validmind 2.5.6__py3-none-any.whl → 2.5.15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- validmind/__version__.py +1 -1
- validmind/ai/test_descriptions.py +26 -7
- validmind/api_client.py +89 -43
- validmind/client.py +2 -2
- validmind/client_config.py +11 -14
- validmind/datasets/regression/fred_timeseries.py +67 -138
- validmind/template.py +1 -0
- validmind/test_suites/__init__.py +0 -2
- validmind/test_suites/statsmodels_timeseries.py +1 -1
- validmind/test_suites/summarization.py +0 -1
- validmind/test_suites/time_series.py +0 -43
- validmind/tests/__types__.py +3 -13
- validmind/tests/data_validation/ACFandPACFPlot.py +15 -13
- validmind/tests/data_validation/ADF.py +31 -24
- validmind/tests/data_validation/AutoAR.py +9 -9
- validmind/tests/data_validation/AutoMA.py +23 -16
- validmind/tests/data_validation/AutoSeasonality.py +18 -16
- validmind/tests/data_validation/AutoStationarity.py +21 -16
- validmind/tests/data_validation/BivariateScatterPlots.py +67 -96
- validmind/tests/data_validation/ChiSquaredFeaturesTable.py +82 -124
- validmind/tests/data_validation/ClassImbalance.py +15 -12
- validmind/tests/data_validation/DFGLSArch.py +19 -13
- validmind/tests/data_validation/DatasetDescription.py +17 -11
- validmind/tests/data_validation/DatasetSplit.py +7 -5
- validmind/tests/data_validation/DescriptiveStatistics.py +28 -21
- validmind/tests/data_validation/Duplicates.py +33 -25
- validmind/tests/data_validation/EngleGrangerCoint.py +35 -33
- validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +59 -71
- validmind/tests/data_validation/HighCardinality.py +19 -12
- validmind/tests/data_validation/HighPearsonCorrelation.py +27 -22
- validmind/tests/data_validation/IQROutliersBarPlot.py +13 -10
- validmind/tests/data_validation/IQROutliersTable.py +40 -36
- validmind/tests/data_validation/IsolationForestOutliers.py +21 -14
- validmind/tests/data_validation/KPSS.py +34 -29
- validmind/tests/data_validation/LaggedCorrelationHeatmap.py +22 -15
- validmind/tests/data_validation/MissingValues.py +32 -27
- validmind/tests/data_validation/MissingValuesBarPlot.py +25 -21
- validmind/tests/data_validation/PearsonCorrelationMatrix.py +71 -84
- validmind/tests/data_validation/PhillipsPerronArch.py +37 -30
- validmind/tests/data_validation/RollingStatsPlot.py +31 -23
- validmind/tests/data_validation/ScatterPlot.py +63 -78
- validmind/tests/data_validation/SeasonalDecompose.py +38 -34
- validmind/tests/data_validation/Skewness.py +35 -37
- validmind/tests/data_validation/SpreadPlot.py +35 -35
- validmind/tests/data_validation/TabularCategoricalBarPlots.py +23 -17
- validmind/tests/data_validation/TabularDateTimeHistograms.py +21 -13
- validmind/tests/data_validation/TabularDescriptionTables.py +51 -16
- validmind/tests/data_validation/TabularNumericalHistograms.py +25 -22
- validmind/tests/data_validation/TargetRateBarPlots.py +21 -14
- validmind/tests/data_validation/TimeSeriesDescription.py +25 -18
- validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +23 -17
- validmind/tests/data_validation/TimeSeriesFrequency.py +24 -17
- validmind/tests/data_validation/TimeSeriesHistogram.py +33 -32
- validmind/tests/data_validation/TimeSeriesLinePlot.py +17 -10
- validmind/tests/data_validation/TimeSeriesMissingValues.py +15 -10
- validmind/tests/data_validation/TimeSeriesOutliers.py +37 -33
- validmind/tests/data_validation/TooManyZeroValues.py +16 -11
- validmind/tests/data_validation/UniqueRows.py +11 -6
- validmind/tests/data_validation/WOEBinPlots.py +23 -16
- validmind/tests/data_validation/WOEBinTable.py +35 -30
- validmind/tests/data_validation/ZivotAndrewsArch.py +34 -28
- validmind/tests/data_validation/nlp/CommonWords.py +21 -14
- validmind/tests/data_validation/nlp/Hashtags.py +27 -20
- validmind/tests/data_validation/nlp/LanguageDetection.py +33 -14
- validmind/tests/data_validation/nlp/Mentions.py +21 -15
- validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +32 -9
- validmind/tests/data_validation/nlp/Punctuations.py +24 -20
