validmind 2.3.1__py3-none-any.whl → 2.3.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (28) hide show
  1. validmind/__init__.py +2 -1
  2. validmind/__version__.py +1 -1
  3. validmind/datasets/regression/fred_timeseries.py +272 -0
  4. validmind/test_suites/__init__.py +0 -2
  5. validmind/tests/__init__.py +7 -7
  6. validmind/tests/__types__.py +180 -0
  7. validmind/tests/data_validation/SeasonalDecompose.py +68 -40
  8. validmind/tests/data_validation/TimeSeriesDescription.py +74 -0
  9. validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +76 -0
  10. validmind/tests/data_validation/TimeSeriesHistogram.py +29 -45
  11. validmind/tests/data_validation/TimeSeriesOutliers.py +30 -41
  12. validmind/tests/decorator.py +12 -0
  13. validmind/tests/model_validation/ModelMetadataComparison.py +59 -0
  14. validmind/tests/model_validation/ModelPredictionResiduals.py +103 -0
  15. validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +131 -0
  16. validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +76 -0
  17. validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +103 -0
  18. validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +83 -0
  19. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +1 -1
  20. validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +76 -0
  21. validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +63 -0
  22. validmind/utils.py +34 -0
  23. {validmind-2.3.1.dist-info → validmind-2.3.5.dist-info}/METADATA +70 -36
  24. {validmind-2.3.1.dist-info → validmind-2.3.5.dist-info}/RECORD +28 -16
  25. /validmind/datasets/regression/datasets/{lending_club_loan_rates.csv → leanding_club_loan_rates.csv} +0 -0
  26. {validmind-2.3.1.dist-info → validmind-2.3.5.dist-info}/LICENSE +0 -0
  27. {validmind-2.3.1.dist-info → validmind-2.3.5.dist-info}/WHEEL +0 -0
  28. {validmind-2.3.1.dist-info → validmind-2.3.5.dist-info}/entry_points.txt +0 -0
validmind/utils.py CHANGED
@@ -4,6 +4,7 @@
4
4
 
5
5
  import asyncio
6
6
  import difflib
7
+ import inspect
7
8
  import json
8
9
  import math
9
10
  import re
@@ -458,3 +459,36 @@ def md_to_html(md: str, mathml=False) -> str:
458
459
  )
459
460
 
460
461
  return html
462
+
463
+
464
+ def inspect_obj(obj):
465
+ # Filtering only attributes
466
+ print(len("Attributes:") * "-")
467
+ print("Attributes:")
468
+ print(len("Attributes:") * "-")
469
+
470
+ # Get only attributes (not methods)
471
+ attributes = [
472
+ attr
473
+ for attr in dir(obj)
474
+ if not callable(getattr(obj, attr)) and not attr.startswith("__")
475
+ ]
476
+ for attr in attributes:
477
+ print(f"{attr}")
478
+
479
+ # Filtering only methods using inspect and displaying their parameters
480
+ print("\nMethods with Parameters:")
481
+
482
+ # Get only methods (functions) using inspect.ismethod
483
+ methods = inspect.getmembers(obj, predicate=inspect.ismethod)
484
+ print("Methods:")
485
+ for name, method in methods:
486
+ # Get the signature of the method
487
+ sig = inspect.signature(method)
