
# Check for mathematical results in the response
|
|
117
|
+
# Expected: 3*8=24, 24+14=38, 38*3=114
|
|
118
|
+
expected_intermediate_results = ["24", "38", "114"]
|
|
119
|
+
response_text = response.response.lower()
|
|
120
|
+
math_results_found = sum(1 for result in expected_intermediate_results
|
|
121
|
+
if result in response_text)
|
|
122
|
+
|
|
123
|
+
print(f"Mathematical results found: {math_results_found}/3 expected")
|
|
124
|
+
print(f"Response text searched: {response_text[:200]}...")
|
|
125
|
+
|
|
126
|
+
# More lenient assertion - just check that some mathematical progress was made
|
|
127
|
+
self.assertGreaterEqual(math_results_found, 1,
|
|
128
|
+
f"Expected at least 1 mathematical result. Found {math_results_found}. "
|
|
129
|
+
f"Response: {response.response}")
|
|
130
|
+
|
|
131
|
+
# Verify response has content and mentions math concepts
|
|
132
|
+
self.assertGreater(len(response.response.strip()), 50, "Expected substantial response content")
|
|
133
|
+
|
|
134
|
+
# Check for indications of multi-tool usage (math, summary, or explanation content)
|
|
135
|
+
multi_tool_indicators = ["calculate", "multipl", "add", "summary", "explain", "mathematical", "process"]
|
|
136
|
+
indicators_found = sum(1 for indicator in multi_tool_indicators
|
|
137
|
+
if indicator in response_text)
|
|
138
|
+
self.assertGreaterEqual(indicators_found, 2,
|
|
139
|
+
f"Expected multiple tool usage indicators. Found {indicators_found}: {response.response}")
|
|
140
|
+
|
|
55
141
|
|
|
56
142
|
if __name__ == "__main__":
|
|
57
143
|
unittest.main()
|
tests/test_groq.py
CHANGED
|
@@ -8,6 +8,7 @@ import threading
|
|
|
8
8
|
|
|
9
9
|
from vectara_agentic.agent import Agent
|
|
10
10
|
from vectara_agentic.tools import ToolsFactory
|
|
11
|
+
from vectara_agentic.tools_catalog import ToolsCatalog
|
|
11
12
|
from vectara_agentic.agent_config import AgentConfig
|
|
12
13
|
from vectara_agentic.types import AgentType, ModelProvider
|
|
13
14
|
|
|
@@ -17,6 +18,7 @@ nest_asyncio.apply()
|
|
|
17
18
|
|
|
18
19
|
from conftest import (
|
|
19
20
|
mult,
|
|
21
|
+
add,
|
|
20
22
|
fc_config_groq,
|
|
21
23
|
STANDARD_TEST_TOPIC,
|
|
22
24
|
STANDARD_TEST_INSTRUCTIONS,
|
|
@@ -66,37 +68,116 @@ class TestGROQ(unittest.IsolatedAsyncioTestCase):
|
|
|
66
68
|
|
|
67
69
|
self.assertEqual(response3.response, "1050")
|
|
68
70
|
|
|
69
|
-
|
|
70
|
-
|
|
71
|
+
# Skipping test_gpt_oss_120b due to model's internal tools conflicting with function calling
|
|
72
|
+
# GPT-OSS-120B has internal tools like repo_browser.open_file that cause validation errors
|
|
73
|
+
|
|
74
|
+
async def test_gpt_oss_20b(self):
|
|
75
|
+
"""Test GPT-OSS-20B model with complex multi-step reasoning chain using multiple tools via GROQ."""