- validmind/tests/data_validation/nlp/Sentiment.py +27 -8
- validmind/tests/data_validation/nlp/StopWords.py +26 -19
- validmind/tests/data_validation/nlp/TextDescription.py +36 -35
- validmind/tests/data_validation/nlp/Toxicity.py +32 -9
- validmind/tests/decorator.py +81 -42
- validmind/tests/model_validation/BertScore.py +36 -27
- validmind/tests/model_validation/BleuScore.py +25 -19
- validmind/tests/model_validation/ClusterSizeDistribution.py +38 -34
- validmind/tests/model_validation/ContextualRecall.py +35 -13
- validmind/tests/model_validation/FeaturesAUC.py +32 -13
- validmind/tests/model_validation/MeteorScore.py +46 -33
- validmind/tests/model_validation/ModelMetadata.py +32 -64
- validmind/tests/model_validation/ModelPredictionResiduals.py +75 -73
- validmind/tests/model_validation/RegardScore.py +30 -14
- validmind/tests/model_validation/RegressionResidualsPlot.py +10 -5
- validmind/tests/model_validation/RougeScore.py +36 -30
- validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +30 -14
- validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +27 -30
- validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +68 -63
- validmind/tests/model_validation/TokenDisparity.py +31 -23
- validmind/tests/model_validation/ToxicityScore.py +26 -17
- validmind/tests/model_validation/embeddings/ClusterDistribution.py +24 -20
- validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +30 -27
- validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +7 -5
- validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +32 -23
- validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +7 -5
- validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +15 -11
- validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +29 -29
- validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +34 -25
- validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +38 -26
- validmind/tests/model_validation/embeddings/StabilityAnalysis.py +40 -1
- validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +18 -17
- validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +40 -45
- validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +17 -19
- validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +29 -25
- validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +38 -28
- validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -4
- validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
- validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
- validmind/tests/model_validation/ragas/AspectCritique.py +7 -0
- validmind/tests/model_validation/ragas/ContextEntityRecall.py +9 -8
- validmind/tests/model_validation/ragas/ContextPrecision.py +5 -4
- validmind/tests/model_validation/ragas/ContextRecall.py +5 -4
- validmind/tests/model_validation/ragas/Faithfulness.py +5 -4
- validmind/tests/model_validation/ragas/utils.py +6 -0
- validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +19 -12
- validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +22 -17
- validmind/tests/model_validation/sklearn/ClassifierPerformance.py +27 -25
- validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +7 -5
- validmind/tests/model_validation/sklearn/ClusterPerformance.py +40 -78
- validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +15 -17
- validmind/tests/model_validation/sklearn/CompletenessScore.py +17 -11
- validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -15
- validmind/tests/model_validation/sklearn/FeatureImportance.py +95 -0
- validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +7 -7
- validmind/tests/model_validation/sklearn/HomogeneityScore.py +19 -12
- validmind/tests/model_validation/sklearn/HyperParametersTuning.py +35 -30
- validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +10 -5
- validmind/tests/model_validation/sklearn/MinimumAccuracy.py +32 -32
- validmind/tests/model_validation/sklearn/MinimumF1Score.py +23 -23
- validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +15 -10
- validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +26 -19
- validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +38 -18
- validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +31 -25
- validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +8 -6
- validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +24 -17
- validmind/tests/model_validation/sklearn/ROCCurve.py +12 -7
- validmind/tests/model_validation/sklearn/RegressionErrors.py +74 -130
- validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +27 -12
- validmind/tests/model_validation/sklearn/{RegressionModelsPerformanceComparison.py → RegressionPerformance.py} +18 -20
- validmind/tests/model_validation/sklearn/RegressionR2Square.py +55 -93
- validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +32 -13
- validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +113 -73
- validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +7 -5
- validmind/tests/model_validation/sklearn/SilhouettePlot.py +27 -19
- validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +25 -18
- validmind/tests/model_validation/sklearn/VMeasure.py +14 -13
- validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +7 -5
- validmind/tests/model_validation/statsmodels/AutoARIMA.py +24 -18
- validmind/tests/model_validation/statsmodels/BoxPierce.py +14 -10
- validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +73 -104
- validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +19 -12
- validmind/tests/model_validation/statsmodels/GINITable.py +44 -77
- validmind/tests/model_validation/statsmodels/JarqueBera.py +27 -22
- validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +33 -34
- validmind/tests/model_validation/statsmodels/LJungBox.py +32 -28
- validmind/tests/model_validation/statsmodels/Lilliefors.py +27 -24
- validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +87 -119
- validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +100 -0
- validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +14 -9
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +17 -13
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +46 -43
- validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +38 -36
- validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +30 -28
- validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +18 -11
- validmind/tests/model_validation/statsmodels/RunsTest.py +32 -28
- validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +75 -107
- validmind/tests/model_validation/statsmodels/ShapiroWilk.py +15 -8
- validmind/tests/ongoing_monitoring/FeatureDrift.py +10 -6
- validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +31 -25
- validmind/tests/ongoing_monitoring/PredictionCorrelation.py +29 -21
- validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +31 -23
- validmind/tests/prompt_validation/Bias.py +14 -11
- validmind/tests/prompt_validation/Clarity.py +16 -14
- validmind/tests/prompt_validation/Conciseness.py +7 -5
- validmind/tests/prompt_validation/Delimitation.py +23 -22
- validmind/tests/prompt_validation/NegativeInstruction.py +7 -5
- validmind/tests/prompt_validation/Robustness.py +12 -10
- validmind/tests/prompt_validation/Specificity.py +13 -11
- validmind/tests/prompt_validation/ai_powered_test.py +6 -0
- validmind/tests/run.py +68 -23
- validmind/unit_metrics/__init__.py +81 -144
- validmind/unit_metrics/classification/{sklearn/Accuracy.py → Accuracy.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/F1.py → F1.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/Precision.py → Precision.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/ROC_AUC.py → ROC_AUC.py} +1 -2
- validmind/unit_metrics/classification/{sklearn/Recall.py → Recall.py} +1 -1
- validmind/unit_metrics/regression/{sklearn/AdjustedRSquaredScore.py → AdjustedRSquaredScore.py} +1 -1
- validmind/unit_metrics/regression/GiniCoefficient.py +1 -1
- validmind/unit_metrics/regression/HuberLoss.py +1 -1
- validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +1 -1
