validmind 2.5.6__py3-none-any.whl → 2.5.15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- validmind/__version__.py +1 -1
- validmind/ai/test_descriptions.py +26 -7
- validmind/api_client.py +89 -43
- validmind/client.py +2 -2
- validmind/client_config.py +11 -14
- validmind/datasets/regression/fred_timeseries.py +67 -138
- validmind/template.py +1 -0
- validmind/test_suites/__init__.py +0 -2
- validmind/test_suites/statsmodels_timeseries.py +1 -1
- validmind/test_suites/summarization.py +0 -1
- validmind/test_suites/time_series.py +0 -43
- validmind/tests/__types__.py +3 -13
- validmind/tests/data_validation/ACFandPACFPlot.py +15 -13
- validmind/tests/data_validation/ADF.py +31 -24
- validmind/tests/data_validation/AutoAR.py +9 -9
- validmind/tests/data_validation/AutoMA.py +23 -16
- validmind/tests/data_validation/AutoSeasonality.py +18 -16
- validmind/tests/data_validation/AutoStationarity.py +21 -16
- validmind/tests/data_validation/BivariateScatterPlots.py +67 -96
- validmind/tests/data_validation/ChiSquaredFeaturesTable.py +82 -124
- validmind/tests/data_validation/ClassImbalance.py +15 -12
- validmind/tests/data_validation/DFGLSArch.py +19 -13
- validmind/tests/data_validation/DatasetDescription.py +17 -11
- validmind/tests/data_validation/DatasetSplit.py +7 -5
- validmind/tests/data_validation/DescriptiveStatistics.py +28 -21
- validmind/tests/data_validation/Duplicates.py +33 -25
- validmind/tests/data_validation/EngleGrangerCoint.py +35 -33
- validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +59 -71
- validmind/tests/data_validation/HighCardinality.py +19 -12
- validmind/tests/data_validation/HighPearsonCorrelation.py +27 -22
- validmind/tests/data_validation/IQROutliersBarPlot.py +13 -10
- validmind/tests/data_validation/IQROutliersTable.py +40 -36
- validmind/tests/data_validation/IsolationForestOutliers.py +21 -14
- validmind/tests/data_validation/KPSS.py +34 -29
- validmind/tests/data_validation/LaggedCorrelationHeatmap.py +22 -15
- validmind/tests/data_validation/MissingValues.py +32 -27
- validmind/tests/data_validation/MissingValuesBarPlot.py +25 -21
- validmind/tests/data_validation/PearsonCorrelationMatrix.py +71 -84
- validmind/tests/data_validation/PhillipsPerronArch.py +37 -30
- validmind/tests/data_validation/RollingStatsPlot.py +31 -23
- validmind/tests/data_validation/ScatterPlot.py +63 -78
- validmind/tests/data_validation/SeasonalDecompose.py +38 -34
- validmind/tests/data_validation/Skewness.py +35 -37
- validmind/tests/data_validation/SpreadPlot.py +35 -35
- validmind/tests/data_validation/TabularCategoricalBarPlots.py +23 -17
- validmind/tests/data_validation/TabularDateTimeHistograms.py +21 -13
- validmind/tests/data_validation/TabularDescriptionTables.py +51 -16
- validmind/tests/data_validation/TabularNumericalHistograms.py +25 -22
- validmind/tests/data_validation/TargetRateBarPlots.py +21 -14
- validmind/tests/data_validation/TimeSeriesDescription.py +25 -18
- validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +23 -17
- validmind/tests/data_validation/TimeSeriesFrequency.py +24 -17
- validmind/tests/data_validation/TimeSeriesHistogram.py +33 -32
- validmind/tests/data_validation/TimeSeriesLinePlot.py +17 -10
- validmind/tests/data_validation/TimeSeriesMissingValues.py +15 -10
- validmind/tests/data_validation/TimeSeriesOutliers.py +37 -33
- validmind/tests/data_validation/TooManyZeroValues.py +16 -11
- validmind/tests/data_validation/UniqueRows.py +11 -6
- validmind/tests/data_validation/WOEBinPlots.py +23 -16
- validmind/tests/data_validation/WOEBinTable.py +35 -30
- validmind/tests/data_validation/ZivotAndrewsArch.py +34 -28
- validmind/tests/data_validation/nlp/CommonWords.py +21 -14
- validmind/tests/data_validation/nlp/Hashtags.py +27 -20
- validmind/tests/data_validation/nlp/LanguageDetection.py +33 -14
- validmind/tests/data_validation/nlp/Mentions.py +21 -15
- validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +32 -9
- validmind/tests/data_validation/nlp/Punctuations.py +24 -20
- validmind/tests/data_validation/nlp/Sentiment.py +27 -8
- validmind/tests/data_validation/nlp/StopWords.py +26 -19
- validmind/tests/data_validation/nlp/TextDescription.py +36 -35
- validmind/tests/data_validation/nlp/Toxicity.py +32 -9
- validmind/tests/decorator.py +81 -42
- validmind/tests/model_validation/BertScore.py +36 -27
- validmind/tests/model_validation/BleuScore.py +25 -19
- validmind/tests/model_validation/ClusterSizeDistribution.py +38 -34
- validmind/tests/model_validation/ContextualRecall.py +35 -13
- validmind/tests/model_validation/FeaturesAUC.py +32 -13
- validmind/tests/model_validation/MeteorScore.py +46 -33
- validmind/tests/model_validation/ModelMetadata.py +32 -64
- validmind/tests/model_validation/ModelPredictionResiduals.py +75 -73
- validmind/tests/model_validation/RegardScore.py +30 -14
- validmind/tests/model_validation/RegressionResidualsPlot.py +10 -5
- validmind/tests/model_validation/RougeScore.py +36 -30
- validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +30 -14
- validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +27 -30
- validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +68 -63
- validmind/tests/model_validation/TokenDisparity.py +31 -23