|
|
71
76
|
with ARIZE_LOCK:
|
|
72
|
-
# Create config
|
|
73
|
-
|
|
77
|
+
# Create config for GPT-OSS-20B via GROQ
|
|
78
|
+
gpt_oss_20b_config = AgentConfig(
|
|
74
79
|
agent_type=AgentType.FUNCTION_CALLING,
|
|
75
80
|
main_llm_provider=ModelProvider.GROQ,
|
|
76
|
-
main_llm_model_name="openai/gpt-oss-
|
|
81
|
+
main_llm_model_name="openai/gpt-oss-20b",
|
|
77
82
|
tool_llm_provider=ModelProvider.GROQ,
|
|
78
|
-
tool_llm_model_name="openai/gpt-oss-
|
|
83
|
+
tool_llm_model_name="openai/gpt-oss-20b",
|
|
79
84
|
)
|
|
80
85
|
|
|
81
|
-
tools
|
|
86
|
+
# Create multiple tools for complex reasoning
|
|
87
|
+
tools_catalog = ToolsCatalog(gpt_oss_20b_config)
|
|
88
|
+
tools = [
|
|
89
|
+
ToolsFactory().create_tool(mult),
|
|
90
|
+
ToolsFactory().create_tool(add),
|
|
91
|
+
ToolsFactory().create_tool(tools_catalog.summarize_text),
|
|
92
|
+
ToolsFactory().create_tool(tools_catalog.rephrase_text),
|
|
93
|
+
]
|
|
94
|
+
|
|
82
95
|
agent = Agent(
|
|
83
|
-
agent_config=
|
|
96
|
+
agent_config=gpt_oss_20b_config,
|
|
84
97
|
tools=tools,
|
|
85
98
|
topic=STANDARD_TEST_TOPIC,
|
|
86
|
-
custom_instructions=
|
|
99
|
+
custom_instructions="You are a mathematical reasoning agent that explains your work step by step.",
|
|
87
100
|
)
|
|
88
101
|
|
|
89
|
-
#
|
|
90
|
-
|
|
91
|
-
"
|
|
102
|
+
# Complex multi-step reasoning task
|
|
103
|
+
complex_query = (
|
|
104
|
+
"Perform this calculation step by step: "
|
|
105
|
+
"First multiply 6 by 9, then add 12 to that result, "
|
|
106
|
+
"then multiply the new result by 2. "
|
|
107
|
+
"After getting the final number, summarize the entire mathematical process "
|
|
108
|
+
"with expertise in 'mathematics education', "
|
|
109
|
+
"then rephrase that summary as a 10-year-old would explain it."
|
|
92
110
|
)
|
|
93
|
-
|
|
111
|
+
|
|
112
|
+
print("\nStarting GPT-OSS-20B multi-tool chain test (GROQ)")
|
|
113
|
+
print(f"Query: {complex_query}")
|
|
114
|
+
print("Streaming response:\n" + "="*50)
|
|
115
|
+
|
|
116
|
+
stream = await agent.astream_chat(complex_query)
|
|
117
|
+
|
|
118
|
+
# Capture streaming deltas and tool calls
|
|
119
|
+
streaming_deltas = []
|
|
120
|
+
tool_calls_made = []
|
|
121
|
+
full_response = ""
|
|
122
|
+
|
|
94
123
|
async for chunk in stream.async_response_gen():
|
|
95
|
-
|
|
124
|
+
if chunk and chunk.strip():
|
|
125
|
+
streaming_deltas.append(chunk)
|
|
126
|
+
full_response += chunk
|
|
127
|
+
# Display each streaming delta
|
|
128
|
+
print(f"📡 Delta: {repr(chunk)}")
|
|
129
|
+
|
|
130
|
+
# Track tool calls in the stream
|
|
131
|
+
if "mult" in chunk.lower():
|
|
132
|
+
if "mult" not in [call["tool"] for call in tool_calls_made]:
|
|
133
|
+
tool_calls_made.append({"tool": "mult", "order": len(tool_calls_made) + 1})
|
|
134
|
+
print(f"Tool call detected: mult (#{len(tool_calls_made)})")
|
|
135
|
+
if "add" in chunk.lower():
|
|
136
|
+
if "add" not in [call["tool"] for call in tool_calls_made]:
|
|
137
|
+
tool_calls_made.append({"tool": "add", "order": len(tool_calls_made) + 1})
|
|
138
|
+
print(f"Tool call detected: add (#{len(tool_calls_made)})")
|
|
139
|
+
if "summarize" in chunk.lower():
|
|
140
|
+
if "summarize_text" not in [call["tool"] for call in tool_calls_made]:
|
|
141
|
+
tool_calls_made.append({"tool": "summarize_text", "order": len(tool_calls_made) + 1})
|
|
142
|
+
print(f"Tool call detected: summarize_text (#{len(tool_calls_made)})")
|
|
143
|
+
if "rephrase" in chunk.lower():
|
|
144
|
+
if "rephrase_text" not in [call["tool"] for call in tool_calls_made]:
|
|
145
|
+
tool_calls_made.append({"tool": "rephrase_text", "order": len(tool_calls_made) + 1})
|
|
146
|
+
print(f"Tool call detected: rephrase_text (#{len(tool_calls_made)})")
|
|
147
|
+
|
|
96
148
|
response = await stream.aget_response()
|
|
97
149
|
|
|
98
|
-
|
|
99
|
-
|
|
150
|
+
print("="*50)
|
|
151
|
+
print(f"Streaming completed. Total deltas: {len(streaming_deltas)}")
|
|
152
|
+
print(f"Tool calls made: {[call['tool'] for call in tool_calls_made]}")
|
|
153
|
+
print(f"📄 Final response length: {len(response.response)} chars")
|
|
154
|
+
print(f"Final response: {response.response}")
|
|
155
|
+
|
|
156
|
+
# Validate tool usage sequence
|
|
157
|
+
tools_used = [call["tool"] for call in tool_calls_made]
|
|
158
|
+
print(f"🧪 Tools used in order: {tools_used}")
|
|
159
|
+
|
|
160
|
+
# Check that at least multiplication happened (basic requirement)
|
|
161
|
+
self.assertIn("mult", tools_used, f"Expected multiplication tool to be used. Tools used: {tools_used}")
|
|
162
|
+
|
|
163
|
+
# Check for mathematical results in the full response or streaming deltas
|
|
164
|
+
# Expected: 6*9=54, 54+12=66, 66*2=132
|
|
165
|
+
expected_intermediate_results = ["54", "66", "132"]
|
|
166
|
+
all_text = (full_response + " " + response.response).lower()
|
|
167
|
+
math_results_found = sum(1 for result in expected_intermediate_results
|
|
168
|
+
if result in all_text)
|
|
169
|
+
|
|
170
|
+
print(f"🔢 Mathematical results found: {math_results_found}/3 expected")
|
|
171
|
+
print(f"Full text searched: {all_text[:200]}...")