- validmind/unit_metrics/regression/{sklearn/MeanAbsoluteError.py → MeanAbsoluteError.py} +1 -1
- validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +1 -1
- validmind/unit_metrics/regression/MeanBiasDeviation.py +1 -1
- validmind/unit_metrics/regression/{sklearn/MeanSquaredError.py → MeanSquaredError.py} +1 -1
- validmind/unit_metrics/regression/QuantileLoss.py +1 -1
- validmind/unit_metrics/regression/{sklearn/RSquaredScore.py → RSquaredScore.py} +1 -1
- validmind/unit_metrics/regression/{sklearn/RootMeanSquaredError.py → RootMeanSquaredError.py} +1 -1
- validmind/vm_models/dataset/dataset.py +2 -0
- validmind/vm_models/figure.py +5 -0
- validmind/vm_models/test/result_wrapper.py +93 -132
- {validmind-2.5.6.dist-info → validmind-2.5.15.dist-info}/METADATA +1 -1
- {validmind-2.5.6.dist-info → validmind-2.5.15.dist-info}/RECORD +203 -210
- validmind/tests/data_validation/ANOVAOneWayTable.py +0 -138
- validmind/tests/data_validation/BivariateFeaturesBarPlots.py +0 -142
- validmind/tests/data_validation/BivariateHistograms.py +0 -117
- validmind/tests/data_validation/HeatmapFeatureCorrelations.py +0 -124
- validmind/tests/data_validation/MissingValuesRisk.py +0 -88
- validmind/tests/model_validation/ModelMetadataComparison.py +0 -59
- validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +0 -83
- validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +0 -135
- validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +0 -103
- {validmind-2.5.6.dist-info → validmind-2.5.15.dist-info}/LICENSE +0 -0
- {validmind-2.5.6.dist-info → validmind-2.5.15.dist-info}/WHEEL +0 -0
- {validmind-2.5.6.dist-info → validmind-2.5.15.dist-info}/entry_points.txt +0 -0
@@ -2,34 +2,37 @@
|
|
2
2
|
# See the LICENSE file in the root of this repository for details.
|
3
3
|
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
4
|
|
5
|
-
from dataclasses import dataclass
|
6
|
-
|
7
5
|
import numpy as np
|
8
6
|
import pandas as pd
|
9
7
|
from sklearn.metrics import roc_auc_score, roc_curve
|
10
8
|
|
11
|
-
from validmind
|
9
|
+
from validmind import tags, tasks
|
12
10
|
|
13
11
|
|
14
|
-
@
|
15
|
-
|
12
|
+
@tags("model_performance")
|
13
|
+
@tasks("classification")
|
14
|
+
def GINITable(dataset, model):
|
16
15
|
"""
|
17
16
|
Evaluates classification model performance using AUC, GINI, and KS metrics for training and test datasets.
|
18
17
|
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
18
|
+
### Purpose
|
19
|
+
|
20
|
+
The 'GINITable' metric is designed to evaluate the performance of a classification model by emphasizing its
|
21
|
+
discriminatory power. Specifically, it calculates and presents three important metrics - the Area under the ROC
|
22
|
+
Curve (AUC), the GINI coefficient, and the Kolmogorov-Smirnov (KS) statistic - for both training and test datasets.
|
23
|
+
|
24
|
+
### Test Mechanism
|
23
25
|
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
26
|
+
Using a dictionary for storing performance metrics for both the training and test datasets, the 'GINITable' metric
|
27
|
+
calculates each of these metrics sequentially. The Area under the ROC Curve (AUC) is calculated via the
|
28
|
+
`roc_auc_score` function from the Scikit-Learn library. The GINI coefficient, a measure of statistical dispersion,
|
29
|
+
is then computed by doubling the AUC and subtracting 1. Finally, the Kolmogorov-Smirnov (KS) statistic is
|
28
30
|
calculated via the `roc_curve` function from Scikit-Learn, with the False Positive Rate (FPR) subtracted from the
|
29
31
|
True Positive Rate (TPR) and the maximum value taken from the resulting data. These metrics are then stored in a
|
30
32
|
pandas DataFrame for convenient visualization.
|
31
33
|
|
32
|
-
|
34
|
+
### Signs of High Risk
|
35
|
+
|
33
36
|
- Low values for performance metrics may suggest a reduction in model performance, particularly a low AUC which
|
34
37
|
indicates poor classification performance, or a low GINI coefficient, which could suggest a decreased ability to
|
35
38
|
discriminate different classes.