- validmind/tests/model_validation/ToxicityScore.py +26 -17
- validmind/tests/model_validation/embeddings/ClusterDistribution.py +24 -20
- validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +30 -27
- validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +7 -5
- validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +32 -23
- validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +7 -5
- validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +15 -11
- validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +29 -29
- validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +34 -25
- validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +38 -26
- validmind/tests/model_validation/embeddings/StabilityAnalysis.py +40 -1
- validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +18 -17
- validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +40 -45
- validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +17 -19
- validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +29 -25
- validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +38 -28
- validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -4
- validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
- validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
- validmind/tests/model_validation/ragas/AspectCritique.py +7 -0
- validmind/tests/model_validation/ragas/ContextEntityRecall.py +9 -8
- validmind/tests/model_validation/ragas/ContextPrecision.py +5 -4
- validmind/tests/model_validation/ragas/ContextRecall.py +5 -4
- validmind/tests/model_validation/ragas/Faithfulness.py +5 -4
- validmind/tests/model_validation/ragas/utils.py +6 -0
- validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +19 -12
- validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +22 -17
- validmind/tests/model_validation/sklearn/ClassifierPerformance.py +27 -25
- validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +7 -5
- validmind/tests/model_validation/sklearn/ClusterPerformance.py +40 -78
- validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +15 -17
- validmind/tests/model_validation/sklearn/CompletenessScore.py +17 -11
- validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -15
- validmind/tests/model_validation/sklearn/FeatureImportance.py +95 -0
- validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +7 -7
- validmind/tests/model_validation/sklearn/HomogeneityScore.py +19 -12
- validmind/tests/model_validation/sklearn/HyperParametersTuning.py +35 -30
- validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +10 -5
- validmind/tests/model_validation/sklearn/MinimumAccuracy.py +32 -32
- validmind/tests/model_validation/sklearn/MinimumF1Score.py +23 -23
- validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +15 -10
- validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +26 -19
- validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +38 -18
- validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +31 -25
- validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +8 -6
- validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +24 -17
- validmind/tests/model_validation/sklearn/ROCCurve.py +12 -7
- validmind/tests/model_validation/sklearn/RegressionErrors.py +74 -130
- validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +27 -12
- validmind/tests/model_validation/sklearn/{RegressionModelsPerformanceComparison.py → RegressionPerformance.py} +18 -20
- validmind/tests/model_validation/sklearn/RegressionR2Square.py +55 -93
- validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +32 -13
- validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +113 -73
- validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +7 -5
- validmind/tests/model_validation/sklearn/SilhouettePlot.py +27 -19
- validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +25 -18
- validmind/tests/model_validation/sklearn/VMeasure.py +14 -13
- validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +7 -5
- validmind/tests/model_validation/statsmodels/AutoARIMA.py +24 -18
- validmind/tests/model_validation/statsmodels/BoxPierce.py +14 -10
- validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +73 -104
- validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +19 -12
- validmind/tests/model_validation/statsmodels/GINITable.py +44 -77
- validmind/tests/model_validation/statsmodels/JarqueBera.py +27 -22
- validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +33 -34
- validmind/tests/model_validation/statsmodels/LJungBox.py +32 -28
- validmind/tests/model_validation/statsmodels/Lilliefors.py +27 -24
- validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +87 -119
- validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +100 -0
- validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +14 -9
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +17 -13
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +46 -43
- validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +38 -36
- validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +30 -28
- validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +18 -11
- validmind/tests/model_validation/statsmodels/RunsTest.py +32 -28
- validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +75 -107