488
+ print(len(f"{name}") * "-")
489
+ print(f"{name}")
490
+ print(len(f"{name}") * "-")
491
+ print("Parameters:")
492
+ # Loop through the parameters and print detailed information
493
+ for param_name, param in sig.parameters.items():
494
+ print(f"{param_name} - ({param.default})")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: validmind
3
- Version: 2.3.1
3
+ Version: 2.3.5
4
4
  Summary: ValidMind Developer Framework
5
5
  License: Commercial License
6
6
  Author: Andres Rodriguez
@@ -12,58 +12,50 @@ Classifier: Programming Language :: Python :: 3.9
12
12
  Classifier: Programming Language :: Python :: 3.10
13
13
  Classifier: Programming Language :: Python :: 3.11
14
14
  Provides-Extra: all
15
+ Provides-Extra: huggingface
15
16
  Provides-Extra: llm
16
17
  Provides-Extra: pytorch
17
18
  Provides-Extra: r-support
18
- Provides-Extra: transformers
19
- Requires-Dist: aiohttp[speedups] (>=3.8.4,<4.0.0)
20
- Requires-Dist: arch (>=5.4.0,<6.0.0)
21
- Requires-Dist: bert-score (>=0.3.13,<0.4.0)
22
- Requires-Dist: catboost (>=1.2,<2.0)
23
- Requires-Dist: click (>=8.0.4,<9.0.0)
24
- Requires-Dist: evaluate (>=0.4.0,<0.5.0)
25
- Requires-Dist: ipywidgets (>=8.0.6,<9.0.0)
26
- Requires-Dist: kaleido (>=0.2.1,<0.3.0,!=0.2.1.post1)
27
- Requires-Dist: langdetect (>=1.0.9,<2.0.0)
28
- Requires-Dist: latex2mathml (>=3.77.0,<4.0.0)
29
- Requires-Dist: levenshtein (>=0.21.1,<0.22.0) ; extra == "all" or extra == "llm"
30
- Requires-Dist: llvmlite (>=0.42.0) ; python_version >= "3.12"
19
+ Requires-Dist: aiohttp[speedups]
20
+ Requires-Dist: arch
21
+ Requires-Dist: bert-score (>=0.3.13)
22
+ Requires-Dist: catboost
23
+ Requires-Dist: evaluate
24
+ Requires-Dist: ipywidgets
25
+ Requires-Dist: kaleido (>=0.2.1,!=0.2.1.post1)
26
+ Requires-Dist: langchain-openai (>=0.1.8) ; extra == "all" or extra == "llm"
27
+ Requires-Dist: langdetect
28
+ Requires-Dist: latex2mathml (>=3.77.0)
31
29
  Requires-Dist: llvmlite ; python_version >= "3.8" and python_full_version <= "3.11.0"
32
- Requires-Dist: matplotlib (<3.8.3)
30
+ Requires-Dist: matplotlib
33
31
  Requires-Dist: mistune (>=3.0.2,<4.0.0)
34
32
  Requires-Dist: nltk (>=3.8.1,<4.0.0)
35
33
  Requires-Dist: numba (<0.59.0)
36
- Requires-Dist: numpy (>=1.23.3,<2.0.0) ; python_version >= "3.8" and python_full_version <= "3.11.0"
37
- Requires-Dist: numpy (>=1.26.0) ; python_version >= "3.12"
38
- Requires-Dist: openai (>=1.3.7,<2.0.0) ; extra == "all" or extra == "llm"
34
+ Requires-Dist: numpy
35
+ Requires-Dist: openai (>=1) ; extra == "all" or extra == "llm"
39
36
  Requires-Dist: pandas (>=1.1,<2)
40
- Requires-Dist: plotly (>=5.14.1,<6.0.0)
41
- Requires-Dist: plotly-express (>=0.4.1,<0.5.0)
42
- Requires-Dist: polars (>=0.20.15,<0.21.0)
37
+ Requires-Dist: plotly
38
+ Requires-Dist: plotly-express
39
+ Requires-Dist: polars
43
40
  Requires-Dist: pycocoevalcap (>=1.2,<2.0) ; extra == "all" or extra == "llm"
44
- Requires-Dist: pypmml (>=0.9.17,<0.10.0)
45