|
@@ -38,7 +41,8 @@ class GINITable(Metric):
|
|
38
41
|
- Significant discrepancies between the performance on the training dataset and the test dataset may present
|
39
42
|
another signal of high risk.
|
40
43
|
|
41
|
-
|
44
|
+
### Strengths
|
45
|
+
|
42
46
|
- Offers three key performance metrics (AUC, GINI, and KS) in one test, providing a more comprehensive evaluation
|
43
47
|
of the model.
|
44
48
|
- Provides a direct comparison between the model's performance on training and testing datasets, which aids in
|
@@ -47,7 +51,8 @@ class GINITable(Metric):
|
|
47
51
|
performance even when dealing with imbalanced datasets.
|
48
52
|
- Presents the metrics in a user-friendly table format for easy comprehension and analysis.
|
49
53
|
|
50
|
-
|
54
|
+
### Limitations
|
55
|
+
|
51
56
|
- The GINI coefficient and KS statistic are both dependent on the AUC value. Therefore, any errors in the
|
52
57
|
calculation of the latter will adversely impact the former metrics too.
|
53
58
|
- Mainly suited for binary classification models and may require modifications for effective application in
|
@@ -57,64 +62,26 @@ class GINITable(Metric):
|
|
57
62
|
lead to inaccuracies in the metrics if the data is not appropriately preprocessed.
|
58
63
|
"""
|
59
64
|
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
dataset.input_id
|
84
|
-
) # Use input_id as the label for each dataset
|
85
|
-
metrics_dict["Dataset"].append(dataset_label)
|
86
|
-
|
87
|
-
# Retrieve y_true and y_pred for the current dataset
|
88
|
-
y_true = np.ravel(dataset.y) # Flatten y_true to make it one-dimensional
|
89
|
-
y_prob = dataset.y_prob(self.inputs.model)
|
90
|
-
|
91
|
-
# Compute metrics
|
92
|
-
y_true = np.array(y_true, dtype=float)
|
93
|
-
y_prob = np.array(y_prob, dtype=float)
|
94
|
-
|
95
|
-
fpr, tpr, _ = roc_curve(y_true, y_prob)
|
96
|
-
ks = max(tpr - fpr)
|
97
|
-
auc = roc_auc_score(y_true, y_prob)
|
98
|
-
gini = 2 * auc - 1
|
99
|
-
|
100
|
-
# Add the metrics to the dictionary
|
101
|
-
metrics_dict["AUC"].append(auc)
|
102
|
-
metrics_dict["GINI"].append(gini)
|
103
|
-
metrics_dict["KS"].append(ks)
|
104
|
-
|
105
|
-
# Create a DataFrame to store and return the results
|
106
|
-
metrics_df = pd.DataFrame(metrics_dict)
|
107
|
-
return metrics_df
|
108
|
-
|
109
|
-
def summary(self, metric_value):
|
110
|
-
summary_metrics_table = metric_value["metrics_summary"]
|
111
|
-
return ResultSummary(
|
112
|
-
results=[
|
113
|
-
ResultTable(
|
114
|
-
data=summary_metrics_table,
|
115
|
-
metadata=ResultTableMetadata(
|
116
|
-
title="AUC, GINI and KS for train and test datasets"
|
117
|
-
),
|
118
|
-
)
|
119
|
-
]
|
120
|
-
)
|
65
|
+
metrics_dict = {"AUC": [], "GINI": [], "KS": []}
|
66
|
+
|
67
|
+
# Retrieve y_true and y_pred for the current dataset
|
68
|
+
y_true = np.ravel(dataset.y) # Flatten y_true to make it one-dimensional
|
69
|
+
y_prob = dataset.y_prob(model)
|
70
|
+
|
71
|
+
# Compute metrics
|
72
|
+
y_true = np.array(y_true, dtype=float)
|
73
|
+
y_prob = np.array(y_prob, dtype=float)
|
74
|
+
|
75
|
+
fpr, tpr, _ = roc_curve(y_true, y_prob)
|
76
|
+
ks = max(tpr - fpr)
|
77
|
+
auc = roc_auc_score(y_true, y_prob)
|
78
|
+
gini = 2 * auc - 1
|
79
|
+
|
80
|
+
# Add the metrics to the dictionary
|
81
|
+
metrics_dict["AUC"].append(auc)
|
82
|
+
metrics_dict["GINI"].append(gini)
|
83
|
+
metrics_dict["KS"].append(ks)
|
84
|
+
|
85
|
+
# Create a DataFrame to store and return the results
|
86
|
+
metrics_df = pd.DataFrame(metrics_dict)
|
87
|
+
return metrics_df
|
@@ -11,36 +11,41 @@ class JarqueBera(Metric):
|
|
11
11
|
"""
|
12
12
|
Assesses normality of dataset features in an ML model using the Jarque-Bera test.