|
|
172
|
+
|
|
173
|
+
# More lenient assertion - just check that some mathematical progress was made
|
|
174
|
+
self.assertGreaterEqual(math_results_found, 1,
|
|
175
|
+
f"Expected at least 1 mathematical result. Found {math_results_found}. "
|
|
176
|
+
f"Full text: {all_text}")
|
|
177
|
+
|
|
178
|
+
# Verify that streaming actually produced content
|
|
179
|
+
self.assertGreater(len(streaming_deltas), 0, "Expected streaming deltas to be produced")
|
|
180
|
+
self.assertGreater(len(response.response.strip()), 0, "Expected non-empty final response")
|
|
100
181
|
|
|
101
182
|
|
|
102
183
|
if __name__ == "__main__":
|
tests/test_openai.py
CHANGED
|
@@ -8,6 +8,7 @@ import threading
|
|
|
8
8
|
|
|
9
9
|
from vectara_agentic.agent import Agent
|
|
10
10
|
from vectara_agentic.tools import ToolsFactory
|
|
11
|
+
from vectara_agentic.tools_catalog import ToolsCatalog
|
|
11
12
|
from vectara_agentic.agent_config import AgentConfig
|
|
12
13
|
from vectara_agentic.types import AgentType, ModelProvider
|
|
13
14
|
|
|
@@ -18,6 +19,7 @@ nest_asyncio.apply()
|
|
|
18
19
|
from conftest import (
|
|
19
20
|
fc_config_openai,
|
|
20
21
|
mult,
|
|
22
|
+
add,
|
|
21
23
|
STANDARD_TEST_TOPIC,
|
|
22
24
|
STANDARD_TEST_INSTRUCTIONS,
|
|
23
25
|
)
|
|
@@ -155,6 +157,105 @@ class TestOpenAI(unittest.IsolatedAsyncioTestCase):
|
|
|
155
157
|
|
|
156
158
|
self.assertIn("25", response.response)
|
|
157
159
|
|
|
160
|
+
async def test_gpt_41_mini_multi_tool_chain(self):
|
|
161
|
+
"""Test GPT-4.1-mini with complex multi-step reasoning chain using multiple tools."""
|
|
162
|
+
with ARIZE_LOCK:
|
|
163
|
+
# Use default OpenAI config (gpt-4.1-mini)
|
|
164
|
+
tools_catalog = ToolsCatalog(fc_config_openai)
|
|
165
|
+
tools = [
|
|
166
|
+
ToolsFactory().create_tool(mult),
|
|
167
|
+
ToolsFactory().create_tool(add),
|
|
168
|
+
ToolsFactory().create_tool(tools_catalog.summarize_text),
|
|
169
|
+
ToolsFactory().create_tool(tools_catalog.rephrase_text),
|
|
170
|
+
]
|
|
171
|
+
|
|
172
|
+
agent = Agent(
|
|
173
|
+
agent_config=fc_config_openai,
|
|
174
|
+
tools=tools,
|
|
175
|
+
topic=STANDARD_TEST_TOPIC,
|
|
176
|
+
custom_instructions="You are a mathematical reasoning agent that explains your work step by step.",
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
# Complex multi-step reasoning task
|
|
180
|
+
complex_query = (
|
|
181
|
+
"Perform this calculation step by step: "
|
|
182
|
+
"First multiply 4 by 7, then add 18 to that result, "
|
|
183
|
+
"then multiply the new result by 2. "
|
|
184
|
+
"After getting the final number, summarize the entire mathematical process "
|
|
185
|
+
"with expertise in 'mathematics education', "
|
|
186
|
+
"then rephrase that summary as a 10-year-old would explain it."