- Requires-Dist: python-dotenv (>=0.20.0,<0.21.0)
46
- Requires-Dist: ragas (>=0.1.7,<0.2.0)
47
- Requires-Dist: rouge (>=1.0.1,<2.0.0)
41
+ Requires-Dist: python-dotenv
42
+ Requires-Dist: ragas (>=0.1.7) ; extra == "all" or extra == "llm"
43
+ Requires-Dist: rouge (>=1)
48
44
  Requires-Dist: rpy2 (>=3.5.10,<4.0.0) ; extra == "all" or extra == "r-support"
49
- Requires-Dist: scikit-learn (>=1.0.2,<2.0.0)
50
- Requires-Dist: scipy (>=1.12) ; python_version >= "3.12"
51
- Requires-Dist: scipy ; python_version >= "3.8" and python_full_version <= "3.11.0"
45
+ Requires-Dist: scikit-learn
46
+ Requires-Dist: scipy
52
47
  Requires-Dist: scorecardpy (>=0.1.9.6,<0.2.0.0)
53
- Requires-Dist: seaborn (>=0.11.2,<0.12.0)
54
- Requires-Dist: selfcheckgpt (>=0.1.7,<0.2.0)
48
+ Requires-Dist: seaborn
55
49
  Requires-Dist: sentry-sdk (>=1.24.0,<2.0.0)
56
50
  Requires-Dist: shap (>=0.42.0,<0.43.0)
57
- Requires-Dist: statsmodels (>=0.13.5,<0.14.0)
51
+ Requires-Dist: statsmodels
58
52
  Requires-Dist: tabulate (>=0.8.9,<0.9.0)
59
53
  Requires-Dist: textblob (>=0.18.0.post0,<0.19.0)
60
- Requires-Dist: textstat (>=0.7.3,<0.8.0)
61
54
  Requires-Dist: torch (>=1.10.0) ; extra == "all" or extra == "llm" or extra == "pytorch"
62
- Requires-Dist: torchmetrics (>=1.1.1,<2.0.0) ; extra == "all" or extra == "llm"
63
- Requires-Dist: tqdm (>=4.64.0,<5.0.0)
64
- Requires-Dist: transformers (>=4.32.0,<5.0.0) ; extra == "all" or extra == "llm" or extra == "transformers"
55
+ Requires-Dist: tqdm
56
+ Requires-Dist: transformers (>=4.32.0,<5.0.0) ; extra == "all" or extra == "llm" or extra == "huggingface"
65
57
  Requires-Dist: xgboost (>=1.5.2,<3)
66
- Requires-Dist: ydata-profiling (>=4.7.0,<5.0.0)
58
+ Requires-Dist: ydata-profiling
67
59
  Description-Content-Type: text/markdown
68
60
 
69
61
  # ValidMind Developer Framework
@@ -79,3 +71,45 @@ descriptions of your dataset to testing your models for weak spots and overfit a
79
71
  Framework helps you automate the generation of model documentation by feeding the ValidMind platform with
80
72
  documentation artifacts and test results to the ValidMind platform.
81
73
 
74
+ ## Installation
75
+
76
+ To install the ValidMind Developer Framework and all optional dependencies, run:
77
+
78
+ ```bash
79
+ pip install validmind[all]
80
+ ```
81
+
82
+ To install the Developer Framework without optional dependencies (core functionality only), run:
83
+
84
+ ```bash
85
+ pip install validmind
86
+ ```
87
+
88
+ ### Extra dependencies
89
+
90
+ The Developer Framework has optional dependencies that can be installed separately to support additional model types and tests.
91
+
92
+ - **LLM Support**: To be able to run tests for Large Language Models (LLMs), install the `llm` extra:
93
+
94
+ ```bash
95
+ pip install validmind[llm]
96
+ ```
97
+
98
+ - **PyTorch Models**: To use pytorch models with the Developer Framework, install the `torch` extra:
99
+
100
+ ```bash
101
+ pip install validmind[torch]
102
+ ```
103
+
104