|
13
13
|
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
the
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
14
|
+
### Purpose
|
15
|
+
|
16
|
+
The purpose of the Jarque-Bera test as implemented in this metric is to determine if the features in the dataset of
|
17
|
+
a given Machine Learning model follow a normal distribution. This is crucial for understanding the distribution and
|
18
|
+
behavior of the model's features, as numerous statistical methods assume normal distribution of the data.
|
19
|
+
|
20
|
+
### Test Mechanism
|
21
|
+
|
22
|
+
The test mechanism involves computing the Jarque-Bera statistic, p-value, skew, and kurtosis for each feature in
|
23
|
+
the dataset. It utilizes the 'jarque_bera' function from the 'statsmodels' library in Python, storing the results
|
24
|
+
in a dictionary. The test evaluates the skewness and kurtosis to ascertain whether the dataset follows a normal
|
25
|
+
distribution. A significant p-value (typically less than 0.05) implies that the data does not possess normal
|
26
|
+
distribution.
|
27
|
+
|
28
|
+
### Signs of High Risk
|
29
|
+
|
30
|
+
- A high Jarque-Bera statistic and a low p-value (usually less than 0.05) indicate high-risk conditions.
|
27
31
|
- Such results suggest the data significantly deviates from a normal distribution. If a machine learning model
|
28
32
|
expects feature data to be normally distributed, these findings imply that it may not function as intended.
|
29
33
|
|
30
|
-
|
31
|
-
|
32
|
-
data
|
33
|
-
|
34
|
+
### Strengths
|
35
|
+
|
36
|
+
- Provides insights into the shape of the data distribution, helping determine whether a given set of data follows
|
37
|
+
a normal distribution.
|
38
|
+
- Particularly useful for risk assessment for models that assume a normal distribution of data.
|
34
39
|
- By measuring skewness and kurtosis, it provides additional insights into the nature and magnitude of a
|
35
40
|
distribution's deviation.
|
36
41
|
|
37
|
-
|
38
|
-
|
39
|
-
types of distributions.
|
42
|
+
### Limitations
|
43
|
+
|
44
|
+
- Only checks for normality in the data distribution. It cannot provide insights into other types of distributions.
|
40
45
|
- Datasets that aren't normally distributed but follow some other distribution might lead to inaccurate risk
|
41
46
|
assessments.
|
42
|
-
-
|
43
|
-
|
47
|
+
- Highly sensitive to large sample sizes, often rejecting the null hypothesis (that data is normally distributed)
|
48
|
+
even for minor deviations in larger datasets.
|
44
49
|
"""
|
45
50
|
|
46
51
|
name = "jarque_bera"
|
@@ -13,40 +13,39 @@ from validmind.vm_models import Metric, ResultSummary, ResultTable, ResultTableM
|
|
13
13
|
@dataclass
|
14
14
|
class KolmogorovSmirnov(Metric):
|
15
15
|
"""
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
-
|
47
|
-
|
48
|
-
-
|
49
|
-
kurtosis, that could directly impact model fitting.