- validmind/tests/model_validation/statsmodels/ShapiroWilk.py +15 -8
- validmind/tests/ongoing_monitoring/FeatureDrift.py +10 -6
- validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +31 -25
- validmind/tests/ongoing_monitoring/PredictionCorrelation.py +29 -21
- validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +31 -23
- validmind/tests/prompt_validation/Bias.py +14 -11
- validmind/tests/prompt_validation/Clarity.py +16 -14
- validmind/tests/prompt_validation/Conciseness.py +7 -5
- validmind/tests/prompt_validation/Delimitation.py +23 -22
- validmind/tests/prompt_validation/NegativeInstruction.py +7 -5
- validmind/tests/prompt_validation/Robustness.py +12 -10
- validmind/tests/prompt_validation/Specificity.py +13 -11
- validmind/tests/prompt_validation/ai_powered_test.py +6 -0
- validmind/tests/run.py +68 -23
- validmind/unit_metrics/__init__.py +81 -144
- validmind/unit_metrics/classification/{sklearn/Accuracy.py → Accuracy.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/F1.py → F1.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/Precision.py → Precision.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/ROC_AUC.py → ROC_AUC.py} +1 -2
- validmind/unit_metrics/classification/{sklearn/Recall.py → Recall.py} +1 -1
- validmind/unit_metrics/regression/{sklearn/AdjustedRSquaredScore.py → AdjustedRSquaredScore.py} +1 -1
- validmind/unit_metrics/regression/GiniCoefficient.py +1 -1
- validmind/unit_metrics/regression/HuberLoss.py +1 -1
- validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +1 -1
- validmind/unit_metrics/regression/{sklearn/MeanAbsoluteError.py → MeanAbsoluteError.py} +1 -1
- validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +1 -1
- validmind/unit_metrics/regression/MeanBiasDeviation.py +1 -1
- validmind/unit_metrics/regression/{sklearn/MeanSquaredError.py → MeanSquaredError.py} +1 -1
- validmind/unit_metrics/regression/QuantileLoss.py +1 -1
- validmind/unit_metrics/regression/{sklearn/RSquaredScore.py → RSquaredScore.py} +1 -1
- validmind/unit_metrics/regression/{sklearn/RootMeanSquaredError.py → RootMeanSquaredError.py} +1 -1
- validmind/vm_models/dataset/dataset.py +2 -0
- validmind/vm_models/figure.py +5 -0
- validmind/vm_models/test/result_wrapper.py +93 -132
- {validmind-2.5.6.dist-info → validmind-2.5.15.dist-info}/METADATA +1 -1
- {validmind-2.5.6.dist-info → validmind-2.5.15.dist-info}/RECORD +203 -210
- validmind/tests/data_validation/ANOVAOneWayTable.py +0 -138
- validmind/tests/data_validation/BivariateFeaturesBarPlots.py +0 -142
- validmind/tests/data_validation/BivariateHistograms.py +0 -117
- validmind/tests/data_validation/HeatmapFeatureCorrelations.py +0 -124
- validmind/tests/data_validation/MissingValuesRisk.py +0 -88
- validmind/tests/model_validation/ModelMetadataComparison.py +0 -59
- validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +0 -83
- validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +0 -135
- validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +0 -103
- {validmind-2.5.6.dist-info → validmind-2.5.15.dist-info}/LICENSE +0 -0
- {validmind-2.5.6.dist-info → validmind-2.5.15.dist-info}/WHEEL +0 -0
- {validmind-2.5.6.dist-info → validmind-2.5.15.dist-info}/entry_points.txt +0 -0
@@ -14,28 +14,45 @@ from validmind import tags, tasks
|
|
14
14
|
@tasks("regression", "time_series_forecasting")
|
15
15
|
def TimeSeriesPredictionWithCI(dataset, model, confidence=0.95):
|
16
16
|
"""
|
17
|
-
|
17
|
+
Assesses predictive accuracy and uncertainty in time series models, highlighting breaches beyond confidence
|
18
|
+
intervals.
|
18
19
|
|
19
|
-
|
20
|
+
### Purpose
|
20
21
|
|
21
|
-
|
22
|
+
The purpose of the Time Series Prediction with Confidence Intervals (CI) test is to visualize the actual versus
|
23
|
+
predicted values for time series data, including confidence intervals, and to compute and report the number of
|
24
|
+
breaches beyond these intervals. This helps in evaluating the reliability and accuracy of the model's predictions.
|
22
25
|
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
+
### Test Mechanism
|
27
|
+
|
28
|
+
The function performs the following steps:
|
29
|
+
|
30
|
+
- Calculates the standard deviation of prediction errors.
|
31
|
+
- Determines the confidence intervals using a specified confidence level, typically 95%.
|
32
|
+
- Counts the number of actual values that fall outside the confidence intervals, referred to as breaches.
|
33
|
+
- Generates a plot visualizing the actual values, predicted values, and confidence intervals.
|
34
|
+
- Returns a DataFrame summarizing the breach information, including the total breaches, upper breaches, and lower
|
35
|
+
breaches.
|
36
|
+
|
37
|
+
### Signs of High Risk
|
38
|
+
|
39
|
+
- A high number of breaches indicates that the model's predictions are not reliable within the specified confidence
|
40
|
+
level.
|
41
|
+
- Significant deviations between actual and predicted values may highlight model inadequacies or issues with data
|
42
|
+
quality.
|
43
|
+
|
44
|
+
### Strengths
|
26
45
|
|
27
|
-
**Strengths**:
|
28
46
|
- Provides a visual representation of prediction accuracy and the uncertainty around predictions.
|
29
47
|
- Includes a statistical measure of prediction reliability through confidence intervals.