+ - **Hugging Face Transformers**: To use Hugging Face Transformers models with the Developer Framework, install the `transformers` extra:
105
+
106
+ ```bash
107
+ pip install validmind[transformers]
108
+ ```
109
+
110
+ - **R Models**: To use R models with the Developer Framework, install the `r` extra:
111
+
112
+ ```bash
113
+ pip install validmind[r-support]
114
+ ```
115
+
@@ -1,5 +1,5 @@
1
- validmind/__init__.py,sha256=XqPjCbFMvEYl0cIT42EZKP7DFMYDC7KDW6syo8MGkDg,3682
2
- validmind/__version__.py,sha256=neZxeMmEfjhVZM6xetRikrBdHWt5T5ehL72ZYdPtJ-E,22
1
+ validmind/__init__.py,sha256=UfmzPwUCdUWbWq3zPqqmq4jw0_kfl3hX4U72p_seE4I,3700
2
+ validmind/__version__.py,sha256=AMoApoKvsYqyoF1DuOQX5QmSAGaw0FpF6uuxBuaZrp8,22
3
3
  validmind/ai/test_descriptions.py,sha256=QBV8i13nKeaQPXqnnra0L_BGc6pZzVWejATUTcgKMek,9287
4
4
  validmind/ai/utils.py,sha256=DtlpgcJcYS1FvdZPw5moUmYnv_guGKsxVbIRzFQ7pcg,3380
5
5
  validmind/api_client.py,sha256=0IR8MpH_GxBykOs4Egz7oEKZLoOEwoli81X1oFL0DD8,16893
@@ -48,8 +48,9 @@ validmind/datasets/regression/datasets/fred_loan_rates_test_2.csv,sha256=arukRZY
48
48
  validmind/datasets/regression/datasets/fred_loan_rates_test_3.csv,sha256=pCznzePHsQFfAv9r6NMQqfZ9f2sAFquuqMiKIrry0TU,2736
49
49
  validmind/datasets/regression/datasets/fred_loan_rates_test_4.csv,sha256=FBxkMcc-sauImJ2RKL1VDa5EqU501OoKU4zSwL2A1e0,3355
50
50
  validmind/datasets/regression/datasets/fred_loan_rates_test_5.csv,sha256=qPFYcPRQgKYrsOEWjumrY-27n4E0r7IQIiAY8CtD8yc,3866
51
- validmind/datasets/regression/datasets/lending_club_loan_rates.csv,sha256=1mePKtdNXg8ZG-VVSPLtOlCJm_3qSqoK5qP0_klxdF8,11624
51
+ validmind/datasets/regression/datasets/leanding_club_loan_rates.csv,sha256=1mePKtdNXg8ZG-VVSPLtOlCJm_3qSqoK5qP0_klxdF8,11624
52
52
  validmind/datasets/regression/fred.py,sha256=NpydiYfBPfClE8C5ZO_FisGBS09CulAIn1-yrz_LP4k,5707
53
+ validmind/datasets/regression/fred_timeseries.py,sha256=d8OM-FyI2hyu_azdZvOVcd8hO1nNWaPdzM4PNWqv1-4,8857
53
54
  validmind/datasets/regression/lending_club.py,sha256=QM8RTuy0ijRfbHm9Ye8_-vQY_X61sGRwG0HUDpn-oSQ,2536
54
55
  validmind/datasets/regression/models/fred_loan_rates_model_1.pkl,sha256=RUpaUJC7WCqc5jwzV4vPujtQlNpVbcJhJ4N5F9Qk59s,40067
55
56
  validmind/datasets/regression/models/fred_loan_rates_model_2.pkl,sha256=J1ukMdeFoxRlC1vAm7YV39aANncAU1VQVAFSyjlDPUk,48314
@@ -71,7 +72,7 @@ validmind/models/pytorch.py,sha256=aAEUWtISwLh-PMvHkcLwBEbBStAByt4J-NpK-Ndv38E,1
71
72
  validmind/models/r_model.py,sha256=eYdpCREgBpYv-PxJDuG91I77OOAx3-43FoaYT560ziE,7172
72
73
  validmind/models/sklearn.py,sha256=lOCJlP2wvd5IJHtBS1XG9FXrtIvO_f8xm2Qp1UdsiBw,2406
73
74
  validmind/template.py,sha256=d5I8TjX8Sh5CJPWo_zezMfyvnh7OXo07VV8iKXxlk9E,7184
74
- validmind/test_suites/__init__.py,sha256=dh6fYH10XmrJ3gL6MPK4Vj67nU7fpl9vNOIYbsu1MnI,7141
75
+ validmind/test_suites/__init__.py,sha256=T7446YfTnxfBKNFwIXVcbMb4uIyRzHFAyUQLdDQCjVc,7039
75
76
  validmind/test_suites/classifier.py,sha256=0ZE3z5X_ZewTvmwQ3cVGJQh7dPgg0IlqcQshJJxCFWQ,4003
76
77