|
16
|
+
Assesses whether each feature in the dataset aligns with a normal distribution using the Kolmogorov-Smirnov test.
|
17
|
+
|
18
|
+
### Purpose
|
19
|
+
|
20
|
+
The Kolmogorov-Smirnov (KS) test evaluates the distribution of features in a dataset to determine their alignment
|
21
|
+
with a normal distribution. This is important because many statistical methods and machine learning models assume
|
22
|
+
normality in the data distribution.
|
23
|
+
|
24
|
+
### Test Mechanism
|
25
|
+
|
26
|
+
This test calculates the KS statistic and corresponding p-value for each feature in the dataset. It does so by
|
27
|
+
comparing the cumulative distribution function of the feature with an ideal normal distribution. The KS statistic
|
28
|
+
and p-value for each feature are then stored in a dictionary. The p-value threshold to reject the normal
|
29
|
+
distribution hypothesis is not preset, providing flexibility for different applications.
|
30
|
+
|
31
|
+
### Signs of High Risk
|
32
|
+
|
33
|
+
- Elevated KS statistic for a feature combined with a low p-value, indicating a significant divergence from a
|
34
|
+
normal distribution.
|
35
|
+
- Features with notable deviations that could create problems if the model assumes normality in data distribution.
|
36
|
+
|
37
|
+
### Strengths
|
38
|
+
|
39
|
+
- The KS test is sensitive to differences in the location and shape of empirical cumulative distribution functions.
|
40
|
+
- It is non-parametric and adaptable to various datasets, as it does not assume any specific data distribution.
|
41
|
+
- Provides detailed insights into the distribution of individual features.
|
42
|
+
|
43
|
+
### Limitations
|
44
|
+
|
45
|
+
- The test's sensitivity to disparities in the tails of data distribution might cause false alarms about
|
46
|
+
non-normality.
|
47
|
+
- Less effective for multivariate distributions, as it is designed for univariate distributions.
|
48
|
+
- Does not identify specific types of non-normality, such as skewness or kurtosis, which could impact model fitting.
|
50
49
|
"""
|
51
50
|
|
52
51
|
name = "kolmogorov_smirnov"
|
@@ -11,36 +11,40 @@ class LJungBox(Metric):
|
|
11
11
|
"""
|
12
12
|
Assesses autocorrelations in dataset features by performing a Ljung-Box test on each feature.
|
13
13
|
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
-
|
14
|
+
### Purpose
|
15
|
+
|
16
|
+
The Ljung-Box test is a type of statistical test utilized to ascertain whether there are autocorrelations within a
|
17
|
+
given dataset that differ significantly from zero. In the context of a machine learning model, this test is
|
18
|
+
primarily used to evaluate data utilized in regression tasks, especially those involving time series and
|
19
|
+
forecasting.
|
20
|
+
|
21
|
+
### Test Mechanism
|
22
|
+
|
23
|
+
The test operates by iterating over each feature within the training dataset and applying the `acorr_ljungbox`
|
24
|
+
function from the `statsmodels.stats.diagnostic` library. This function calculates the Ljung-Box statistic and
|
25
|
+
p-value for each feature. These results are then stored in a dictionary where the keys are the feature names and
|
26
|
+
the values are dictionaries containing the statistic and p-value respectively. Generally, a lower p-value indicates
|
27
|
+
a higher likelihood of significant autocorrelations within the feature.
|
28
|
+
|
29
|
+
### Signs of High Risk
|
30
|
+
|
31
|
+
- High Ljung-Box statistic values or low p-values.
|
32
|
+
- Presence of significant autocorrelations in the respective features.
|
33
|
+
- Potential for negative impact on model performance or bias if autocorrelations are not properly handled.
|
34
|
+
|
35
|
+
### Strengths
|
36
|
+
|
37
|
+
- Powerful tool for detecting autocorrelations within datasets, especially in time series data.
|
38
|
+
- Provides quantitative measures (statistic and p-value) for precise evaluation.