|
30
48
|
- Computes and reports breaches, offering a quantitative assessment of prediction performance.
|
31
49
|
|
32
|
-
|
50
|
+
### Limitations
|
51
|
+
|
33
52
|
- Assumes that the dataset is provided as a DataFrameDataset object with a datetime index.
|
34
53
|
- Requires that `dataset.y_pred(model)` returns the predicted values for the model.
|
35
54
|
- The calculation of confidence intervals assumes normally distributed errors, which may not hold for all datasets.
|
36
55
|
"""
|
37
|
-
dataset_name = dataset.input_id
|
38
|
-
model_name = model.input_id
|
39
56
|
time_index = dataset.df.index # Assuming the index of the dataset is datetime
|
40
57
|
|
41
58
|
# Get actual and predicted values
|
@@ -77,7 +94,7 @@ def TimeSeriesPredictionWithCI(dataset, model, confidence=0.95):
|
|
77
94
|
x=time_index,
|
78
95
|
y=y_true,
|
79
96
|
mode="lines",
|
80
|
-
name="Actual
|
97
|
+
name="Actual",
|
81
98
|
line=dict(color="blue"),
|
82
99
|
)
|
83
100
|
)
|
@@ -88,7 +105,7 @@ def TimeSeriesPredictionWithCI(dataset, model, confidence=0.95):
|
|
88
105
|
x=time_index,
|
89
106
|
y=y_pred,
|
90
107
|
mode="lines",
|
91
|
-
name=
|
108
|
+
name="Predicted",
|
92
109
|
line=dict(color="red"),
|
93
110
|
)
|
94
111
|
)
|
@@ -121,10 +138,9 @@ def TimeSeriesPredictionWithCI(dataset, model, confidence=0.95):
|
|
121
138
|
|
122
139
|
# Update layout
|
123
140
|
fig.update_layout(
|
124
|
-
title=
|
141
|
+
title="Actual vs Predicted",
|
125
142
|
xaxis_title="Time",
|
126
143
|
yaxis_title="Values",
|
127
|
-
legend_title="Legend",
|
128
144
|
template="plotly_white",
|
129
145
|
)
|
130
146
|
|
@@ -2,7 +2,6 @@
|
|
2
2
|
# See the LICENSE file in the root of this repository for details.
|
3
3
|
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
4
|
|
5
|
-
import plotly.express as px
|
6
5
|
import plotly.graph_objects as go
|
7
6
|
|
8
7
|
from validmind import tags, tasks
|
@@ -10,66 +9,64 @@ from validmind import tags, tasks
|
|
10
9
|
|
11
10
|
@tags("model_predictions", "visualization")
|
12
11
|
@tasks("regression", "time_series_forecasting")
|
13
|
-
def TimeSeriesPredictionsPlot(
|
12
|
+
def TimeSeriesPredictionsPlot(dataset, model):
|
14
13
|
"""
|
15
|
-
Plot actual vs predicted values for time series data and generate a visual comparison for
|
14
|
+
Plot actual vs predicted values for time series data and generate a visual comparison for the model.
|
16
15
|
|
17
|
-
|
16
|
+
### Purpose
|
18
17
|
|
19
|
-
|
18
|
+
The purpose of this function is to visualize the actual versus predicted values for time
|
19
|
+
series data for a single model.
|
20
|
+
|
21
|
+
### Test Mechanism
|
22
|
+
|
23
|
+
The function plots the actual values from the dataset and overlays the predicted
|
24
|
+
values from the model using Plotly for interactive visualization.
|
20
25
|
|
21
|
-
**Signs of High Risk**:
|
22
26
|
- Large discrepancies between actual and predicted values indicate poor model performance.
|
23
27
|
- Systematic deviations in predicted values can highlight model bias or issues with data patterns.
|
24
28
|
|
25
|
-
|
29
|
+
### Strengths
|
30
|
+
|
26
31
|
- Provides a clear visual comparison of model predictions against actual values.
|
27
32
|
- Uses Plotly for interactive and visually appealing plots.
|
28
|
-
- Can handle multiple models and datasets, displaying them with distinct colors.
|
29
33
|
|
30
|
-
|
34
|
+
### Limitations
|
35
|
+
|
31
36
|
- Assumes that the dataset is provided as a DataFrameDataset object with a datetime index.
|
32
37
|
- Requires that `dataset.y_pred(model)` returns the predicted values for the model.
|
33
|
-
- Visualization might become cluttered with a large number of models or datasets.