  validmind/test_suites/cluster.py,sha256=Wc2NViwivjiuiJMwrnGbOJYeZ3ApN8usWlOPYZYWAgE,2276
77
78
  validmind/test_suites/embeddings.py,sha256=sBQRMjlp7kzsvPkA0qkgmAr4yzUrHMmXSEfSHMkn-_s,1949
@@ -84,7 +85,8 @@ validmind/test_suites/summarization.py,sha256=unEpfk8_etLMuYAtSmBzlqrUpo0kd9Vc3S
84
85
  validmind/test_suites/tabular_datasets.py,sha256=WE4eLzRCfiqAxRqXnZFRR3Lo_u-TI6KM6hmTbR8rg5o,1798
85
86
  validmind/test_suites/text_data.py,sha256=YGVGBB05356jN9Gzcy5CHShRzo1fm5mKsZY7YBq0cYU,739
86
87
  validmind/test_suites/time_series.py,sha256=msUyYySAe5VHJJp6z0k0cNt2ekMB8-XkxGER75Zs1hs,6724
87
- validmind/tests/__init__.py,sha256=n22VyCpZD3xEHkJI2-sb5cSK-fNanL2v6b1uZIav0fc,15921
88
+ validmind/tests/__init__.py,sha256=9-SR070X6SUZIURkh7M1jUMiqaDS0SVUmzZ8gNtm-10,15904
89
+ validmind/tests/__types__.py,sha256=AmSEzm1rwtkTQnbAFlgjrcyyg1xMThglC6r7W4jdMaM,9902
88
90
  validmind/tests/data_validation/ACFandPACFPlot.py,sha256=BMXcVZxrZ09xzw0TZtUM81Mss6q2eQg6md5uEfpGu_8,4960
89
91
  validmind/tests/data_validation/ADF.py,sha256=WEFDUdDJlkvDPcLTFAa9RXwMSv_JD-Y-CN-F3xRGBtc,5177
90
92
  validmind/tests/data_validation/ANOVAOneWayTable.py,sha256=udizp4rxW4VlMaXK2RrkPK5tAUgO0C-A3MIifPjBZMw,6019
@@ -119,7 +121,7 @@ validmind/tests/data_validation/PearsonCorrelationMatrix.py,sha256=dM6M8jjGHNL9u
119
121
  validmind/tests/data_validation/PhillipsPerronArch.py,sha256=ft4ZbeKsM_8WAvdWHou0AZGXFUc4RWiMdOvn1pMXmr4,5075
120
122
  validmind/tests/data_validation/RollingStatsPlot.py,sha256=MqKooEL1cIRandoSN7sWhKgXDhdbIbCcBTVvc-FIp5k,5901
121
123
  validmind/tests/data_validation/ScatterPlot.py,sha256=5mCr37aD92DUSn82BR7AWdx6-RdJqhjWZPhPcpIexGU,4346
122
- validmind/tests/data_validation/SeasonalDecompose.py,sha256=f-rvT_ahhiQooQuFt0bL4FXUjVUofhNizw2wauKPL2s,9026
124
+ validmind/tests/data_validation/SeasonalDecompose.py,sha256=7aBjifXMr7py0LdUjvHMCwTDjO-K9mI38ThHX4Yp5D8,9562
123
125
  validmind/tests/data_validation/Skewness.py,sha256=lygUUQomckvdX5__JGOn6Rx0kJRfyw-0gZOjqqN9Phk,4935
124
126
  validmind/tests/data_validation/SpreadPlot.py,sha256=3FMhokxIexGzRoIlRElkkgpQRRdvnlyx0-tt8aK-wDY,4591
125
127
  validmind/tests/data_validation/TabularCategoricalBarPlots.py,sha256=EM1m1v9V5N6bpaed_QYoqEFl4ipYcDEh7TbUL1B2stE,4241
@@ -127,11 +129,13 @@ validmind/tests/data_validation/TabularDateTimeHistograms.py,sha256=Dzrw77U8mbDY
127
129
  validmind/tests/data_validation/TabularDescriptionTables.py,sha256=Hd78V0CsRR0zbA97GFHV4DuffaT-85CI3wyF3ptdXLk,9281
128
130
  validmind/tests/data_validation/TabularNumericalHistograms.py,sha256=CSdQJxDht6QJRMGXoedP_1MVoem-whlcwxGGBaP3inc,4170
129
131
  validmind/tests/data_validation/TargetRateBarPlots.py,sha256=7BghG2XtWw2ptmNgT-wEWb6gWwUgWIlp-LV5HtQENbM,5737
132
+ validmind/tests/data_validation/TimeSeriesDescription.py,sha256=YIfet30KZSAOdYAkTQadKLNuY_SAM3a5Fn2z2AqQz7I,3130
133
+ validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py,sha256=GZlo4TV6NnG92T-2XQqNs8o3vKRv4jlJJM3sVX9aO10,3196
130
134
  validmind/tests/data_validation/TimeSeriesFrequency.py,sha256=b6lfIzGjiMUho1dhBFfgWZf6EM8AhYdFojWVbgEE4F4,7243