|
39
|
+
- Helps avoid issues related to autoregressive residuals and other challenges in regression models.
|
40
|
+
|
41
|
+
### Limitations
|
42
|
+
|
43
|
+
- Cannot detect all types of non-linearity or complex interrelationships among variables.
|
40
44
|
- Testing individual features may not fully encapsulate the dynamics of the data if features interact with each
|
41
45
|
other.
|
42
|
-
-
|
43
|
-
|
46
|
+
- Designed more for traditional statistical models and may not be fully compatible with certain types of complex
|
47
|
+
machine learning models.
|
44
48
|
"""
|
45
49
|
|
46
50
|
name = "ljung_box"
|
@@ -14,44 +14,47 @@ class Lilliefors(Metric):
|
|
14
14
|
"""
|
15
15
|
Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.
|
16
16
|
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
statistic and p-value.
|
30
|
-
|
31
|
-
|
17
|
+
### Purpose
|
18
|
+
|
19
|
+
The purpose of this metric is to utilize the Lilliefors test, named in honor of the Swedish statistician Hubert
|
20
|
+
Lilliefors, in order to assess whether the features of the machine learning model's training dataset conform to a
|
21
|
+
normal distribution. This is done because the assumption of normal distribution plays a vital role in numerous
|
22
|
+
statistical procedures as well as numerous machine learning models. Should the features fail to follow a normal
|
23
|
+
distribution, some model types may not operate at optimal efficiency. This can potentially lead to inaccurate
|
24
|
+
predictions.
|
25
|
+
|
26
|
+
### Test Mechanism
|
27
|
+
|
28
|
+
The application of this test happens across all feature columns within the training dataset. For each feature, the
|
29
|
+
Lilliefors test returns a test statistic and p-value. The test statistic quantifies how far the feature's
|
30
|
+
distribution is from an ideal normal distribution, whereas the p-value aids in determining the statistical
|
31
|
+
relevance of this deviation. The final results are stored within a dictionary, the keys of which correspond to the
|
32
|
+
name of the feature column, and the values being another dictionary which houses the test statistic and p-value.
|
33
|
+
|
34
|
+
### Signs of High Risk
|
32
35
|
|
33
36
|
- If the p-value corresponding to a specific feature sinks below a pre-established significance level, generally
|
34
37
|
set at 0.05, then it can be deduced that the distribution of that feature significantly deviates from a normal
|
35
38
|
distribution. This can present a high risk for models that assume normality, as these models may perform
|
36
39
|
inaccurately or inefficiently in the presence of such a feature.
|
37
40
|
|
38
|
-
|
41
|
+
### Strengths
|
39
42
|
|
40
43
|
- One advantage of the Lilliefors test is its utility irrespective of whether the mean and variance of the normal
|
41
44
|
distribution are known in advance. This makes it a more robust option in real-world situations where these values
|
42
45
|
might not be known.
|
43
|
-
-
|
46
|
+
- The test has the ability to screen every feature column, offering a holistic view of the dataset.
|
44
47
|
|
45
|
-
|
48
|
+
### Limitations
|
46
49
|
|
47
50
|
- Despite the practical applications of the Lilliefors test in validating normality, it does come with some
|
48
51
|
limitations.
|
49
|
-
-
|
50
|
-
|
51
|
-
-
|
52
|
-
|
53
|
-
-
|
54
|
-
|
52
|
+
- It is only capable of testing unidimensional data, thus rendering it ineffective for datasets with interactions
|
53
|
+
between features or multi-dimensional phenomena.
|
54
|
+
- The test might not be as sensitive as some other tests (like the Anderson-Darling test) in detecting deviations
|
55
|
+
from a normal distribution.
|
56
|
+
- Like any other statistical test, Lilliefors test may also produce false positives or negatives. Hence, banking
|
57
|
+
solely on this test, without considering other characteristics of the data, may give rise to risks.
|
55
58
|
"""
|
56
59
|
|
57
60
|
name = "lilliefors_test"
|