|
34
38
|
"""
|
35
39
|
fig = go.Figure()
|
36
40
|
|
37
|
-
#
|
38
|
-
colors = px.colors.qualitative.Plotly
|
39
|
-
|
40
|
-
# Plot actual values from the first dataset
|
41
|
-
dataset = datasets[0]
|
41
|
+
# Plot actual values from the dataset
|
42
42
|
time_index = dataset.df.index # Assuming the index of the dataset is datetime
|
43
43
|
fig.add_trace(
|
44
44
|
go.Scatter(
|
45
45
|
x=time_index,
|
46
46
|
y=dataset.y,
|
47
47
|
mode="lines",
|
48
|
-
name="Actual
|
48
|
+
name="Actual",
|
49
49
|
line=dict(color="blue"),
|
50
50
|
)
|
51
51
|
)
|
52
52
|
|
53
|
-
# Plot predicted values for
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
name=f"Predicted by {model_name}",
|
63
|
-
line=dict(color=colors[idx % len(colors)]),
|
64
|
-
)
|
53
|
+
# Plot predicted values for the model
|
54
|
+
y_pred = dataset.y_pred(model)
|
55
|
+
fig.add_trace(
|
56
|
+
go.Scatter(
|
57
|
+
x=time_index,
|
58
|
+
y=y_pred,
|
59
|
+
mode="lines",
|
60
|
+
name="Predicted",
|
61
|
+
line=dict(color="orange"), # Using a distinct color for the prediction
|
65
62
|
)
|
63
|
+
)
|
66
64
|
|
67
65
|
# Update layout
|
68
66
|
fig.update_layout(
|
69
|
-
title="
|
67
|
+
title="Actual vs Predicted",
|
70
68
|
xaxis_title="Time",
|
71
69
|
yaxis_title="Values",
|
72
|
-
legend_title="Legend",
|
73
70
|
template="plotly_white",
|
74
71
|
)
|
75
72
|
|
@@ -12,75 +12,80 @@ from validmind import tags, tasks
|
|
12
12
|
|
13
13
|
@tags("model_performance", "sklearn")
|
14
14
|
@tasks("regression", "time_series_forecasting")
|
15
|
-
def TimeSeriesR2SquareBySegments(
|
15
|
+
def TimeSeriesR2SquareBySegments(dataset, model, segments=None):
|
16
16
|
"""
|
17
|
-
|
18
|
-
|
17
|
+
Evaluates the R-Squared values of regression models over specified time segments in time series data to assess
|
18
|
+
segment-wise model performance.
|
19
19
|
|
20
|
-
|
20
|
+
### Purpose
|
21
21
|
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
- segments: Dictionary with 'start_date' and 'end_date' keys containing lists of start and end dates for each segments. If None, the time series will be segmented into two halves.
|
22
|
+
The TimeSeriesR2SquareBySegments test aims to evaluate the R-Squared values for several regression models across
|
23
|
+
different segments of time series data. This helps in determining how well the models explain the variability in
|
24
|
+
the data within each specific time segment.
|
26
25
|
|
27
|
-
|
26
|
+
### Test Mechanism
|
27
|
+
- Provides a visual representation of model performance across different time segments.
|
28
|
+
- Allows for identification of segments where the model performs poorly.
|
29
|
+
- Calculating the R-Squared values for each segment.
|
30
|
+
- Generating a bar chart to visually represent the R-Squared values across different models and segments.
|
28
31
|
|
29
|
-
|
30
|
-
- If the R-Squared values are significantly low for certain segments, it could indicate that the model is not explaining much of the variability in the dataset for those segments.
|
32
|
+
### Signs of High Risk
|
31
33
|
|
32
|
-
|
33
|
-
-
|
34
|
-
|
34
|
+
- Significantly low R-Squared values for certain time segments, indicating poor model performance in those periods.
|
35
|
+
- Large variability in R-Squared values across different segments for the same model, suggesting inconsistent
|
36
|
+
performance.
|
37
|
+
|
38
|
+
### Strengths
|
39
|
+
|
40
|
+
- Provides a visual representation of how well models perform over different time periods.
|
41
|
+
- Helps identify time segments where models may need improvement or retraining.
|
42
|
+
- Facilitates comparison between multiple models in a straightforward manner.
|
43
|
+
|
44
|
+
### Limitations
|
35
45
|
|
36
|
-
|
37
|
-
|
38
|
-
- Requires that `dataset.y_pred(model)` returns
|
39
|
-
- Assumes that `y_true` and `y_pred` are pandas Series with datetime indices.
|
46
|
+
- Assumes datasets are provided as DataFrameDataset objects with the attributes `y`, `y_pred`, and
|
47
|
+
`feature_columns`.
|
48
|
+
- Requires that `dataset.y_pred(model)` returns predicted values for the model.
|
49
|
+
- Assumes that both `y_true` and `y_pred` are pandas Series with datetime indices, which may not always be the case.
|
50
|
+
- May not account for more nuanced temporal dependencies within the segments.