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
print("\nStarting GPT-4.1-mini multi-tool chain test (OpenAI)")
|
|
190
|
+
print(f"Query: {complex_query}")
|
|
191
|
+
print("Streaming response:\n" + "="*50)
|
|
192
|
+
|
|
193
|
+
stream = await agent.astream_chat(complex_query)
|
|
194
|
+
|
|
195
|
+
# Capture streaming deltas and tool calls
|
|
196
|
+
streaming_deltas = []
|
|
197
|
+
tool_calls_made = []
|
|
198
|
+
full_response = ""
|
|
199
|
+
|
|
200
|
+
async for chunk in stream.async_response_gen():
|
|
201
|
+
if chunk and chunk.strip():
|
|
202
|
+
streaming_deltas.append(chunk)
|
|
203
|
+
full_response += chunk
|
|
204
|
+
# Display each streaming delta
|
|
205
|
+
print(f"Delta: {repr(chunk)}")
|
|
206
|
+
|
|
207
|
+
# Track tool calls in the stream
|
|
208
|
+
if "mult" in chunk.lower():
|
|
209
|
+
if "mult" not in [call["tool"] for call in tool_calls_made]:
|
|
210
|
+
tool_calls_made.append({"tool": "mult", "order": len(tool_calls_made) + 1})
|
|
211
|
+
print(f"Tool call detected: mult (#{len(tool_calls_made)})")
|
|
212
|
+
if "add" in chunk.lower():
|
|
213
|
+
if "add" not in [call["tool"] for call in tool_calls_made]:
|
|
214
|
+
tool_calls_made.append({"tool": "add", "order": len(tool_calls_made) + 1})
|
|
215
|
+
print(f"Tool call detected: add (#{len(tool_calls_made)})")
|
|
216
|
+
if "summarize" in chunk.lower():
|
|
217
|
+
if "summarize_text" not in [call["tool"] for call in tool_calls_made]:
|
|
218
|
+
tool_calls_made.append({"tool": "summarize_text", "order": len(tool_calls_made) + 1})
|
|
219
|
+
print(f"Tool call detected: summarize_text (#{len(tool_calls_made)})")
|
|
220
|
+
if "rephrase" in chunk.lower():
|
|
221
|
+
if "rephrase_text" not in [call["tool"] for call in tool_calls_made]:
|
|
222
|
+
tool_calls_made.append({"tool": "rephrase_text", "order": len(tool_calls_made) + 1})
|
|
223
|
+
print(f"Tool call detected: rephrase_text (#{len(tool_calls_made)})")
|
|
224
|
+
|
|
225
|
+
response = await stream.aget_response()
|
|
226
|
+
|
|
227
|
+
print("="*50)
|
|
228
|
+
print(f"Streaming completed. Total deltas: {len(streaming_deltas)}")
|
|
229
|
+
print(f"Tool calls made: {[call['tool'] for call in tool_calls_made]}")
|
|
230
|
+
print(f"📄 Final response length: {len(response.response)} chars")
|
|
231
|
+
print(f"Final response: {response.response}")
|
|
232
|
+
|
|
233
|
+
# Validate tool usage sequence
|
|
234
|
+
tools_used = [call["tool"] for call in tool_calls_made]
|
|
235
|
+
print(f"🧪 Tools used in order: {tools_used}")
|
|
236
|
+
|
|
237
|
+
# Check that at least multiplication happened (basic requirement)
|
|
238
|
+
self.assertIn("mult", tools_used, f"Expected multiplication tool to be used. Tools used: {tools_used}")
|
|
239
|
+
|
|
240
|
+
# Check for mathematical results in the full response or streaming deltas
|
|
241
|
+
# Expected: 4*7=28, 28+18=46, 46*2=92
|
|
242
|
+
expected_intermediate_results = ["28", "46", "92"]
|
|
243
|
+
all_text = (full_response + " " + response.response).lower()
|
|
244
|
+
math_results_found = sum(1 for result in expected_intermediate_results
|
|
245
|
+
if result in all_text)
|
|
246
|
+
|
|
247
|
+
print(f"Mathematical results found: {math_results_found}/3 expected")
|
|
248
|
+
print(f"Full text searched: {all_text[:200]}...")
|
|
249
|
+
|
|
250
|
+
# More lenient assertion - just check that some mathematical progress was made
|
|
251
|
+
self.assertGreaterEqual(math_results_found, 1,
|
|
252
|
+
f"Expected at least 1 mathematical result. Found {math_results_found}. "
|
|
253
|
+
f"Full text: {all_text}")
|
|
254
|
+
|
|
255
|
+
# Verify that streaming actually produced content
|
|
256
|
+
self.assertGreater(len(streaming_deltas), 0, "Expected streaming deltas to be produced")
|
|
257
|
+
self.assertGreater(len(response.response.strip()), 0, "Expected non-empty final response")
|
|
258
|
+
|
|
158
259
|
|
|
159
260
|
if __name__ == "__main__":
|
|
160
261
|
unittest.main()
|