131
- validmind/tests/data_validation/TimeSeriesHistogram.py,sha256=VDf31cBfaJ9Bfju5CSdfCHMoJtOxGg-BLZdK7W-UsDw,4188
135
+ validmind/tests/data_validation/TimeSeriesHistogram.py,sha256=ILSdldXLGn--40rRFapUBAizaTgWxXcWlaC9BvKykAc,3676
132
136
  validmind/tests/data_validation/TimeSeriesLinePlot.py,sha256=_HQfgfY_ZmT1S2SSF7gJ7RmNoKjGKQ9_dDaxVHESHtI,4173
133
137
  validmind/tests/data_validation/TimeSeriesMissingValues.py,sha256=4-b55iIMbhDETeRp-lgJjr7p7A5nmuPsYXwILiJ_Jtw,7351
134
- validmind/tests/data_validation/TimeSeriesOutliers.py,sha256=wwz3SZs2NUTzK5dgQlehcL5kzANj_Ov7NQPqp_qNoEA,9749
138
+ validmind/tests/data_validation/TimeSeriesOutliers.py,sha256=JaGrK6vaPpC0a-dcaR76X10_b66Mk0Lt5Pujm0_aJTo,9165
135
139
  validmind/tests/data_validation/TooManyZeroValues.py,sha256=lnW0De4o2q56j1LJvoW_4CQbz4OPvPP5K3e0exCnxqc,5875
136
140
  validmind/tests/data_validation/UniqueRows.py,sha256=zyZ6icTq4kRcNUT_ID95j6Ae8OpGHjrlHkR9j4_3aB8,4516
137
141
  validmind/tests/data_validation/WOEBinPlots.py,sha256=C3bNTRzbz3wXWoHUdoHZVmzIgMzJTAgwKtgWK2fPbSc,6946
@@ -149,7 +153,7 @@ validmind/tests/data_validation/nlp/StopWords.py,sha256=YAwXyfoCLR8jLm7dlXknSpgU
149
153
  validmind/tests/data_validation/nlp/TextDescription.py,sha256=AGDUpdDiAg_s6P-jAe-r-QAG5AZJltEAzdbWshCwohc,8842
150
154
  validmind/tests/data_validation/nlp/Toxicity.py,sha256=5sPYUGE8NFFNJnwXiGa4hqduM0S_6f8LX0ro3FnkGes,1534
151
155
  validmind/tests/data_validation/nlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
152
- validmind/tests/decorator.py,sha256=jnOmPvx1Ang8za-Qly4xBVmOf8_aWFKAY6OM5jxkUeU,9556
156
+ validmind/tests/decorator.py,sha256=JygzPCUWZL2UPL2NV50SK3wKtmHs8h_a5_j3NjvoM1s,9887
153
157
  validmind/tests/model_validation/BertScore.py,sha256=XJss9sqrkkkNkT44vIf6s5ID_M87PPjWJ-pN0bCTe2E,5300
154
158
  validmind/tests/model_validation/BleuScore.py,sha256=UmlOsr2chqSEcOV6OtuJey9Cb3qvBD6hDOuvLg2X9_s,4925
155
159
  validmind/tests/model_validation/ClusterSizeDistribution.py,sha256=IKcMBCBsasbi6i8LTqv0H6PUUsG8FXnBtc15uj209WY,4155
@@ -157,9 +161,14 @@ validmind/tests/model_validation/ContextualRecall.py,sha256=wzLjaliEG441qXvaonch
157
161
  validmind/tests/model_validation/FeaturesAUC.py,sha256=RKh3oQIyFSaU0rG4trtuPZDrC4-sIky8cVXnB2z5PYA,4733
158
162
  validmind/tests/model_validation/MeteorScore.py,sha256=3YtSjdzxraFYmam03HtOhjayXScFdS5QR_9V4gD-lLI,5010
159
163
  validmind/tests/model_validation/ModelMetadata.py,sha256=F9ctmlIxngkHgOlggRl0WFLilh46SlM3vYfY9zkhtYk,3733
164
+ validmind/tests/model_validation/ModelMetadataComparison.py,sha256=gcBYgbnqh_2qotc2lLHXQZ4WyAPc5ieZyoL2nvHsTmo,2485
165
+ validmind/tests/model_validation/ModelPredictionResiduals.py,sha256=PYeqdNuaeF0bTPzQZOi0ESx1LnBA99KHF5_ZItm8Pyg,3784
160
166
  validmind/tests/model_validation/RegardScore.py,sha256=EuR1pAgVcn99m5eWagxGgdOCHDBkB2NIzyGE9ly73z4,5206
161
167
  validmind/tests/model_validation/RegressionResidualsPlot.py,sha256=EQzJn9wH_1pztHr2JI26Um3E9KzHmu6o76o4ffbXZj4,5025