|
40
51
|
"""
|
41
52
|
results_list = []
|
42
53
|
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
"Segments": f"Segment {segment_index + 1}",
|
79
|
-
"Start Date": start_date,
|
80
|
-
"End Date": end_date,
|
81
|
-
"R-Squared": r2s,
|
82
|
-
}
|
83
|
-
)
|
54
|
+
y_true = dataset.y
|
55
|
+
y_pred = dataset.y_pred(model)
|
56
|
+
|
57
|
+
# Ensure y_true and y_pred are pandas Series with the same index
|
58
|
+
if not isinstance(y_true, pd.Series):
|
59
|
+
y_true = pd.Series(y_true, index=dataset.df.index)
|
60
|
+
if not isinstance(y_pred, pd.Series):
|
61
|
+
y_pred = pd.Series(y_pred, index=dataset.df.index)
|
62
|
+
|
63
|
+
index = dataset.df.index
|
64
|
+
|
65
|
+
if segments is None:
|
66
|
+
mid_point = len(index) // 2
|
67
|
+
segments = {
|
68
|
+
"start_date": [index.min(), index[mid_point]],
|
69
|
+
"end_date": [index[mid_point - 1], index.max()],
|
70
|
+
}
|
71
|
+
|
72
|
+
for segment_index, (start_date, end_date) in enumerate(
|
73
|
+
zip(segments["start_date"], segments["end_date"])
|
74
|
+
):
|
75
|
+
mask = (index >= start_date) & (index <= end_date)
|
76
|
+
y_true_segment = y_true.loc[mask]
|
77
|
+
y_pred_segment = y_pred.loc[mask]
|
78
|
+
|
79
|
+
if len(y_true_segment) > 0 and len(y_pred_segment) > 0:
|
80
|
+
r2s = metrics.r2_score(y_true_segment, y_pred_segment)
|
81
|
+
results_list.append(
|
82
|
+
{
|
83
|
+
"Segments": f"Segment {segment_index + 1}",
|
84
|
+
"Start Date": start_date,
|
85
|
+
"End Date": end_date,
|
86
|
+
"R-Squared": r2s,
|
87
|
+
}
|
88
|
+
)
|
84
89
|
|
85
90
|
# Convert results list to a DataFrame
|
86
91
|
results_df = pd.DataFrame(results_list)
|
@@ -90,13 +95,13 @@ def TimeSeriesR2SquareBySegments(datasets, models, segments=None):
|
|
90
95
|
results_df,
|
91
96
|
x="Segments",
|
92
97
|
y="R-Squared",
|
93
|
-
color="Model",
|
98
|
+
# color="Model",
|
94
99
|
barmode="group",
|
95
|
-
title="R-Squared
|
100
|
+
title="R-Squared by Segment",
|
96
101
|
labels={
|
97
102
|
"R-Squared": "R-Squared Value",
|
98
|
-
"
|
99
|
-
"Model": "Model",
|
103
|
+
"Segments": "Time Segment",
|
104
|
+
# "Model": "Model",
|
100
105
|
},
|
101
106
|
)
|
102
107
|
|
@@ -12,33 +12,41 @@ from validmind import tags, tasks
|
|
12
12
|
@tasks("text_classification", "text_summarization")
|
13
13
|
def TokenDisparity(dataset, model):
|
14
14
|
"""
|
15
|
-
Evaluates the token disparity between reference and generated texts, visualizing the results through histograms
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
15
|
+
Evaluates the token disparity between reference and generated texts, visualizing the results through histograms and
|
16
|
+
bar charts, alongside compiling a comprehensive table of descriptive statistics for token counts.
|
17
|
+
|
18
|
+
### Purpose
|
19
|
+
|
20
|
+
The Token Disparity test aims to assess the difference in the number of tokens between reference texts and texts
|
21
|
+
generated by the model. Understanding token disparity is essential for evaluating how well the generated content
|
22
|
+
matches the expected length and richness of the reference texts.
|
23
|
+
|
24
|
+
### Test Mechanism
|
25
|
+
|
26
|
+
The test extracts true and predicted values from the dataset and model. It computes the number of tokens in each
|
27
|
+
reference and generated text. The results are visualized using histograms and bar charts to display the
|
28
|
+
distribution of token counts. Additionally, a table of descriptive statistics, including the mean, median, standard
|
29
|
+
deviation, minimum, and maximum token counts, is compiled to provide a detailed summary of token usage.
|
30
|
+
|
31
|
+
### Signs of High Risk
|
32
|
+
|
33
|
+
- Significant disparity in token counts between reference and generated texts could indicate issues with text
|
34
|
+
generation quality, such as verbosity or lack of detail.
|
32
35
|
- Consistently low token counts in generated texts compared to references might suggest that the model is producing
|
33
|
-
|
36
|
+
incomplete or overly concise outputs.
|
37
|
+
|
38
|
+
### Strengths
|
34
39
|
|
35
|
-
**Strengths:**
|
36
40
|
- Provides a simple yet effective evaluation of text length and token usage.
|
37
|
-
- Visual representations (histograms and bar charts) make it easier to interpret the distribution and trends of
|
38
|
-
|
41
|
+
- Visual representations (histograms and bar charts) make it easier to interpret the distribution and trends of
|
42
|
+
token counts.
|
43
|
+
- Descriptive statistics offer a concise summary of the model's performance in generating texts of appropriate
|
44
|
+
length.
|
45
|
+
|
46
|
+
### Limitations
|
39
47
|
|
40
|
-
|
41
|
-
|
48
|
+
- Token counts alone do not provide a complete assessment of text quality and should be supplemented with other
|
49
|
+
metrics and qualitative analysis.
|
42
50
|
"""
|
43
51
|
|
44
52
|
# Extract true and predicted values
|
@@ -13,31 +13,40 @@ from validmind import tags, tasks
|
|
13
13
|
@tasks("text_classification", "text_summarization")
|
14
14
|
def ToxicityScore(dataset, model):
|
15
15
|
"""
|
16
|
-
|
16
|
+
Assesses the toxicity levels of texts generated by NLP models to identify and mitigate harmful or offensive content.
|
17
17
|
|
18
|
-
|
19
|
-
The ToxicityScore metric is designed to evaluate the toxicity levels of texts generated by models. This is crucial for
|
20
|
-
identifying and mitigating harmful or offensive content in machine-generated texts.
|
18
|
+
### Purpose
|
21
19
|
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
20
|
+
The ToxicityScore metric is designed to evaluate the toxicity levels of texts generated by models. This is crucial
|
21
|
+
for identifying and mitigating harmful or offensive content in machine-generated texts.
|
22
|
+
|
23
|
+
### Test Mechanism
|
24
|
+
|
25
|
+
The function starts by extracting the input, true, and predicted values from the provided dataset and model. The
|
26
|
+
toxicity score is computed for each text using a preloaded `toxicity` evaluation tool. The scores are compiled into
|
27
|
+
dataframes, and histograms and bar charts are generated to visualize the distribution of toxicity scores.
|
28
|
+
Additionally, a table of descriptive statistics (mean, median, standard deviation, minimum, and maximum) is
|
29
|
+
compiled for the toxicity scores, providing a comprehensive summary of the model's performance.
|
30
|
+
|
31
|
+
### Signs of High Risk
|
28
32
|
|
29
|
-
**Signs of High Risk:**
|
30
33
|
- Drastic spikes in toxicity scores indicate potentially toxic content within the associated text segment.
|
31
|
-
- Persistent high toxicity scores across multiple texts may suggest systemic issues in the model's text generation
|
34
|
+
- Persistent high toxicity scores across multiple texts may suggest systemic issues in the model's text generation
|
35
|
+
process.
|
32
36
|
|
33
|
-
|
34
|
-
|
35
|
-
-
|
37
|
+
### Strengths
|
38
|
+
|
39
|
+
- Provides a clear evaluation of toxicity levels in generated texts, helping to ensure content safety and
|
40
|
+
appropriateness.
|
41
|
+
- Visual representations (histograms and bar charts) make it easier to interpret the distribution and trends of
|
42
|
+
toxicity scores.
|
36
43
|
- Descriptive statistics offer a concise summary of the model's performance in generating non-toxic texts.
|
37
44
|
|
38
|
-
|
45
|
+
### Limitations
|
46
|
+
|
39
47
|
- The accuracy of the toxicity scores is contingent upon the underlying `toxicity` tool.
|
40
|
-
- The scores provide a broad overview but do not specify which portions or tokens of the text are responsible for
|
48
|
+
- The scores provide a broad overview but do not specify which portions or tokens of the text are responsible for
|
49
|
+
high toxicity.
|
41
50
|
- Supplementary, in-depth analysis might be needed for granular insights.
|
42
51
|
"""
|
43
52
|
|
@@ -12,38 +12,42 @@ class ClusterDistribution(Metric):
|
|
12
12
|
"""
|
13
13
|
Assesses the distribution of text embeddings across clusters produced by a model using KMeans clustering.
|
14
14
|
|
15
|
-
|
16
|
-
|
17
|
-
|
15
|
+
### Purpose
|
16
|
+
|
17
|
+
The purpose of this metric is to analyze the distribution of the clusters produced by a text embedding model. By
|
18
|
+
dividing the text embeddings into different clusters, we can understand how the model is grouping or categorizing
|
19
|
+
the text data. This aids in visualizing the organization and segregation of the data, thereby giving an
|
18
20
|
understanding of how the model is processing the data.
|
19
21
|
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
22
|
+
### Test Mechanism
|
23
|
+
|
24
|
+
The metric applies the KMeans clustering algorithm on the predictions made by the model on the testing dataset and
|
25
|
+
divides the text embeddings into a pre-defined number of clusters. By default, this number is set to 5 but can be
|
26
|
+
customized as per requirements. The output of this test is a histogram plot that shows the distribution of
|
27
|
+
embeddings across these clusters.
|
24
28
|
|
25
|
-
|
29
|
+
### Signs of High Risk
|
26
30
|
|
27
|
-
- If the embeddings are skewed towards one or two clusters,
|
31
|
+
- If the embeddings are skewed towards one or two clusters, it indicates that the model is not effectively
|
28
32
|
differentiating the various categories in the text data.
|
29
33
|
- Uniform distribution of the embeddings across the clusters might show a lack of proper categorization.
|
30
34
|
|
31
|
-
|
35
|
+
### Strengths
|
32
36
|
|
33
|
-
- Great tool to visualize the text data categorization by the model.
|
34
|
-
distinguishing the categories effectively or not.
|
35
|
-
-
|
36
|
-
|
37
|
+
- Great tool to visualize the text data categorization by the model.
|
38
|
+
- Provides a way to assess if the model is distinguishing the categories effectively or not.
|
39
|
+
- Flexible with the number of clusters, so it can be used on various types of data regardless of the number of
|
40
|
+
categories.