162
168
  validmind/tests/model_validation/RougeScore.py,sha256=1yr09JH1kGJKFL29lmXvEm1Dp482Sjxn0lK6UJfCQ0s,5576
169
+ validmind/tests/model_validation/TimeSeriesPredictionWithCI.py,sha256=zNTjM9SOGs49NLghlGMnY2EuZjkIZgRKWTavxSNjPls,4616
170
+ validmind/tests/model_validation/TimeSeriesPredictionsPlot.py,sha256=gvtiaAw0tndhOhxdzZOS073-1vp-Rxt81vF67cG1acg,2887
171
+ validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py,sha256=ec90bxP9cWFe7b7xMfVhWj1lUgVheWeRFUSH79HKPqI,4017
163
172
  validmind/tests/model_validation/TokenDisparity.py,sha256=EZlpFQH6qRWedjTQT5o4u-OIdgj1iKK-JB8GEQQlxoA,4394
164
173
  validmind/tests/model_validation/ToxicityScore.py,sha256=nFDHU1Z8mGpJrdKE6sWxo9nOqqzne1JsYIiNFyn_gYA,5299
165
174
  validmind/tests/model_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -196,6 +205,7 @@ validmind/tests/model_validation/sklearn/ClusterPerformance.py,sha256=kDGdMfxyf6
196
205
  validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py,sha256=-9Euc3ZCAFoMSsJuz9zrrQqk3GTXQHYKa3i8lYsJilI,8600
197
206
  validmind/tests/model_validation/sklearn/CompletenessScore.py,sha256=Uj_hTTTqRLHDJ-pjajfuun_2Anq7W0GQpwPsAhdWq24,2559
198
207
  validmind/tests/model_validation/sklearn/ConfusionMatrix.py,sha256=Bm9fsw9nD1KurbBbXf0Jph0MN7_-7GRiydiTTfDgiU4,5776
208
+ validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py,sha256=zUXNy9SookZQQfLvwvI2W0yG6BlRBdWIK0IHgYZKNpg,3250
199
209
  validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py,sha256=hL7hfvdeZ_jR9ktxMH9NI-hwvLsl478iQDajOXUuocM,3049
200
210
  validmind/tests/model_validation/sklearn/HomogeneityScore.py,sha256=ykBkNCNm1HRyMoU2x5hK20tuKbU0vYrwj4huc4x7v6w,2753
201
211
  validmind/tests/model_validation/sklearn/HyperParametersTuning.py,sha256=YGJ38Px-RRIkWVHavLr_FNm6sod_k_t6U32BLmIFMTg,4660
@@ -205,13 +215,15 @@ validmind/tests/model_validation/sklearn/MinimumF1Score.py,sha256=5QLwdsFkuT-k2Q
205
215
  validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py,sha256=0KMdAHZOnY_PpoWSNZxmudClqQ469JV_V_vTM3FXAC8,4891
206
216
  validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py,sha256=ITimCZ0dPxomj6bSI_0g_I5ft_fWc5QDvCTKukciaRU,6196
207
217
  validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=BLyDWAHd7dw17QLuwy9JrvsBNPXhM8yhXWu9EeSIVgg,14075
208
- validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=jBRGRFjWzC3MyhNyJ_5Mv21S_ippcy63lMIZ2MQ4588,4929
218
+ validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=E7ynDX0IVnenUqovwW5GXtxheGci5bCo7Y534WoU-tY,4990
209
219
  validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py,sha256=5cp3E78C1OjFomqVmtYOovdoNniLVVg-jmRb9HXQ3XQ,10132
210
220
  validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py,sha256=Ay0Z3NDpP0w3Tz3nPSSUhA5WZGW4EZyNmCIJga2kixQ,4436
211
221
  validmind/tests/model_validation/sklearn/ROCCurve.py,sha256=gXeUoJ8Gxd4sZ_VRDICEznk8iaNyZmDpgZk2M03lVdo,5822
212
222
  validmind/tests/model_validation/sklearn/RegressionErrors.py,sha256=ozczSJX5jwEXVj-kb6BlLzoUVzNXNkFqeaoYmKfTAdM,5976