|
37
41
|
|
38
|
-
|
42
|
+
### Limitations
|
39
43
|
|
40
|
-
-
|
44
|
+
- Success or failure of this test is based on visual interpretation, which might not be enough for making solid
|
41
45
|
conclusions or determining the exact points of failure.
|
42
|
-
-
|
46
|
+
- Assumes that the division of text embeddings across clusters should ideally be homogeneous, which might not
|
43
47
|
always be the case depending on the nature of the text data.
|
44
|
-
-
|
45
|
-
-
|
46
|
-
|
48
|
+
- Only applies to text embedding models, reducing its utility across various ML models.
|
49
|
+
- Uses the KMeans clustering algorithm, which assumes that clusters are convex and isotropic, and may not work as
|
50
|
+
intended if the true clusters in the data are not of this shape.
|
47
51
|
"""
|
48
52
|
|
49
53
|
name = "Text Embeddings Cluster Distribution"
|
@@ -16,45 +16,48 @@ from validmind import tags, tasks
|
|
16
16
|
@tasks("text_qa", "text_generation", "text_summarization")
|
17
17
|
def CosineSimilarityComparison(dataset, models):
|
18
18
|
"""
|
19
|
-
|
20
|
-
|
19
|
+
Assesses the similarity between embeddings generated by different models using Cosine Similarity, providing both
|
20
|
+
statistical and visual insights.
|
21
21
|
|
22
|
-
|
23
|
-
This function is designed to analyze and compare the embeddings produced by different models using Cosine Similarity.
|
24
|
-
Cosine Similarity, a measure calculating the cosine of the angle between two vectors, is widely used to determine
|
25
|
-
the alignment or similarity between vectors in high-dimensional spaces, such as text embeddings. This analysis helps
|
26
|
-
to understand how similar or different the models' predictions are in terms of embedding generation.
|
22
|
+
### Purpose
|
27
23
|
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
with descriptive statistics (mean, median, standard deviation, minimum, and maximum) for the similarities of each
|
34
|
-
pair, including a reference to the compared models.
|
24
|
+
The Cosine Similarity Comparison test aims to analyze and compare the embeddings produced by different models using
|
25
|
+
Cosine Similarity. Cosine Similarity is a measure that calculates the cosine of the angle between two vectors,
|
26
|
+
widely used to determine the alignment or similarity between high-dimensional vectors, such as text embeddings.
|
27
|
+
This analysis helps understand how similar or different the models' predictions are in terms of embedding
|
28
|
+
generation.
|
35
29
|
|
36
|
-
|
30
|
+
### Test Mechanism
|
31
|
+
|
32
|
+
The function starts by computing the embeddings for each model using the provided dataset. It then calculates the
|
33
|
+
cosine similarity for every possible pair of models, generating a similarity matrix wherein each element represents
|
34
|
+
the cosine similarity between two model embeddings. This matrix is flattened to create a bar chart for each model
|
35
|
+
pair, visualizing their similarity distribution. Additionally, a table with descriptive statistics (mean, median,
|
36
|
+
standard deviation, minimum, and maximum) for the similarities of each pair is compiled, referencing the compared
|
37
|
+
models.
|
38
|
+
|
39
|
+
### Signs of High Risk
|
37
40
|
|
38
41
|
- A high concentration of cosine similarity values close to 1 could suggest that the models are producing very
|
39
|
-
|
40
|
-
-
|
41
|
-
|
42
|
+
similar embeddings, indicating redundancy or lack of diversity in model training or design.
|
43
|
+
- Very low similarity values near -1 highlight strong dissimilarity, suggesting models that are too divergent and
|
44
|
+
possibly focusing on very different features of the data.
|
42
45
|
|
43
|
-
|
46
|
+
### Strengths
|
44
47
|
|
45
48
|
- Enables detailed comparisons between multiple models' embedding strategies through visual and statistical means.
|
46
|
-
-
|
49
|
+
- Identifies models producing similar or dissimilar embeddings, useful for tasks requiring model diversity.
|
47
50
|
- Provides quantitative and visual feedback on the degree of similarity, enhancing interpretability of model
|
48
|
-
|
51
|
+
behavior in embedding spaces.
|
49
52
|
|
50
|
-
|
53
|
+
### Limitations
|
51
54
|
|
52
|
-
- The analysis is confined to the comparison of embeddings and does not assess the overall performance of the
|
53
|
-
|
55
|
+
- The analysis is confined to the comparison of embeddings and does not assess the overall performance of the
|
56
|
+
models in terms of their primary tasks (e.g., classification, regression).
|
54
57
|
- Assumes that the models are suitable for generating comparable embeddings, which might not always be the case,
|
55
|
-
|
56
|
-
- Interpretation of results is heavily dependent on the understanding of Cosine Similarity and the nature of
|
57
|
-
|
58
|
+
especially across different types of models.
|
59
|
+
- Interpretation of results is heavily dependent on the understanding of Cosine Similarity and the nature of
|
60
|
+
high-dimensional embedding spaces.
|
58
61
|
"""
|
59
62
|
|
60
63
|
figures = []
|