223
+ validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py,sha256=CHfdcRx6ZqvfkfZVy7HNgOUjZp-KepPS5rs2al19OyQ,3160
213
224
  validmind/tests/model_validation/sklearn/RegressionModelsPerformanceComparison.py,sha256=1e0Sv-pfI4sUeMDl-62X97Ai8kezcI_3gUnfZWzq3fA,5789
214
225
  validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=MbVfgxiloCSd32xhlO4_QiDyo3ZTJB4Orc-G3yMltwM,4958
226
+ validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py,sha256=tGJKpfeTvU2xBxsYbQSC5GPDcCS2_j0FcT3uceXZduI,2761
215
227
  validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py,sha256=762ckUxewgv87Aix48gJQ532v7UEdwIUD_l5iMaQoGU,13738
216
228
  validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=FwY2n65uDBz4D4fFy-Ur7G2lb9W_LcOr-HPevmwTxZk,8951
217
229
  validmind/tests/model_validation/sklearn/SilhouettePlot.py,sha256=TznxbLhwybNbht6hUg4MSKxX3TI7zJp75tQH0svWon0,6237
@@ -270,7 +282,7 @@ validmind/unit_metrics/regression/sklearn/MeanAbsoluteError.py,sha256=LCNgpDw6FB
270
282
  validmind/unit_metrics/regression/sklearn/MeanSquaredError.py,sha256=7UQnDTTO7yRRyMe3Zac9ZyjEbbD8pW_8WnZwHdVB_8U,463
271
283
  validmind/unit_metrics/regression/sklearn/RSquaredScore.py,sha256=h9U5ndtnJfNNtKPZIo5n3KRp-m4akQcEo0t1iSwjVzY,420
272
284
  validmind/unit_metrics/regression/sklearn/RootMeanSquaredError.py,sha256=_5IQIU9jNfmTE4NLJvaRWXbudRGV2PS7nYF5e4fkSMY,556
273
- validmind/utils.py,sha256=7eK4jGTdGGnHIKGuppmB6SHh8sdtFRRkN6QRVzwnw68,14731
285
+ validmind/utils.py,sha256=MQDsW7YuwEJ50tA01n3xb8D_Ihmji_Mn22AlMnJJQT8,15819
274
286
  validmind/vm_models/__init__.py,sha256=lmWCD2u4tW6_AH39UnJ24sCcMUcsHbUttz7SaZfrh3s,1168
275
287
  validmind/vm_models/dataset/__init__.py,sha256=U4CxZjdoc0dd9u2AqBl5PJh1UVbzXWNrmundmjLF-qE,346
276
288
  validmind/vm_models/dataset/dataset.py,sha256=YP6l5sq7SJNExWK3RvkxeCBTLj4z2GkBsmv4KxfBS1I,22753
@@ -290,8 +302,8 @@ validmind/vm_models/test_suite/runner.py,sha256=wgjyqx2CU4bjX3fZKmzJP7gb5GFooGvs
290
302
  validmind/vm_models/test_suite/summary.py,sha256=co-xJJMUYGb7cOiVmw0i8vpZlfiMqrWjaCOmHKMAbcE,4686
291
303
  validmind/vm_models/test_suite/test.py,sha256=_GfbK36l98SjzgVcucmp0OKBJKqMW3neO7SqJ3EWeps,5049
292
304
  validmind/vm_models/test_suite/test_suite.py,sha256=Cns2wL54v0T5Mv5_HJb3kMeaa4rtycdqT8KxK9_rWEU,6279
293
- validmind-2.3.1.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
294
- validmind-2.3.1.dist-info/METADATA,sha256=GxV1nkn6sX3Cl-vFqqcxhy8W_3YjVrPhB-tlSsnfgbo,3911
295
- validmind-2.3.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
296
- validmind-2.3.1.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
297
- validmind-2.3.1.dist-info/RECORD,,
305
+ validmind-2.3.5.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
306
+ validmind-2.3.5.dist-info/METADATA,sha256=Jnq-YN0eBrHfWFytv-dKo8akuB0iYBGaJwEcQ0a9rIg,4133
307
+ validmind-2.3.5.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
308
+ validmind-2.3.5.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
309
+ validmind-2.3.5.dist-info/RECORD,,